AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

NIR-II fluorescence/photoacoustic imaging of ovarian cancer and peritoneal metastasis

Siyu Lu1,2,§Liru Xue1,§Meng Yang3,§Jingjing Wang2Yang Li2Yuxin Jiang3Xuechuan Hong1,2,4Mingfu Wu1( )Yuling Xiao2,5( )
State Key Laboratory of Virology, Department Gynecology, Cancer Biology Research Center, Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
Shenzhen Institute of Wuhan University, Shenzhen 518057, China

§ Siyu Lu, Liru Xue, and Meng Yang contributed equally to this work.

Show Author Information

Graphical Abstract

H10@follicle-stimulating hormone (FSH) dots have been developed for near-infrared II (NIR-II, 1,000–1,700 nm) fluorescence/photoacoustic imaging of ovarian cancer and peritoneal metastasis.

Abstract

Ovarian cancer is a global problem, and is typically diagnosed in the middle or late stages, with a mysterious abdominal mass or atypical abdominal metastases due to the lack of specific initial diagnostic methods. Dual-modal near-infrared II (NIR-II, 1,000–1,700 nm) fluorescence/photoacoustic imaging has great potential in early ovarian cancer diagnosis and image-guided surgery due to its high sensitivity and deep penetration. Herein, we report a novel organic NIR-II dye (H10) with excellent aggregation-induced-emission (AIE) characteristics (I/I0 > 1.6) utilizing a selenadiazolo-[3,4-f]benzo[c][1,2,5]thiadiazole (ST)-based building block. Then, water-soluble and biocompatible H10@follicle-stimulating hormone (H10@FSH) dots with superior optical/photoacoustic properties and a tenfold increase in ovarian-specific targeting ability were synthesized. Finally, for the first time, in vivo dual-mode NIR-II fluorescent/photoacoustic (PA) imaging and image-guided surgery of patient-derived tumor xenograft (PDTX) and micro-metastatic abdominal ovarian cancer lesions were investigated. This novel strategy will establish a new method for early detection of ovarian cancer and significantly improve the prognosis of ovarian cancer patients.

Electronic Supplementary Material

Download File(s)
12274_2022_4592_MOESM1_ESM.pdf (1.9 MB)

References

1

Kuroki, L.; Guntupalli, S. R. Treatment of epithelial ovarian cancer. BMJ 2020, 371, m3773.

2

Yeung, T. L.; Leung, C. S.; Yip, K. P.; Yeung, C. L. A.; Wong, S. T. C.; Mok, S. C. Cellular and molecular processes in ovarian cancer metastasis. A review in the theme:Cell and molecular processes in cancer metastasis. Am. J. Physiol. Cell Physiol. 2015, 309, C444–C456.

3

Smith, L. H.; Morris, C. R.; Yasmeen, S.; Parikh-Patel, A.; Cress, R. D.; Romano, P. S. Ovarian cancer: Can we make the clinical diagnosis earlier. Cancer 2005, 104, 1398–1407.

4

Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249.

5

van De Vrie, R.; Rutten, M. J.; Asseler, J. D.; Leeflang, M. M. G.; Kenter, G. G.; Mol, B. W. J.; Buist, M. Laparoscopy for diagnosing resectability of disease in women with advanced ovarian cancer. Cochrane Database Syst. Rev. 2019, 23, CD009786.

6

Sehgal, N. Efficacy of color Doppler ultrasonography in differentiation of ovarian masses. J. Midlife Health 2019, 10, 22–28.

7

Guerriero, S.; Alcazar, J. L.; Ajossa, S.; Galvan, R.; Laparte, C.; Garcia-Manero, M.; Lopez-García, G.; Melis, G. B. Transvaginal color doppler imaging in the detection of ovarian cancer in a large study population. Int. J. Gynecol. Cancer 2010, 20, 781–786.

8

Chandrashekhara, S. H.; Triveni, G. S.; Kumar, R. Imaging of peritoneal deposits in ovarian cancer: A pictorial review. World J. Radiol. 2016, 8, 513–517.

9

Wanderi, K.; Cui, Z. Q. Organic fluorescent nanoprobes with NIR-IIb characteristics for deep learning. Exploration 2022, 2, 20210097.

10

Wang, P. Y.; Fan, Y.; Lu, L. F.; Liu, L.; Fan, L. L.; Zhao, M. Y.; Xie, Y.; Xu, C. J.; Zhang, F. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer. Nat. Commun. 2018, 9, 2898.

11

Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 0010.

12

Li, Y.; Liu, Y. F.; Li, Q. Q.; Zeng, X. D.; Tian, T.; Zhou, W. Y.; Cui, Y.; Wang, X. K.; Cheng, X. D.; Ding, Q. H. et al. Novel NIR-II organic fluorophores for bioimaging beyond 1550 nm. Chem. Sci. 2020, 11, 2621–2626.

13

Ding, B. B.; Xiao, Y. L.; Zhou, H.; Zhang, X.; Qu, C. R.; Xu, F. C.; Deng, Z. X.; Cheng, Z.; Hong, X. C. Polymethine thiopyrylium fluorophores with absorption beyond 1,000 nm for biological imaging in the second near-infrared subwindow. J. Med. Chem. 2019, 62, 2049–2059.

14

Zhao, M. Y.; Li, B. H.; Wu, Y. F.; He, H. S.; Zhu, X. Y.; Zhang, H. X.; Dou, C. R.; Feng, L. S.; Fan, Y.; Zhang, F. A tumor-microenvironment-responsive lanthanide-cyanine fret sensor for NIR-II luminescence-lifetime in situ imaging of hepatocellular carcinoma. Adv. Mater. 2020, 32, e2001172.

15

Yao, D. F.; Wang, Y. S.; Zou, R. F.; Bian, K. X.; Liu, P.; Shen, S. Z.; Yang, W. T.; Zhang, B. B.; Wang, D. B. Molecular engineered squaraine nanoprobe for NIR-II/photoacoustic imaging and photothermal therapy of metastatic breast cancer. ACS Appl. Mater. Interfaces 2020, 12, 4276–4284.

16

Liu, Y. S.; Li, Y.; Koo, S.; Sun, Y.; Liu, Y. X.; Liu, X.; Pan, Y. N.; Zhang, Z. Y.; Du, M. X.; Lu, S. Y. et al. Versatile types of inorganic/organic NIR-IIa/IIb fluorophores: From strategic design toward molecular imaging and theranostics. Chem. Rev. 2022, 122, 209–268.

17

Guo, Z. Y.; Cui, Z. Q. Fluorescent nanotechnology for in vivo imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021, 13, e1705.

18

Cheng, X. D.; Zhang, C.; Shen, K.; Liu, H. F.; Bai, C. H.; Ding, Q. H.; Guan, M. T.; Wu, J. Z.; Tian, Z. Q.; Chen, D. L. et al. Novel diketopyrrolopyrrole NIR-II fluorophores and DDR inhibitors for in vivo chemo-photodynamic therapy of osteosarcoma. Chem. Eng. J. 2022, 446, 136929.

19
Li, Y.; Zhu, H.; Wang, X. B.; Cui, Y.; Gu, L. J.; Hou, X. W.; Guan, M. T.; Wu, J. Z.; Xiao, Y. L.; Xiong, X. X. et al. Small-molecule fluorophores for near-infrared IIb imaging and image-guided therapy of vascular diseases. CCS Chem., in press, https://doi.org/10.31635/ccschem.022.202101547.
20

Li, Y.; Gao, J. F.; Wang, S. P.; Du, M. X.; Hou, X. W.; Tian, T.; Qiao, X.; Tian, Z. Q.; Stang, P. J.; Li, S. J. et al. Self-assembled NIR-II fluorophores with ultralong blood circulation for cancer imaging and image-guided surgery. J. Med. Chem. 2022, 65, 2078–2090.

21

Li, Y.; Gao, J. F.; Wang, S. P.; Li, S. J.; Hou, X. W.; Pan, Y. N.; Gao, J. L.; Qiao, X.; Tian, Z. Q.; Chen, D. L. et al. Organic NIR-II dyes with ultralong circulation persistence for image-guided delivery and therapy. J. Control. Release 2022, 342, 157–169.

22

Liu, Y. S.; Li, Q. Q.; Gu, M. J.; Lu, D. S.; Xiong, X. X.; Zhang, Z. Y.; Pan, Y. N.; Liao, Y. Q.; Ding, Q. H.; Gong, W. X. et al. A second near-infrared Ru(II) polypyridyl complex for synergistic chemo-photothermal therapy. J. Med. Chem. 2022, 65, 2225–2237.

23

Chen, Y. S.; Zhao, Y.; Yoon, S. J.; Gambhir, S. S.; Emelianov, S. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nat. Nanotechnol. 2019, 14, 465–472.

24

Guo, B.; Sheng, Z. H.; Hu, D. H.; Liu, C. B.; Zheng, H. R.; Liu, B. Through scalp and skull NIR-II photothermal therapy of deep orthotopic brain tumors with precise photoacoustic imaging guidance. Adv. Mater. 2018, 30, e1802591.

25

Liu, G. Y.; Zhu, J. W.; Guo, H.; Sun, A. H.; Chen, P.; Xi, L.; Huang, W.; Song, X. J.; Dong, X. C. Mo2C-derived polyoxometalate for NIR-II photoacoustic imaging-guided chemodynamic/photothermal synergistic therapy. Angew. Chem., Int. Ed. 2019, 58, 18641–18646.

26

Hu, X. M.; Tang, Y. F.; Hu, Y. X.; Lu, F.; Lu, X. M.; Wang, Y. Q.; Li, J.; Li, Y. Y.; Ji, Y.; Wang, W. J. et al. Gadolinium-chelated conjugated polymer-based nanotheranostics for photoacoustic/magnetic resonance/NIR-II fluorescence imaging-guided cancer photothermal therapy. Theranostics 2019, 9, 4168–4181.

27

Zhang, R. P.; Xu, Y. L.; Zhang, Y.; Kim, H. S.; Sharma, A.; Gao, J.; Yang, G. F.; Kim, J. S.; Sun, Y. Rational design of a multifunctional molecular dye for dual-modal NIR-II/photoacoustic imaging and photothermal therapy. Chem. Sci. 2019, 10, 8348–8353.

28

Jiang, Y. Y.; Pu, K. Y. Molecular fluorescence and photoacoustic imaging in the second near-infrared optical window using organic contrast agents. Adv. Biosyst. 2018, 2, 1700262.

29

Fu, Q. R.; Zhu, R.; Song, J. B.; Yang, H. H.; Chen, X. Y. Photoacoustic imaging: Contrast agents and their biomedical applications. Adv. Mater. 2019, 31, 1805875.

30

Li, Y.; Lin, J. Y.; Wang, P. Y.; Luo, Q.; Lin, H. R.; Zhang, Y.; Hou, Z. Q.; Liu, J. F.; Liu, X. L. Tumor microenvironment responsive shape-reversal self-targeting virus-inspired nanodrug for imaging-guided near-infrared-II photothermal chemotherapy. ACS Nano 2019, 13, 12912–12928.

31

Wu, C. X.; Zhang, Y. J.; Li, Z.; Li, C. Y.; Wang, Q. B. A novel photoacoustic nanoprobe of ICG@PEG-Ag2S for atherosclerosis targeting and imaging in vivo. Nanoscale 2016, 8, 12531–12539.

32

Chen, D. D.; Liu, Y.; Zhang, Z.; Liu, Z. H.; Fang, X. F.; He, S. Q.; Wu, C. F. NIR-II fluorescence imaging reveals bone marrow retention of small polymer nanoparticles. Nano Lett. 2021, 21, 798–805.

33

Du, B. L.; Qu, C. R.; Qian, K.; Ren, Y.; Li, Y. S.; Cui, X. H.; He, S. Q.; Wu, Y. F.; Ko, T.; Liu, R. Q. et al. An IR820 dye-protein complex for second near-infrared window and photoacoustic imaging. Adv. Opt. Mater. 2020, 8, 1901471.

34

Cheng, K.; Chen, H.; Jenkins, C. H.; Zhang, G. L.; Zhao, W.; Zhang, Z.; Han, F.; Fung, J.; Yang, M.; Jiang, Y. X. et al. Synthesis, characterization, and biomedical applications of a targeted dual-modal near-infrared-II fluorescence and photoacoustic imaging nanoprobe. ACS Nano 2017, 11, 12276–12291.

35

Wang, Q.; Dai, Y. N.; Xu, J. Z.; Cai, J.; Niu, X. R.; Zhang, L.; Chen, R. F.; Shen, Q. M.; Huang, W.; Fan, Q. L. All-in-one phototheranostics: Single laser triggers NIR-II fluorescence/photoacoustic imaging guided photothermal/photodynamic/chemo combination therapy. Adv. Funct. Mater. 2019, 29, 1901480.

36

Ma, H. L.; Liu, C. C.; Hu, Z. B.; Yu, P. P.; Zhu, X. F.; Ma, R.; Sun, Z. R.; Zhang, C. H.; Sun, H. T.; Zhu, S. J. et al. Propylenedioxy thiophene donor to achieve NIR-II molecular fluorophores with enhanced brightness. Chem. Mater. 2020, 32, 2061–2069.

37

Zhou, H.; Zeng, X. D.; Li, A. G.; Zhou, W. Y.; Tang, L.; Hu, W. B.; Fan, Q. L.; Meng, X. L.; Deng, H.; Duan, L. et al. Upconversion NIR-II fluorophores for mitochondria-targeted cancer imaging and photothermal therapy. Nat. Commun. 2020, 11, 6183.

38

Lin, J. C.; Zeng, X. D.; Xiao, Y. L.; Tang, L.; Nong, J. X.; Liu, Y. F.; Zhou, H.; Ding, B. B.; Xu, F. C.; Tong, H. X. et al. Novel near-infrared II aggregation-induced emission dots for in vivo bioimaging. Chem. Sci. 2019, 10, 1219–1226.

39

Wang, Y.; Hasegawa, T.; Matsumoto, H.; Mori, T.; Michinobu, T. D-A1-D-A2 backbone strategy for benzobisthiadiazole based n-channel organic transistors:Clarifying the selenium-substitution effect on the molecular packing and charge transport properties in electron-deficient polymers. Adv. Funct. Mater. 2017, 27, 1701486.

40

Zhang, Z. Z.; Li, Y. W.; Cai, G. L.; Zhang, Y. H.; Lu, X. H.; Lin, Y. Z. Selenium heterocyclic electron acceptor with small urbach energy for As-cast high-performance organic solar cells. J. Am. Chem. Soc. 2020, 142, 18741–18745.

41

Zhang, X. Y.; Chen, J.; Zheng, Y. F.; Gao, X. L.; Kang, Y.; Liu, J. C.; Cheng, M. J.; Sun, H.; Xu, C. J. Follicle-stimulating hormone peptide can facilitate paclitaxel nanoparticles to target ovarian carcinoma in vivo. Cancer Res. 2009, 69, 6506–6514.

42

Wang, P. Y.; Jiang, S. H.; Li, Y.; Luo, Q.; Lin, J. Y.; Hu, L. D.; Fan, L. L. Downshifting nanoprobes with follicle stimulating hormone peptide fabrication for highly efficient NIR II fluorescent bioimaging guided ovarian tumor surgery. Nanomed. Nanotechnol. Biol. Med. 2020, 28, 102198.

43

Liu, Y. Y.; Yang, X. Q.; Gong, H.; Jiang, B. W.; Wang, H.; Xu, G. Q.; Deng, Y. Assessing the effects of norepinephrine on single cerebral microvessels using optical-resolution photoacoustic microscope. J. Biomed. Opt. 2013, 18, 076007.

44

Antaris, A. L.; Chen, H.; Cheng, K.; Sun, Y.; Hong, G. S.; Qu, C. R.; Diao, S.; Deng, Z. X.; Hu, X. M.; Zhang, B. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 2016, 15, 235–242.

45

Chen, C. P.; Wu, P. J.; Liou, S. Y.; Chan, Y. H. Ultrabright benzoselenadiazole-based semiconducting polymer dots for specific cellular imaging. RSC Adv. 2013, 3, 17507–17514.

46

Liu, S. J.; Li, Y. Y.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Structural and process controls of AIEgens for NIR-II theranostics. Chem. Sci. 2021, 12, 3427–3436.

47

Sheng, Z. H.; Guo, B.; Hu, D. H.; Xu, S. D.; Wu, W. B.; Liew, W. H.; Yao, K.; Jiang, J. Y.; Liu, C. B.; Zheng, H. R. et al. Bright aggregation-induced-emission dots for targeted synergetic NIR-II fluorescence and NIR-I photoacoustic imaging of orthotopic brain tumors. Adv. Mater. 2018, 30, 1800766.

48

Li, Q. Q.; Ding, Q. H.; Li, Y.; Zeng, X. D.; Liu, Y. S.; Lu, S. Y.; Zhou, H.; Wang, X. F.; Wu, J. Z.; Meng, X. L. et al. Novel small-molecule fluorophores for in vivo NIR-IIa and NIR-IIb imaging. Chem. Commun. 2020, 56, 3289–3292.

49

Li, W. C.; Hu, J.; Wang, J. J.; Tang, W.; Yang, W. T.; Liu, Y. Q.; Li, R.; Liu, H. Polydopamine-mediated polypyrrole/doxorubicin nanocomplex for chemotherapy-enhanced photothermal therapy in both NIR-I and NIR-II biowindows against tumor cells. J. Appl. Polym. Sci. 2020, 137, 49239.

50

Antaris, A. L.; Chen, H.; Diao, S.; Ma, Z. R.; Zhang, Z.; Zhu, S. J.; Wang, J.; Lozano, A. X.; Fan, Q. L.; Chew, L. et al. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat. Commun. 2017, 8, 15269.

51

Bhasikuttan, A. C.; Mohanty, J.; Nau, W. M.; Pal, H. Efficient fluorescence enhancement and cooperative binding of an organic dye in a supra-biomolecular host-protein assembly. Angew. Chem., Int. Ed. 2007, 46, 4120–4122.

52

Gao, H.; Korn, J. M.; Ferretti, S.; Monahan, J. E.; Wang, Y. Z.; Singh, M.; Zhang, C.; Schnell, C.; Yang, G. Z.; Zhang, Y. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 2015, 21, 1318–1325.

53

Tentler, J. J.; Tan, A. C.; Weekes, C. D.; Jimeno, A.; Leong, S.; Pitts, T. M.; Arcaroli, J. J.; Messersmith, W. A.; Eckhardt, S. G. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 2012, 9, 338–350.

54

Choi, S. Y. C.; Lin, D.; Gout, P. W.; Collins, C. C.; Xu, Y.; Wang, Y. Z. Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Adv. Drug Deliv. Rev. 2014, 79–80, 222–237.

55

Ren, X. N.; Liu, W. L.; Zhou, H. J.; Wei, J. S.; Mu, C. P.; Wan, Y.; Yang, X. Q.; Nie, A. M.; Liu, Z. Y.; Yang, X. L. et al. Biodegradable 2D GeP nanosheets with high photothermal conversion efficiency for multimodal cancer theranostics. Chem. Eng. J. 2022, 431, 134176.

Nano Research
Pages 9183-9191
Cite this article:
Lu S, Xue L, Yang M, et al. NIR-II fluorescence/photoacoustic imaging of ovarian cancer and peritoneal metastasis. Nano Research, 2022, 15(10): 9183-9191. https://doi.org/10.1007/s12274-022-4592-z
Topics:

1921

Views

18

Crossref

19

Web of Science

18

Scopus

2

CSCD

Altmetrics

Received: 14 March 2022
Revised: 24 May 2022
Accepted: 28 May 2022
Published: 26 July 2022
© Tsinghua University Press 2022
Return