AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Shedding light on the role of interfacial chemical bond in heterojunction photocatalysis

Yueshuang Mao1Pengfei Wang2( )Sihui Zhan1( )
MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
Tianjin Key Lab Clean Energy & Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
Show Author Information

Graphical Abstract

Interfacial chemical bonds act as specific “bridge” for reducing the electron transfer distance and driving interfacial charge transfer directionally in heterojunction photocatalysis. This article reviewed the design strategies, characterization techniques, applications and the future perspectives for interfacial chemical bonds.

Abstract

Faced with the growing consumption of fossil fuels and the consequent energy/ecological crisis, photocatalysis has become a realistic option to develop new energy source and realize the carbon neutrality. Heterojunction photocatalysts constructed by multiple semiconductors with staggered band structure can spatially separate redox reaction sites to realize synergistic oxidation and reduction reactions, and have captured broad interest. However, the undesigned heterojunctions still encounter some headache difficulties, that is the poor interfacial contact, which will block carrier mobility, thus result in inefficient and instable catalysts. Recently, researchers have been focusing on constructing chemical bonds (especially covalent bonding) between different semiconductors to induce the formation of intimate and stable interface contact. Herein, this review article presents the state-of-the-art progress on interfacial chemical bonds (ICB) in heterojunction photocatalysts and clarifies the function mechanism for enhancing photocatalysis. Given that the formation of ICB strongly depends on the surface characteristics of semiconductors, we clarify the formation mechanism and put forward rational design strategies. More importantly, the current photocatalytic applications of ICB are reviewed to have a deep understanding of structure–activity related mechanisms. Finally, our brief outlooks on the current challenges and future development trends of ICB for next-generation photocatalysts are pointed out to create brand-new strategies for optimizing photocatalytic properties and accelerate the practical applications of ICB with high-performance.

References

[1]

Sayed, M.; Xu, F. Y.; Kuang, P. Y.; Low, J.; Wang, S. Y.; Zhang, L. Y.; Yu, J. G. Sustained CO2-photoreduction activity and high selectivity over Mn,C-codoped ZnO core-triple shell hollow spheres. Nat. Commun. 2021, 12, 4936.

[2]

Loh, J. Y. Y.; Kherani, N. P.; Ozin, G. A. Persistent CO2 photocatalysis for solar fuels in the dark. Nat. Sustain. 2021, 4, 466–473.

[3]

Wang, J. W.; Jiang, L.; Huang, H. H.; Han, Z. J.; Ouyang, G. F. Rapid electron transfer via dynamic coordinative interaction boosts quantum efficiency for photocatalytic CO2 reduction. Nat. Commun. 2021, 12, 4276.

[4]

Uekert, T.; Pichler, C. M.; Schubert, T.; Reisner, E. Solar-driven reforming of solid waste for a sustainable future. Nat. Sustain. 2021, 4, 383–391.

[5]

Gong, J. K.; Li, C.; Wasielewski, M. R. Advances in solar energy conversion. Chem. Soc. Rev. 2019, 48, 1862–1864.

[6]

Zhao, F. L.; Feng, Y. Y.; Wang, Y.; Zhang, X.; Liang, X. J.; Li, Z.; Zhang, F.; Wang, T.; Gong, J. L.; Feng, W. Two-dimensional gersiloxenes with tunable bandgap for photocatalytic H2 evolution and CO2 photoreduction to CO. Nat. Commun. 2020, 11, 1443.

[7]

Luo, J. M.; Zhang, S. Q.; Sun, M.; Yang, L. X.; Luo, S. L.; Crittenden, J. C. A critical review on energy conversion and environmental remediation of photocatalysts with remodeling crystal lattice, surface, and interface. ACS Nano 2019, 13, 9811–9840.

[8]

Chen, S. S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.

[9]

Zhou, H.; Chen, Z. X.; Kountoupi, E.; Tsoukalou, A.; Abdala, P. M.; Florian, P.; Fedorov, A.; Müller, C. R. Two-dimensional molybdenum carbide 2D-Mo2C as a superior catalyst for CO2 hydrogenation. Nat. Commun. 2021, 12, 5510.

[10]

Zhang, P.; Lou, X. W. Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion. Adv. Mater. 2019, 31, 1900281.

[11]

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

[12]
Foo, J. J.; Ng, S. F.; Ong, W. J. Dimensional heterojunction design: The rising star of 2D bismuth-based nanostructured photocatalysts for solar-to-chemical conversion. Nano Res., in press, https://doi.org/10.1007/s12274-021-4045-0.
[13]

Li, Z. X.; Guo, J.; Wan, Y.; Qin, Y. T.; Zhao, M. T. Combining metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs): Emerging opportunities for new materials and applications. Nano Res. 2022, 15, 3514–3532.

[14]

Yan, C. X.; Dong, J. Q.; Chen, Y. Z.; Zhou, W. J.; Peng, Y.; Zhang, Y.; Wang, L. N. Organic photocatalysts: From molecular to aggregate level. Nano Res. 2022, 15, 3835–3858.

[15]

Gao, C.; Wang, J.; Xu, H. X.; Xiong, Y. J. Coordination chemistry in the design of heterogeneous photocatalysts. Chem. Soc. Rev. 2017, 46, 2799–2823.

[16]

Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986.

[17]

Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Jr. Photocatalysis on TiO2 surfaces:Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758.

[18]

Li, X.; Yu, J. G.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45, 2603–2636.

[19]

Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559.

[20]

Low, J.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694.

[21]

Low, J.; Cao, S. W.; Yu, J. G.; Wageh, S. Two-dimensional layered composite photocatalysts. Chem. Commun. 2014, 50, 10768–10777.

[22]

Xiao, Y.; Zhu, Y. F.; Xiang, W.; Wu, Z. G.; Li, Y. C.; Lai, J.; Li, S.; Wang, E. H.; Yang, Z. G.; Xu, C. L. et al. Deciphering an abnormal layered-tunnel heterostructure induced by chemical substitution for the sodium oxide cathode. Angew. Chem., Int. Ed. 2020, 59, 1491–1495.

[23]

Wadsworth, A.; Hamid, Z.; Kosco, J.; Gasparini, N.; McCulloch, I. The bulk heterojunction in organic photovoltaic, photodetector, and photocatalytic applications. Adv. Mater. 2020, 32, 2001763.

[24]

Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244.

[25]

Gu, Y.; Wu, A. P.; Jiao, Y. Q.; Zheng, H. R.; Wang, X. Q.; Xie, Y.; Wang, L.; Tian, C. G.; Fu, H. G. Two-dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 6673–6681.

[26]

Chao, Y. G.; Zhou, P.; Li, N.; Lai, J. P.; Yang, Y.; Zhang, Y. L.; Tang, Y. H.; Yang, W. X.; Du, Y. P.; Su, D. et al. Ultrathin visible-light-driven Mo incorporating In2O3-ZnIn2Se4 Z-scheme nanosheet photocatalysts. Adv. Mater. 2019, 31, 1807226.

[27]
BaoY. J.SongS. Q.YaoG. J.JiangS. J. S-scheme photocatalytic systemsSol. RRL20215210011810.1002/solr.202100118

Bao, Y. J.; Song, S. Q.; Yao, G. J.; Jiang, S. J. S-scheme photocatalytic systems. Sol. RRL 2021, 5, 2100118.

[28]

Wang, X. H.; Wang, X. H.; Huang, J. F.; Li, S. X.; Meng, A. L.; Li, Z. J. Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat. Commun. 2021, 12, 4112.

[29]

Yan, P. F.; Ji, L.; Liu, X. P.; Guan, Q. H.; Guo, J. L.; Shen, Y. L.; Zhang, H. J.; Wei, W. F.; Cui, X. W.; Xu, Q. 2D amorphous-MoO3−x@Ti3C2-MXene non-van der Waals heterostructures as anode materials for lithium-ion batteries. Nano Energy 2021, 86, 106139.

[30]

Yang, X.; Gao, L.; Guo, Q.; Li, Y. J.; Ma, Y.; Yang, J.; Gong, C. Y.; Yi, C. Nanomaterials for radiotherapeutics-based multimodal synergistic cancer therapy. Nano Res. 2020, 13, 2579–2594.

[31]

Zhang, G. X.; Zhang, H. M.; Wang, R. F.; Liu, H. X.; He, Q. C.; Zhang, X. J.; Li, Y. J. Preparation of Ga2O3/ZnO/WO3 double S-scheme heterojunction composite nanofibers by electrospinning method for enhancing photocatalytic activity. J. Mater. Sci. :Mater. Electron. 2021, 32, 7307–7318.

[32]

Ran, J. R.; Guo, W. W.; Wang, H. L.; Zhu, B. C.; Yu, J. G.; Qiao, S. Z. Metal-free 2D/2D phosphorene/g-C3N4 van der Waals heterojunction for highly enhanced visible-light photocatalytic H2 production. Adv. Mater. 2018, 30, 1800128.

[33]

Jiang, J. Y.; Yan, P. F.; Zhou, Y, N.; Cheng, Z. F.; Cui, X. W.; Ge, Y. F.; Xu, Q. Interplanar growth of 2D non-van der Waals Co2N-based heterostructures for efficient overall water splitting. Adv. Energy Mater. 2020, 10, 2002214.

[34]

Jin, Z. Y.; Zhang, Q. T.; Hu, L.; Chen, J. Q.; Cheng, X.; Zeng, Y. J.; Ruan, S. C.; Ohno, T. Constructing hydrogen bond based melam/WO3 heterojunction with enhanced visible-light photocatalytic activity. Appl. Catal. B 2017, 205, 569–575.

[35]

Ran, J. R.; Zhu, B. C.; Qiao, S. Z. Phosphorene co-catalyst advancing highly efficient visible-light photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2017, 56, 10373–10377.

[36]

Hu, X. G.; Hou, P. X.; Wu, J. B.; Li, X.; Luan, J.; Liu, C.; Liu, G.; Cheng, H. M. High-efficiency and stable silicon heterojunction solar cells with lightly fluorinated single-wall carbon nanotube films. Nano Energy 2020, 69, 104442.

[37]

Zhu, X. Y.; Monahan, N. R.; Gong, Z. Z.; Zhu, H. M.; Williams, K. W.; Nelson, C. A. Charge transfer excitons at van der Waals interfaces. J. Am. Chem. Soc. 2015, 137, 8313–8320.

[38]

Clarke, T. M.; Durrant, J. R. Charge photogeneration in organic solar cells. Chem. Rev. 2010, 110, 6736–6767.

[39]

Brédas, J. L.; Norton, J. E.; Cornil, J.; Coropceanu, V. Molecular understanding of organic solar cells: The challenges. Acc. Chem. Res 2009, 42, 1691–1699.

[40]

Luo, M. H.; Sun, W. P.; Xu, B. B.; Pan, H. G.; Jiang, Y. Z. Interface engineering of air electrocatalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2020, 11, 2002762.

[41]

Beratan, D. N.; Betts, J. N.; Onuchic, J. N. Protein electron transfer rates set by the bridging secondary and tertiary structure. Science 1991, 252, 1285–1288.

[42]

Niu, F. J.; Wang, D. G.; Li, F.; Liu, Y. M.; Shen, S. H.; Meyer, T. J. Hybrid photoelectrochemical water splitting systems: From interface design to system assembly. Adv. Energy Mater. 2020, 10, 1900399.

[43]

Xu, W. W.; Tian, W.; Meng, L. X.; Cao, F. R.; Li, L. Interfacial chemical bond-modulated Z-scheme charge transfer for efficient photoelectrochemical water splitting. Adv. Energy Mater. 2021, 11, 2003500.

[44]

Li, S. J.; Zhang, L. M.; Zhao, W. Q.; Yuan, S. H.; Yang, L.; Chen, X. Q.; Ge, P.; Sun, W.; Ji, X. B. Designing interfacial chemical bonds towards advanced metal-based energy-storage/conversion materials. Energy Stor. Mater. 2020, 32, 477–496.

[45]

Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X. H.; Ceder, G. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 2011, 4, 3680.

[46]

Zuo, L. J.; Gu, Z. W.; Ye, T.; Fu, W. F.; Wu, G.; Li, H. Y.; Chen, H. Z. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc. 2015, 137, 2674–2679.

[47]

Bai, Y.; Chen, H. N.; Xiao, S.; Xue, Q. F.; Zhang, T.; Zhu, Z. L.; Li, Q.; Hu, C.; Yang, Y.; Hu, Z. C. et al. Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward faster hole extraction and higher photovoltaic performance. Adv. Funct. Mater. 2016, 26, 2950–2958.

[48]

Huang, C. M.; Wu, S. F.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. D. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat. Mater. 2014, 13, 1096–1101.

[49]

Nguyen, G. D.; Tsai, H. Z.; Omrani, A. A.; Marangoni, T.; Wu, M.; Rizzo, D. J.; Rodgers, G. F.; Cloke, R. R.; Durr, R. A.; Sakai, Y. et al. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor. Nat. Nanotechnol. 2017, 12, 1077–1082.

[50]

Fang, L. B.; Lan, Z. Y.; Guan, W. H.; Zhou, P.; Bahlawane, N.; Sun, W. P.; Lu, Y. H.; Liang, C.; Yan, M.; Jiang, Y. Z. Hetero-interface constructs ion reservoir to enhance conversion reaction kinetics for sodium/lithium storage. Energy Stor. Mater. 2019, 18, 107–113.

[51]

Jiang, Y.; Wei, M.; Feng, J. K.; Ma, Y. C.; Xiong, S. L. Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets. Energy Environ. Sci. 2016, 9, 1430–1438.

[52]

Zhang, S. G.; Li, Y.; Zhu, H.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Duan, F.; Chen, M. Q.; Du, M. L. Understanding the role of nanoscale heterointerfaces in core/shell structures for water splitting: Covalent bonding interaction boosts the activity of binary transition-metal sulfides. ACS Appl. Mater. Interfaces 2020, 12, 6250–6261.

[53]

Wang, X.; Raghupathy, R. K. M.; Querebillo, C. J.; Liao, Z. Q.; Li, D. Q.; Lin, K.; Hantusch, M.; Sofer, Z.; Li, B. H.; Zschech, E. et al. Interfacial covalent bonds regulated electron-deficient 2D black phosphorus for electrocatalytic oxygen reactions. Adv. Mater. 2021, 33, 2008752.

[54]

Bian, J.; Zhang, Z. Q.; Feng, J. N.; Thangamuthu, M.; Yang, F.; Sun, L.; Li, Z. J.; Qu, Y.; Tang, D. Y.; Lin, Z. W. et al. Energy platform for directed charge transfer in the cascade Z-scheme heterojunction: CO2 photoreduction without a cocatalyst. Angew. Chem., Int. Ed. 2021, 60, 20906–20914.

[55]

Xu, G. L.; Zhang, H. B.; Wei, J.; Zhang, H. X.; Wu, X.; Li, Y.; Li, C. S.; Zhang, J.; Ye, J. H. Integrating the g-C3N4 nanosheet with B–H bonding decorated metal-organic framework for CO2 activation and photoreduction. ACS Nano 2018, 12, 5333–5340.

[56]

Lian, Y. B.; Yang, W. J.; Zhang, C. F.; Sun, H.; Deng, Z.; Xu, W. J.; Song, L.; Ouyang, Z. W.; Wang, Z. X.; Guo, J. et al. Unpaired 3d electrons on atomically dispersed cobalt centres in coordination polymers regulate both oxygen reduction reaction (ORR) activity and selectivity for use in zinc-air batteries. Angew. Chem., Int. Ed. 2020, 59, 286–294.

[57]

Zhu, Y. Z.; Sokolowski, J.; Song, X. C.; He, Y. H.; Mei, Y.; Wu, G. Engineering local coordination environments of atomically dispersed and heteroatom-coordinated single metal site electrocatalysts for clean energy-conversion. Adv. Energy Mater. 2020, 10, 1902844.

[58]

Chen, Y. G.; Zhao, S.; Wang, X.; Peng, Q.; Lin, R.; Wang, Y.; Shen, R. A.; Cao, X.; Zhang, L. B.; Zhou, G. et al. Synergetic integration of Cu1.94S-ZnxCd1−xS heteronanorods for enhanced visible-light-driven photocatalytic hydrogen production. J. Am. Chem. Soc. 2016, 138, 4286–4289.

[59]

Wang, Y. Z.; Zhang, Z. Y.; Mao, Y. C.; Wang, X. D. Two-dimensional nonlayered materials for electrocatalysis. Energy Environ. Sci. 2020, 13, 3993–4016.

[60]

Zhang, S. Q.; Si, Y. M.; Li, B.; Yang, L. X.; Dai, W. L.; Luo, S. L. Atomic-level and modulated interfaces of photocatalyst heterostructure constructed by external defect-induced strategy: A critical review. Small 2021, 17, 2004980.

[61]

Liu, Q. H.; Nian, G. D.; Yang, C. H.; Qu, S. X.; Suo, Z. G. Bonding dissimilar polymer networks in various manufacturing processes. Nat. Commun. 2018, 9, 846.

[62]

Kegel, J.; Povey, I. M.; Pemble, M. E. Zinc oxide for solar water splitting: A brief review of the material’s challenges and associated opportunities. Nano Energy 2018, 54, 409–428.

[63]

Wen, Y.; He, P.; Yao, Y. Y.; Zhang, Y.; Cheng, R. Q.; Yin, L.; Li, N. N.; Li, J.; Wang, J. J.; Wang, Z. X. et al. Bridging the van der Waals interface for advanced optoelectronic devices. Adv. Mater. 2020, 32, 1906874.

[64]

Xu, H. X.; Zeiger, B. W.; Suslick, K. S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013, 42, 2555–2567.

[65]

Zhang, S. Q.; Liu, X.; Liu, C. B.; Luo, S. L.; Wang, L. L.; Cai, T.; Zeng, Y. X.; Yuan, J. L.; Dong, W. Y.; Pei, Y. et al. MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: Atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano 2018, 12, 751–758.

[66]

Wang, P. F.; Mao, Y. S.; Li, L. N.; Shen, Z. R.; Luo, X.; Wu, K. F.; An, P. F.; Wang, H. T.; Su, L. N.; Li, Y. et al. Unraveling the interfacial charge migration pathway at the atomic level in a highly efficient Z-scheme photocatalyst. Angew. Chem., Int. Ed. 2019, 58, 11329–11334.

[67]

Mu, Y. F.; Zhang, W.; Dong, G. X.; Su, K.; Zhang, M.; Lu, T. B. Ultrathin and small-size graphene oxide as an electron mediator for perovskite-based Z-scheme system to significantly enhance photocatalytic CO2 reduction. Small 2020, 16, 2002140.

[68]

Zhou, Y. Y.; Sternlicht, H.; Padture, N. P. Transmission electron microscopy of halide perovskite materials and devices. Joule 2019, 3, 641–661.

[69]

Song, K. P.; Liu, L. M.; Zhang, D. L.; Hautzinger, M. P.; Jin, S.; Han, Y. Atomic-resolution imaging of halide perovskites using electron microscopy. Adv. Energy Mater. 2020, 10, 1904006.

[70]

Liu, M. Q.; Wang, J. A.; Klysubun, W.; Wang, G. G.; Sattayaporn, S.; Li, F.; Cai, Y. W.; Zhang, F. C.; Yu, J.; Yang, Y. Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution. Nat. Commun. 2021, 12, 5260.

[71]

Zhu, M. S.; Kim, S.; Mao, L.; Fujitsuka, M.; Zhang, J. Y.; Wang, X. C.; Majima, T. Metal-free photocatalyst for H2 evolution in visible to near-infrared region: Black phosphorus/graphitic carbon nitride. J. Am. Chem. Soc. 2017, 139, 13234–13242.

[72]
HungríaA. B.CalvinoJ. J.Hernandez-GarridoJ. C. HAADF-STEM electron tomography in catalysis researchTop. Catal.20196280882110.1007/s11244-019-01200-2

Hungría, A. B.; Calvino, J. J.; Hernandez-Garrido, J. C. HAADF-STEM electron tomography in catalysis research. Top. Catal. 2019, 62, 808–821.

[73]

Zhao, G. Q.; Li, P.; Cheng, N. Y.; Dou, S. X.; Sun, W. P. An Ir/Ni(OH)2 heterostructured electrocatalyst for the oxygen evolution reaction: Breaking the scaling relation, stabilizing iridium(V), and beyond. Adv. Mater. 2020, 32, 2000872.

[74]

Wang, P. F.; Zhan, S. H.; Xia, Y. G.; Ma, S. L.; Zhou, Q. X.; Li, Y. The fundamental role and mechanism of reduced graphene oxide in rGO/Pt-TiO2 nanocomposite for high-performance photocatalytic water splitting. Appl. Catal. B 2017, 207, 335–346.

[75]

van Oversteeg, C. H.; Doan, H. Q.; de Groot, F. M. F.; Cuk, T. In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts. Chem. Soc. Rev. 2017, 46, 102–125.

[76]

Mo, S. L.; Zhou, P. P.; Li, C. X.; Liu, J. J.; Wang, F. Atomic interface engineering: Strawberry-like RuO2/C hybrids for efficient hydrogen evolution from ammonia borane and water. Int. J. Hydrog. Energy 2021, 46, 22397–22408.

[77]

Li, P.; Zhao, G. Q.; Cui, P. X.; Cheng, N. Y.; Lao, M. M.; Xu, X.; Dou, S. X.; Sun, W. P. Nickel single atom-decorated carbon nanosheets as multifunctional electrocatalyst supports toward efficient alkaline hydrogen evolution. Nano Energy 2021, 83, 105850.

[78]

Mao, Y. S.; Wang, P. F.; Zhang, D. P.; Xia, Y. G.; Li, Y.; Zeng, W. L.; Zhan, S. H.; Crittenden, J. C. Accelerating FeIII-aqua complex reduction in an efficient solid-liquid-interfacial Fenton reaction over the Mn-CNH co-catalyst at near-neutral pH. Environ. Sci. Technol. 2021, 55, 13326–13334.

[79]

Marchetti, A.; Chen, J. E.; Pang, Z. F.; Li, S. H.; Ling, D. S.; Deng, F.; Kong, X. Q. Understanding surface and interfacial chemistry in functional nanomaterials via solid-state NMR. Adv. Mater. 2017, 29, 1605895.

[80]

Hu, Y. C.; Shim, Y.; Oh, J.; Park, S.; Park, S.; Ishii, Y. Synthesis of 13C-, 15N-labeled graphitic carbon nitrides and NMR-based evidence of hydrogen-bonding assisted two-dimensional assembly. Chem. Mater. 2017, 29, 5080–5089.

[81]

Zhao, D.; Chen, C. C.; Wang, Y. F.; Ma, W. H.; Zhao, J. C.; Rajh, T.; Zang, L. Enhanced photocatalytic degradation of dye pollutants under visible irradiation on Al(III)-modified TiO2: Structure, interaction, and interfacial electron transfer. Environ. Sci. Technol. 2008, 42, 308–314.

[82]

Kubicki, D. J.; Stranks, S. D.; Grey, C. P.; Emsley, L. NMR spectroscopy probes microstructure, dynamics and doping of metal halide perovskites. Nat. Rev. Chem. 2021, 5, 624–645.

[83]

Folliet, N.; Roiland, C.; Bégu, S.; Aubert, A.; Mineva, T.; Goursot, A.; Selvaraj, K.; Duma, L.; Tielens, F.; Mauri, F. et al. Investigation of the interface in silica-encapsulated liposomes by combining solid state NMR and first principles calculations. J. Am. Chem. Soc. 2011, 133, 16815–16827.

[84]

Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. J. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44, 2893–2939.

[85]

Li, J.; Zhan, G. M.; Yu, Y.; Zhang, L. Z. Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering. Nat. Commun. 2016, 7, 11480.

[86]

Qu, Y. Q.; Duan, X. F. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 2013, 42, 2568–2580.

[87]

Wang, W. C.; Zhu, S.; Cao, Y. N.; Tao, Y.; Li, X.; Pan, D. L.; Phillips, D. L.; Zhang, D. Q.; Chen, M.; Li, G. S. et al. Edge-enriched ultrathin MoS2 embedded yolk–shell TiO2 with boosted charge transfer for superior photocatalytic H2 evolution. Adv. Funct. Mater. 2019, 29, 1901958.

[88]

Li, C. M.; Du, Y. H.; Wang, D. P.; Yin, S. M.; Tu, W. G.; Chen, Z.; Kraft, M.; Chen, G.; Xu, R. Unique P–Co–N surface bonding states constructed on g-C3N4 nanosheets for drastically enhanced photocatalytic activity of H2 evolution. Adv. Funct. Mater. 2017, 27, 1604328.

[89]

Li, F.; Wang, D. K.; Xing, Q. J.; Zhou, G.; Liu, S. S.; Li, Y.; Zheng, L. L.; Ye, P.; Zou, J. P. Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: An efficient strategy to boost the visible-light-driven photocatalytic performance. Appl. Catal. B 2019, 243, 621–628.

[90]

Yuan, Y. J.; Shen, Z. K.; Song, S. X.; Guan, J.; Bao, L.; Pei, L.; Su, Y. B.; Wu, S. T.; Bai, W. F.; Yu, Z. T. et al. Co–P bonds as atomic-level charge transfer channel to boost photocatalytic H2 production of Co2P/black phosphorus nanosheets photocatalyst. ACS Catal. 2019, 9, 7801–7807.

[91]

Campagnola, L.; Seeman, S. C.; Chartrand, T.; Kim, L.; Hoggarth, A.; Gamlin, C.; Ito, S.; Trinh, J.; Davoudian, P.; Radaelli, C. et al. Local connectivity and synaptic dynamics in mouse and human neocortex. Science 2022, 375, eabj5861.

[92]

Nelson, N.; Ben-Shem, A. The complex architecture of oxygenic photosynthesis. Nat. Rev. Mol. Cell Biol. 2004, 5, 971–982.

[93]
WuJ. H.HuangY.YeW.LiY. G. CO2 reduction: From the electrochemical to photochemical approachAdv. Sci.20174170019410.1002/advs.201700194

Wu, J. H.; Huang, Y.; Ye, W.; Li, Y. G. CO2 reduction: From the electrochemical to photochemical approach. Adv. Sci. 2017, 4, 1700194.

[94]

Wagner, A.; Sahm, C. D.; Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 2020, 3, 775–786.

[95]

Liu, X.; Inagaki, S.; Gong, J. L. Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation. Angew. Chem., Int. Ed. 2016, 55, 14924–14950.

[96]

Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 7372–7408.

[97]

Zhao, J. Z.; Ji, M. X.; Chen, H. L.; Weng, Y. X.; Zhong, J.; Li, Y. J.; Wang, S. Y.; Chen, Z. R.; Xia, J. X.; Li, H. M. Interfacial chemical bond modulated Bi19S27Br3/g-C3N4 Z-scheme heterojunction for enhanced photocatalytic CO2 conversion. Appl. Catal. B 2022, 307, 121162.

[98]

Wang, D. K.; Huang, R. K.; Liu, W. J.; Sun, D. R.; Li, Z. H. Fe-based MOFs for photocatalytic CO2 reduction: Role of coordination unsaturated sites and dual excitation pathways. ACS Catal. 2014, 4, 4254–4260.

[99]

Sekizawa, K.; Maeda, K.; Domen, K.; Koike, K.; Ishitani, O. Artificial Z-scheme constructed with a supramolecular metal complex and semiconductor for the photocatalytic reduction of CO2. J. Am. Chem. Soc. 2013, 135, 4596–4599.

[100]

Ou, M.; Tu, W. G.; Yin, S. M.; Xing, W. N.; Wu, S. Y.; Wang, H. J.; Wan, S. P.; Zhong, Q.; Xu, R. Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 13570–13574.

[101]

Mao, Y. S.; Wang, P. F.; Li, L. N.; Chen, Z. W.; Wang, H. T.; Li, Y.; Zhan, S. H. Unravelling the synergy between oxygen vacancies and oxygen substitution in BiO2−x for efficient molecular-oxygen activation. Angew. Chem., Int. Ed. 2020, 59, 3685–3690.

[102]

Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336.

[103]

Jia, X. Q.; Bai, X. Y.; Ji, Z. Z.; Li, Y.; Sun, Y.; Mi, X. Y.; Zhan, S. H. Insight into the effective removal of ciprofloxacin using a two-dimensional layered NiO/g-C3N4 composite in Fe-free photo-electro-Fenton system. Acta Phys. -Chim. Sin. 2020, 37, 2010042.

[104]

Zhou, Z. R.; Shen, Z. R.; Cheng, Z. H.; Zhang, G.; Li, M. M.; Li, Y.; Zhan, S. H.; Crittenden, J. C. Mechanistic insights for efficient inactivation of antibiotic resistance genes: A synergistic interfacial adsorption and photocatalytic-oxidation process. Sci. Bull. 2020, 65, 2107–2119.

[105]

Wang, P. F.; Zhou, Q. X.; Xia, Y. G.; Zhan, S. H.; Li, Y. Understanding the charge separation and transfer in mesoporous carbonate doped phase-junction TiO2 nanotubes for photocatalytic hydrogen production. Appl. Catal. B 2018, 225, 433–444.

[106]

Peng, Y.; Lu, B. Z.; Wu, F.; Zhang, F. Q.; Lu, J. E.; Kang, X. W.; Ping, Y.; Chen, S. W. Point of anchor: Impacts on interfacial charge transfer of metal oxide nanoparticles. J. Am. Chem. Soc. 2018, 140, 15290–15299.

[107]

Jiang, D. H.; Liu, Z. R.; Fu, L. J.; Yang, H. M. Interfacial chemical-bond-modulated charge transfer of heterostructures for improving photocatalytic performance. ACS Appl. Mater. Interfaces 2020, 12, 9872–9880.

[108]

Furst, A. L.; Francis, M. B. Impedance-based detection of bacteria. Chem. Rev. 2019, 119, 700–726.

[109]

Zhou, Z. R.; Shen, Z. R.; Song, C. L.; Li, M. M.; Li, H.; Zhan, S. H. Boosting the activation of molecular oxygen and the degradation of tetracycline over high loading Ag single atomic catalyst. Water Res. 2021, 201, 117314.

[110]

Jafry, H. R.; Liga, M. V.; Li, Q. L.; Barron, A. R. Simple route to enhanced photocatalytic activity of P25 titanium dioxide nanoparticles by silica addition. Environ. Sci. Technol. 2011, 45, 1563–1568.

[111]

Xie, Z. J.; Peng, Y. P.; Yu, L.; Xing, C. Y.; Qiu, M.; Hu, J. Q.; Zhang, H. Solar-inspired water purification based on emerging 2D materials: Status and challenges. Sol. RRL 2020, 4, 1900400.

[112]

Wang, W. J.; Li, G. Y.; An, T. C.; Chan, D. K. L.; Yu, J. C.; Wong, P. K. Photocatalytic hydrogen evolution and bacterial inactivation utilizing sonochemical-synthesized g-C3N4/red phosphorus hybrid nanosheets as a wide-spectral-responsive photocatalyst: The role of type I band alignment. Appl. Catal. B 2018, 238, 126–135.

[113]

Guo, H.; Niu, C. G.; Yang, Y. Y.; Liang, C.; Niu, H. Y.; Liu, H. Y.; Li, L.; Tang, N. Interfacial Co–N bond bridged CoB/g-C3N4 Schottky junction with modulated charge transfer dynamics for highly efficient photocatalytic Staphylococcus aureus inactivation. Chem. Eng. J. 2021, 422, 130029.

[114]

Shi, H. X.; Wang, C. J.; Zhao, Y. Y.; Liu, E. Z.; Fan, J.; Ji, Z. Highly efficient visible light driven photocatalytic inactivation of E. coli with Ag QDs decorated Z-scheme Bi2S3/SnIn4S8 composite. Appl. Catal. B 2019, 254, 403–413.

[115]

Wang, M. J.; Nian, L. Y.; Cheng, Y. L.; Yuan, B.; Cheng, S. J.; Cao, C. J. Encapsulation of colloidal semiconductor quantum dots into metal-organic frameworks for enhanced antibacterial activity through interfacial electron transfer. Chem. Eng. J. 2021, 426, 130832.

[116]

Bolisetty, S.; Peydayesh, M.; Mezzenga, R. Sustainable technologies for water purification from heavy metals: Review and analysis. Chem. Soc. Rev. 2019, 48, 463–487.

[117]

Balakumar, V.; Kim, H.; Manivannan, R.; Kim, H.; Ryu, J. W.; Heo, G.; Son, Y. A. Ultrasound-assisted method to improve the structure of CeO2@polyprrole core–shell nanosphere and its photocatalytic reduction of hazardous Cr6+. Ultrason. Sonochem. 2019, 59, 104738.

[118]

Qiu, J. H.; Zhang, X. F.; Zhang, X. G.; Feng, Y.; Li, Y. X.; Yang, L.; Lu, H. Q.; Yao, J. F. Constructing Cd0.5Zn0.5S@ZIF-8 nanocomposites through self-assembly strategy to enhance Cr(VI) photocatalytic reduction. J. Hazard. Mater. 2018, 349, 234–241.

[119]

Qin, H. Q.; Hu, T. J.; Zhai, Y. B.; Lu, N. Q.; Aliyeva, J. The improved methods of heavy metals removal by biosorbents: A review. Environ. Pollut. 2020, 258, 113777.

[120]

Wang, S.; Li, G. S.; Huang, T. T.; Liu, C.; Li, X. B.; Zhang, Q.; Zou, Y. C.; Li, L. P. Exceptional high temperature interface chemistry: A creation of P–Sn bonds and enhanced photoreduction ability. Chem. Eng. J. 2022, 430, 132593.

[121]

Cai, Q.; Liu, C. L.; Yin, C. C.; Huang, W.; Cui, L. F.; Shi, H. C.; Fang, X. Y.; Zhang, L.; Kang, S. F.; Wang, Y. G. Biotemplating synthesis of graphitic carbon-coated TiO2 and its application as efficient visible-light-driven photocatalyst for Cr6+ remove. ACS Sustain. Chem. Eng. 2017, 5, 3938–3944.

[122]

Khamboonrueang, D.; Srirattanapibul, S.; Tang, I. M.; Thongmee, S. TiO2∙rGO nanocomposite as a photo catalyst for the reduction of Cr6+. Mater. Res. Bull. 2018, 107, 236–241.

[123]

Zuo, W. L.; Yu, Y. D.; Huang, H. Making waves: Microbe-photocatalyst hybrids may provide new opportunities for treating heavy metal polluted wastewater. Water Res. 2021, 195, 116984.

[124]

Wang, L. J.; Karuturi, S.; Zan, L. Bi2S3-In2S3 heterostructures for efficient photoreduction of highly toxic Cr6+ enabled by facet-coupling and Z-scheme structure. Small 2021, 17, 2101833.

[125]

Wang, W. J.; Niu, Q. Y.; Zeng, G. M.; Zhang, C.; Huang, D. L.; Shao, B. B.; Zhou, C. Y.; Yang, Y.; Liu, Y. X.; Guo, H. et al. 1D porous tubular g-C3N4 capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction. Appl. Catal. B 2020, 273, 119051.

[126]

Brown, K. A.; Harris, D. F.; Wilker, M. B.; Rasmussen, A.; Khadka, N.; Hamby, H.; Keable, S.; Dukovic, G.; Peters, J. W.; Seefeldt, L. C. et al. Light-driven dinitrogen reduction catalyzed by a CdS: Nitrogenase MoFe protein biohybrid. Science 2016, 352, 448–450.

[127]

Cao, S. H.; Zhou, N.; Gao, F. H.; Chen, H.; Jiang, F. All-solid-state Z-scheme 3,4-dihydroxybenzaldehyde-functionalized Ga2O3/graphitic carbon nitride photocatalyst with aromatic rings as electron mediators for visible-light photocatalytic nitrogen fixation. Appl. Catal. B 2017, 218, 600–610.

[128]

Qiu, P. X.; Xu, C. M.; Zhou, N.; Chen, H.; Jiang, F. Metal-free black phosphorus nanosheets-decorated graphitic carbon nitride nanosheets with C–P bonds for excellent photocatalytic nitrogen fixation. Appl. Catal. B 2018, 221, 27–35.

[129]

Shen, Z. K.; Cheng, M.; Yuan, Y. J.; Pei, L.; Zhong, J. S.; Guan, J.; Li, X. Y.; Li, Z. J.; Bao, L.; Zhang, X. F. et al. Identifying the role of interface chemical bonds in activating charge transfer for enhanced photocatalytic nitrogen fixation of Ni2P-black phosphorus photocatalysts. Appl. Catal. B 2021, 295, 120274.

Nano Research
Pages 10158-10170
Cite this article:
Mao Y, Wang P, Zhan S. Shedding light on the role of interfacial chemical bond in heterojunction photocatalysis. Nano Research, 2022, 15(12): 10158-10170. https://doi.org/10.1007/s12274-022-4593-y
Topics:
Part of a topical collection:

1449

Views

25

Crossref

24

Web of Science

23

Scopus

2

CSCD

Altmetrics

Received: 27 March 2022
Revised: 26 May 2022
Accepted: 28 May 2022
Published: 11 July 2022
© Tsinghua University Press 2022
Return