AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Biological composite fibers with extraordinary mechanical strength and toughness mediated by multiple intermolecular interacting networks

Sikang Wan1,2Wenhao Cheng1,2Jingjing Li1Fan Wang1Xiwen Xing3( )Jing Sun4( )Hongjie Zhang1,2,5Kai Liu1,2,5( )
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
University of Science and Technology of China, Hefei 230026, China
Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
Department of Chemistry, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

A versatile molecular engineering strategy is employed to develop robust biosynthetic protein-saccharide composite fibers by internal multiple networks. In stark contrast to the conventional saccharide-based fibers, the lysine-rich biosynthetic proteins significantly enhance saccharide-protein composite fiber’s overall mechanical properties due to their internal multiple networks, offering potential applications for next-generation renewable high-performance bio-composite fibers.

Abstract

Numerous strategies involving multiple cross-linking networks have been applied for fabricating robust hydrogels. Inspired by this, the development of mechanically strong and tough biological fibers by the incorporation of intermolecular linking networks is becoming important. Herein, we present a versatile strategy for the fabrication of protein-saccharide composite fibers through protein-initiated double interacting networks. Three types of lysine-rich bioengineered proteins were introduced and the present multiple cross-linking interactions including electrostatic forces and covalent bonds significantly enhanced the mechanical properties of as-obtained composite fibers. In stark contrast to pristine saccharide or other polymer fibers, the as-obtained composite fibers exhibited outstanding mechanical performance, showing a breaking strength of ~768 MPa, Young’s modulus of ~24 GPa, and toughness of ~69 MJ∙m–3, respectively. Thus, this established approach has great potentials to fabricate new generation renewable biological fibers with high performance.

Electronic Supplementary Material

Download File(s)
12274_2022_4595_MOESM1_ESM.pdf (741.3 KB)

References

1

Yu, Y. R.; Fu, F. F.; Shang, L. R.; Cheng, Y.; Gu, Z. Z.; Zhao, Y. J. Bioinspired helical microfibers from microfluidics. Adv. Mater. 2017, 29, 1605765.

2

Xu, P. D.; Xie, R. X.; Liu, Y. P.; Luo, G. A.; Ding, M. Y.; Liang, Q. L. Bioinspired microfibers with embedded perfusable helical channels. Adv. Mater. 2017, 29, 1701664.

3

Su, J. J.; Zhao, K. L.; Ren, Y. B.; Zhao, L.; Wei, B.; Liu, B.; Zhang, Y.; Wang, F.; Li, J. J.; Liu, Y. W. et al. Biosynthetic structural proteins with super plasticity, extraordinary mechanical performance, biodegradability, biocompatibility and information storage ability. Angew. Chem. , Int. Ed. 2022, 61, e202117538.

4
Ren, Y. B.; Zhang, Y. ; Liu, Y. W.; Wu, Q. L.; Hu, H. G.; Li, J. J.; Fan, C. H.; Chen, D.; Liu, K.; Zhang, H. J. Highly reliable and efficient encoding systems for hexadecimal polypeptide-based data storage. Fund. Res. 2021, in press, DOI: 10.1016/j.fmre.2021.11.030.
5

Su, J. J.; Liu, B. M.; He, H. N.; Ma, C.; Wei, B.; Li, M.; Li, J. J.; Wang, F.; Sun, J.; Liu, K. et al. Engineering high strength and super-toughness of unfolded structural proteins and their extraordinary anti-adhesion performance for abdominal hernia repair. Adv. Mater. 2022, 34, 2200842.

6

Wei, Z.; Sun, J.; Lu, S.; Liu, Y. W.; Wang, B.; Zhao, L.; Wang, Z. L.; Liu, K.; Li, J. J.; Su, J. J. et al. An engineered protein-Au bioplaster for efficient skin tumor therapy. Adv. Mater. 2022, 34, 2110062.

7

Yu, H. P.; Zhu, Y. J. Bioinspired flexible, high-strength, and versatile hydrogel with the fiberboard-and-mortar hierarchically ordered structure. Nano Res. 2021, 14, 3643–3652.

8
Xu, Z. J. ; Liu, G. T. ; Li, Q. ; Wu, J. A novel hydrogel with glucose-responsive hyperglycemia regulation and antioxidant activity for enhanced diabetic wound repair. Nano Res. 2022, in press,DOI: 10.1007/s12274-022-4192-y.
9
Li, Y. X. ; Sun, J. ; Li, J. J. ; Liu, K. ; Zhang, H. J. Engineered protein nanodrug as an emerging therapeutic tool. Nano Res. 2022, in press,DOI: 10.1007/s12274-022-4103-2.
10

Wang, S.; Jiang, F.; Xu, X.; Kuang, Y. D.; Fu, K.; Hitz, E.; Hu, L. B. Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Adv. Mater. 2017, 29, 1702498.

11

Yu, Y. D.; He, Y.; Mu, Z.; Zhao, Y. Q.; Kong, K. R.; Liu, Z. M.; Tang, R. K. Biomimetic mineralized organic-inorganic hybrid macrofiber with spider silk-like supertoughness. Adv. Funct. Mater. 2020, 30, 1908556.

12

Ji, D.; Choi, S.; Kim, J. A hydrogel-film casting to fabricate platelet-reinforced polymer composite films exhibiting superior mechanical properties. Small 2018, 14, 1801042.

13

Sun, J.; Chen, J. S.; Liu, K.; Zeng, H. B. Mechanically strong proteinaceous fibers: Engineered fabrication by microfluidics. Engineering 2021, 7, 615–623.

14

Zhou, W. D.; Zhang, H.; Liu, Y. F.; Zou, X. Q.; Shi, J. F.; Zhao, Y. H.; Ye, Y. M.; Yu, Y.; Guo, J. Preparation of calcium alginate/polyethylene glycol acrylate double network fiber with excellent properties by dynamic molding method. Carbohydr. Polym. 2019, 226, 115277.

15

Hou, K.; Hu, Z. X.; Mugaanire, I. T.; Li, C. Q.; Chen, G. Y.; Zhu, M. F. Fiber forming mechanism and reaction kinetics of novel dynamic-crosslinking-spinning for Poly(ethylene glycol) diacrylate fiber fabrication. Polymer 2019, 183, 121903.

16

Kim, J.; Lee, H.; Jin, E. J.; Jo, Y.; Kang, B. E.; Ryu, D.; Kim, G. A microfluidic device to fabricate one-step cell bead-laden hydrogel struts for tissue engineering. Small 2022, 18, 2106487.

17

Tian, M.; Chen, X.; Sun, S. T.; Yang, D.; Wu, P. Y. A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery. Nano Res. 2019, 12, 1121–1127.

18

Huang, J. Y.; Suma, A.; Cui, M. Y.; Grundmeier, G.; Carnevale, V.; Zhang, Y. X.; Kielar, C.; Keller, A. Arranging small molecules with subnanometer precision on DNA origami substrates for the single-molecule investigation of protein-ligand interactions. Small Struct. 2020, 1, 2000038.

19

Zhang, H. J.; Sun, T. L.; Zhang, A. K.; Ikura, Y.; Nakajima, T.; Nonoyama, T.; Kurokawa, T.; Ito, O.; Ishitobi, H.; Gong, J. P. Tough physical double-network hydrogels based on amphiphilic triblock copolymers. Adv. Mater. 2016, 28, 4884–4890.

20

Li, Y. X.; Li, J. J.; Sun, J.; He, H. N.; Li, B.; Ma, C.; Liu, K.; Zhang, H. J. Bioinspired and mechanically strong fibers based on engineered non-spider chimeric proteins. Angew. Chem., Int. Ed. 2020, 59, 8148–8152.

21

He, H. N.; Yang, C. J.; Wang, F.; Wei, Z.; Shen, J. L.; Chen, D.; Fan, C. H.; Zhang, H. J.; Liu, K. Mechanically strong globular-protein-based fibers obtained using a microfluidic spinning technique. Angew. Chem., Int. Ed. 2020, 59, 4344–4348.

22

Sun, J.; Li, B.; Wang, F.; Feng, J.; Ma, C.; Liu, K.; Zhang, H. J. Proteinaceous fibers with outstanding mechanical properties manipulated by supramolecular interactions. CCS Chem. 2021, 3, 1669–1677.

23

Li, J. T.; Li, S. T.; Huang, J. Y.; Khan, A. Q.; An, B. G.; Zhou, X.; Liu, Z. F.; Zhu, M. F. Spider silk-inspired artificial fibers. Adv. Sci. 2022, 9, 2103965.

24

Qiu, P. H.; Wang, L.; Li, Y.; Mao, C. B. Weak electrostatic interaction enabled highly oriented assembly of gold nanorods onto ultrathin flagella bionanofibers. Small Struct. 2021, 2, 2000121.

25

Mohammadi, P.; Aranko, A. S.; Landowski, C. P.; Ikkala, O.; Jaudzems, K.; Wagermaier, W.; Linder, M. B. Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements. Sci. Adv. 2019, 5, eaaw2541.

26

Malho, J. M.; Ouellet-Plamondon, C.; Rüggeberg, M.; Laaksonen, P.; Ikkala, O.; Burgert, I.; Linder, M. B. Enhanced plastic deformations of nanofibrillated cellulose film by adsorbed moisture and protein-mediated interactions. Biomacromolecules 2015, 16, 311–318.

27

Sun, J.; Ma, C.; Maity, S.; Wang, F.; Zhou, Y.; Portale, G.; Göstl, R.; Roos, W. H.; Zhang, H. J.; Liu, K. et al. Reversibly photo-modulating mechanical stiffness and toughness of bioengineered protein fibers. Angew. Chem., Int. Ed. 2021, 60, 3222–3228.

28

Ma, C.; Su, J. J.; Li, B.; Herrmann, A.; Zhang, H. J.; Liu, K. Solvent-free plasticity and programmable mechanical behaviors of engineered proteins. Adv. Mater. 2020, 32, 1907697.

29

Ma, C.; Sun, J.; Li, B.; Feng, Y.; Sun, Y.; Xiang, L.; Wu, B. H.; Xiao, L. L.; Liu, B. M.; Petrovskii, V. S. et al. Ultra-strong bio-glue from genetically engineered polypeptides. Nat. Commun. 2021, 12, 3613.

30

Lv, S. S.; Dudek, D. M.; Cao, Y.; Balamurali, M. M.; Gosline, J.; Li, H. B. Designed biomaterials to mimic the mechanical properties of muscles. Nature 2010, 465, 69–73.

31

Wan, S. K.; Cong, W.; Shao, B. Q.; Wu, B. H.; He, Q. B.; Chen, Q.; Shen, J. L.; Chen, D.; Hu, H. G.; Ye, F. F. et al. A library of thermotropic liquid crystals of inorganic nanoparticles and extraordinary performances based on their collective ordering. Nano Today 2021, 38, 101115.

32

Sun, J.; Su, J. J.; Ma, C.; Göstl, R.; Herrmann, A.; Liu, K.; Zhang, H. J. Fabrication and mechanical properties of engineered protein-based adhesives and fibers. Adv. Mater. 2020, 32, 1906360.

33

Liu, B.; Gu, X. Q.; Sun, Q. N.; Jiang, S. J.; Sun, J.; Liu, K.; Wang, F.; Wei, Y. Injectable in situ induced robust hydrogel for photothermal therapy and bone fracture repair. Adv. Funct. Mater. 2021, 31, 2010779.

34

Xiao, L. L.; Wang, Z. L.; Sun, Y.; Li, B.; Wu, B. H.; Ma, C.; Petrovskii, V. S.; Gu, X. Q.; Chen, D.; Potemkin, I. I. et al. An artificial phase-transitional underwater bioglue with robust and switchable adhesion performance. Angew. Chem. , Int. Ed. 2021, 60, 12082–12089.

35

Shao, B. Q.; Wan, S. K.; Yang, C. J.; Shen, J. L.; Li, Y. W.; You, H. P.; Chen, D.; Fan, C. H.; Liu, K.; Zhang, H. J. Engineered anisotropic fluids of rare-earth nanomaterials. Angew. Chem. , Int. Ed. 2020, 59, 18213–18217.

36

Wan, S. K.; Cui, F. Z.; Li, B.; Zhao, K. L.; He, H. N.; Zhang, Y.; Liu, J. H.; Zhang, L.; Liu, K. Dysprosium-modified gold nanoparticles as T2ex contrast agents for magnetic resonance imaging. ACS Appl. Nano Mater. 2020, 3, 9433–9439.

37

Wang, B. B.; Chen, H.; Liu, T.; Shi, S. W.; Russell, T. P. Host-guest molecular recognition at liquid-liquid interfaces. Engineering 2021, 7, 603–614.

38

Gao, H. L.; Zhao, R.; Cui, C.; Zhu, Y. B.; Chen, S. M.; Pan, Z.; Meng, Y. F.; Wen, S. M.; Liu, C.; Wu, H. A. et al. Bioinspired hierarchical helical nanocomposite macrofibers based on bacterial cellulose nanofibers. Natl. Sci. Rev. 2020, 7, 73–83.

39

Hu, X. Z.; Rajendran, S.; Yao, Y. S.; Liu, Z.; Gopalsamy, K.; Peng, L.; Gao, C. A novel wet-spinning method of manufacturing continuous bio-inspired composites based on graphene oxide and sodium alginate. Nano Res. 2016, 9, 735–744.

40

Hu, X. L.; Tian, M. W.; Pan, N.; Sun, B.; Li, Z. Q.; Ma, Y. L.; Zhang, X. S.; Zhu, S. F.; Chen, Z. H.; Qu, L. J. Structure-tunable graphene oxide fibers via microfluidic spinning route for multifunctional textiles. Carbon 2019, 152, 106–113.

41

Zhang, J. R.; Sun, J.; Li, B.; Yang, C. J.; Shen, J. L.; Wang, N.; Gu, R.; Wang, D. G.; Chen, D.; Hu, H. G. et al. Robust biological fibers based on widely available proteins: Facile fabrication and suturing application. Small 2020, 16, 1907598.

42

Lu, L.; Fan, S. N.; Niu, Q. Q.; Peng, Q. F.; Geng, L. H.; Yang, G. S.; Shao, H. L.; Hsiao, B. S.; Zhang, Y. P. Strong silk fibers containing cellulose nanofibers generated by a bioinspired microfluidic chip. ACS Sustainable Chem. Eng. 2019, 7, 14765–14774.

43

Schmuck, B.; Greco, G.; Barth, A.; Pugno, N. M.; Johansson, J.; Rising, A. High-yield production of a super-soluble miniature spidroin for biomimetic high-performance materials. Mater. Today 2021, 50, 16–23.

44

Andersson, M.; Jia, Q. P.; Abella, A.; Lee, X. Y.; Landreh, M.; Purhonen, P.; Hebert, H.; Tenje, M.; Robinson, C. V.; Meng, Q. et al. Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nat. Chem. Biol. 2017, 13, 262–264.

45

Braccini, I.; Pérez, S. Molecular basis of Ca2+-induced gelation in alginates and pectins:  The egg-box model revisited. Biomacromolecules 2001, 2, 1089–1096.

46

Li, J.; Cheng, Y.; Zhang, S. Y.; Li, Y. J.; Sun, J.; Qin, C. X.; Wang, J. J.; Dai, L. X. Modification of GO based on click reaction and its composite fibers with poly(vinyl alcohol). Comp. Part A 2017, 101, 115–122.

47

Perin, D.; Fredi, G.; Rigotti, D.; Soccio, M.; Lotti, N.; Dorigato, A. Sustainable textile fibers of bioderived polylactide/poly(pentamethylene 2, 5-furanoate) blends. J. Appl. Polym. Sci. 2022, 139, 51740.

48

Seyedin, M. Z.; Razal, J. M.; Innis, P. C.; Jalili, R.; Wallace, G. G. Achieving outstanding mechanical performance in reinforced elastomeric composite fibers using large sheets of graphene oxide. Adv. Funct. Mater. 2015, 25, 94–104.

Nano Research
Pages 9192-9198
Cite this article:
Wan S, Cheng W, Li J, et al. Biological composite fibers with extraordinary mechanical strength and toughness mediated by multiple intermolecular interacting networks. Nano Research, 2022, 15(10): 9192-9198. https://doi.org/10.1007/s12274-022-4595-9
Topics:

1602

Views

25

Crossref

24

Web of Science

24

Scopus

2

CSCD

Altmetrics

Received: 08 April 2022
Revised: 23 May 2022
Accepted: 28 May 2022
Published: 16 June 2022
© Tsinghua University Press 2022
Return