Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Why many luminescent liquid crystalline polymers (LLCPs) containing aggregation-induced emission luminogen (AIEgen) show weak emission is a question still to be answered. Herein, a series of LLCPs (α-Pns, n = 4, 8, and 12) with polynorbornene as main chain and two α-dicyanodistyrylbenzene (α-DCS) as side chain are successfully synthesized to solve this issue. Differential scanning calorimetry (DSC), polarized light microscopy (PLM), one-dimentional (1D), two-dimentional (2D) middle-angle and wide-angle X-ray scattering (MAXS and WAXS) results demonstrate that the polymers form smectic A (SmA) phase with the side chains interdigitated packed within the smectic layers. Meanwhile, the photophysical properties of α-Pns were investigated by ultraviolet–visible (UV–vis) absorption, steady state and time-resolved spectroscopy, and photothermal effect. Results show that the polymers are AIE active, but emit weak emission. The emission peak of α-Pns film red-shift from 473 to 531 nm, the quantum yield gradually increases from around 1.6% to 14.7%, and the photothermal conversion efficiency decreases from 39% to 19% with the alkyl tail length increased. The photothermal effect, but not photoluminescence, dominates the excited state relaxation.
Bisoyi, H. K.; Li, Q. Liquid crystals: Versatile self-organized smart soft materials. Chem. Rev. 2022, 122, 4887–4926.
Bisoyi, H. K.; Kumar, S. Liquid-crystal nanoscience: An emerging avenue of soft self-assembly. Chem. Soc. Rev. 2011, 40, 306–319.
Fleischmann, E. K.; Zentel, R. Liquid-crystalline ordering as a concept in materials science: From semiconductors to stimuli-responsive devices. Angew. Chem. , Int. Ed. 2013, 52, 8810–8827.
Kato, T.; Uchida, J.; Ichikawa, T.; Sakamoto, T. Functional liquid crystals towards the next generation of materials. Angew. Chem. , Int. Ed. 2018, 57, 4355–4371.
Liu, B.; Ma, Y. R.; Zhao, D. Y.; Xu, L. H.; Liu, F. S.; Zhou, W.; Guo, L. Effects of morphology and concentration of cus nanoparticles on alignment and electro-optic properties of nematic liquid crystal. Nano Res. 2017, 10, 618–625.
Wen, Z. B.; Snap, R. F.; Raquez, J. M.; Clark, N. A.; Yang, K. K.; Wang, Y. Z. Unique two-way free-standing thermo- and photo-responsive shape memory azobenzene-containing polyurethane liquid crystal network. Sci. China Mater. 2020, 63, 2590–2598.
Gabinet, U. R.; Osuji, C. O. Optical materials and metamaterials from nanostructured soft matter. Nano Res. 2019, 12, 2172–2183.
Zhao, D. Y.; Bi, W. H.; Tang, B. Z. A light-emitting liquid crystal display device without polarizers and alignment layers. Adv. Opt. Mater. 2021, 9, 2100489.
Hu, X. W.; de Haan, L. T.; Khandelwal, H.; Schenning, A. P. H. J.; Nian, L.; Zhou, G. F. Cell thickness dependence of electrically tunable infrared reflectors based on polymer stabilized cholesteric liquid crystals. Sci. China Mater. 2018, 61, 745–751.
Lu, H. B.; Zhang, S. N.; Ding, A. X.; Yuan, M.; Zhang, G. Y.; Xu, W.; Zhang, G. B.; Wang, X. H.; Qiu, L. Z.; Yang, J. X. A luminescent liquid crystal with multistimuli tunable emission colors based on different molecular packing structures. New J. Chem. 2014, 38, 3429–3433.
Voskuhl, J.; Giese, M. Mesogens with aggregation-induced emission properties: Materials with a bright future. Aggregate 2022, 3, e124.
Jakubiak, R.; Collison, C. J.; Wan, W. C.; Rothberg, L. J.; Hsieh, B. R. Aggregation quenching of luminescence in electroluminescent conjugated polymers. J. Phys. Chem. A 1999, 103, 2394–2398.
Chi, C. Y.; Lieser, G.; Enkelmann, V.; Wegner, G. Packing and uniaxial alignment of liquid crystalline oligofluorenes. Macromol. Chem. Phys. 2005, 206, 1597–1609.
Durban, M. M.; Kazarinoff, P. D.; Luscombe, C. K. Synthesis and characterization of thiophene-containing naphthalene diimide n-type copolymers for OFET applications. Macromolecules 2010, 43, 6348–6352.
Wang, Y. F.; Shi, J. W.; Chen, J. H.; Zhu, W. G.; Baranoff, E. Recent progress in luminescent liquid crystal materials: Design, properties and application for linearly polarised emission. J. Mater. Chem. C 2015, 3, 7993–8005.
Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B. et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole. Chem. Commun. 2001, 1740–1741.
Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388.
Liu, B.; Tang, B. Z. Aggregation-induced emission: More is different. Angew. Chem. , Int. Ed. 2020, 59, 9788–9789.
Peng, Q.; Shuai, Z. G. Molecular mechanism of aggregation-induced emission. Aggregate 2021, 2, e91.
Chen, L.; Chen, C. L.; Sun, Y.; Lu, S.; Huo, H. H.; Tan, T. Y.; Li, A. Q.; Li, X. P.; Ungar, G.; Liu, F. et al. Luminescent metallacycle-cored liquid crystals induced by metal coordination. Angew. Chem. , Int. Ed. 2020, 59, 10143–10150.
Guo, L. X.; Xing, Y. B.; Wang, M.; Sun, Y.; Zhang, X. Q.; Lin, B. P.; Yang, H. Luminescent liquid crystals bearing an aggregation-induced emission active tetraphenylthiophene fluorophore. J. Mater. Chem. C 2019, 7, 4828–4837.
Dai, S. X.; Zhou, Y. D.; Zhang, H. L.; Cai, Z. X.; Tong, B.; Shi, J. B.; Dong, Y. P. Turn-on and color-switchable red luminescent liquid crystals based on pyrrolopyrrole derivatives. J. Mater. Chem. C 2020, 8, 11177–11184.
Mitani, M.; Yoshio, M.; Kato, T. Tuning of luminescence color of π-conjugated liquid crystals through co-assembly with ionic liquids. J. Mater. Chem. C 2017, 5, 9972–9978.
Lin, S. Y.; Gutierrez-Cuevas, K. G.; Zhang, X. F.; Guo, J. B.; Li, Q. Fluorescent photochromic α-cyanodiarylethene molecular switches: An emerging and promising class of functional diarylethene. Adv. Funct. Mater. 2021, 31, 2007957.
Park, S. K.; Cho, I.; Gierschner, J.; Kim, J. H.; Kim, J. H.; Kwon, J. E.; Kwon, O. K.; Whang, D. R.; Park, J. H.; An, B. K. et al. Stimuli-responsive reversible fluorescence switching in a crystalline donor-acceptor mixture film: Mixed stack charge-transfer emission versus segregated stack monomer emission. Angew. Chem. , Int. Ed. 2016, 55, 203–207.
Martínez-Abadía, M.; Giménez, R.; Ros, M. B. Self-assembled α-cyanostilbenes for advanced functional materials. Adv. Mater. 2018, 30, 1704161.
Zeng, X. X.; Wu, Y.; Zou, L.; Liu, X. W.; Qi, X.; Yu, Z. Q. Light-driven self-assembly of cyanostilbene derivative with reversible chirality in aqueous media. Sci. China Mater. 2022, 65, 1413–1416.
Zhang, Z. W.; Li, J. T.; Wei, W. Y.; Wei, J.; Guo, J. B. A luminescent dicyanodistyrylbenzene-based liquid crystal polymer network for photochemically patterned photonic composite film. Chin. J. Polym. Sci. 2018, 36, 776–782.
Wu, Y.; You, L. H.; Yu, Z. Q.; Wang, J. H.; Meng, Z. G.; Liu, Y.; Li, X. S.; Fu, K.; Ren, X. K.; Tang, B. Z. Rational design of circularly polarized luminescent aggregation-induced emission luminogens (AIEgens): Promoting the dissymmetry factor and emission efficiency synchronously. ACS Mater. Lett. 2020, 2, 505–510.
Cao, X. J.; Li, W.; Li, J. H.; Zou, L.; Liu, X. W.; Ren, X. K.; Yu, Z. Q. Controlling the balance of photoluminescence and photothermal effect in cyanostilbene-based luminescent liquid crystals. Chin. J. Chem. 2022, 40, 902–910.
Yoon, S. J.; Kim, J. H.; Kim, K. S.; Chung, J. W.; Heinrich, B.; Mathevet, F.; Kim, P.; Donnio, B.; Attias, A. J.; Kim, D. et al. Mesomorphic organization and thermochromic luminescence of dicyanodistyrylbenzene-based phasmidic molecular disks: Uniaxially aligned hexagonal columnar liquid crystals at room temperature with enhanced fluorescence emission and semiconductivity. Adv. Funct. Mater. 2012, 22, 61–69.
Martínez-Abadía, M.; Varghese, S.; Giménez, R.; Ros, M. B. Multiresponsive luminescent dicyanodistyrylbenzenes and their photochemistry in solution and in bulk. J. Mater. Chem. C 2016, 4, 2886–2893.
Ren, Y. M.; Zhang, R. L.; Yan, C.; Wang, T. Y.; Cheng, H. F.; Cheng, X. H. Self-assembly, AIEE and mechanochromic properties of amphiphilic α-cyanostilbene derivatives. Tetrahedron 2017, 73, 5253–5259.
Koo, J.; Lim, S. I.; Lee, S. H.; Kim, J. S.; Yu, Y. T.; Lee, C. R.; Kim, D. Y.; Jeong, K. U. Polarized light emission from uniaxially oriented and polymer-stabilized aie luminogen thin films. Macromolecules 2019, 52, 1739–1745.
Mu, B.; Zhao, Y.; Li, X.; Quan, X. H.; Tian, W. Enhanced conductivity and thermochromic luminescence in hydrogen bond-stabilized columnar liquid crystals. ACS Appl. Mater. Interfaces 2020, 12, 9637–9645.
Kim, D. Y.; Koo, J.; Lim, S. I.; Jeong, K. U. Solid-state light emission controlled by tuning the hierarchical superstructure of self-assembled luminogens. Adv. Funct. Mater. 2018, 28, 1707075.
Li, J. T.; Zhang, Z. W.; Tian, J. J.; Li, G. Q.; Wei, J.; Guo, J. B. Dicyanodistyrylbenzene-based chiral fluorescence photoswitches: An emerging class of multifunctional switches for dual-mode phototunable liquid crystals. Adv. Opt. Mater. 2017, 5, 1700014.
Zhao, D. Y.; Xu, L. H.; Shang, Y.; Li, X. X.; Guo, L. Facet-dependent electro-optical properties of cholesteric liquid crystals doped with Cu2O nanocrystals. Nano Res. 2018, 11, 4836–4845.
Yuan, W. Z.; Yu, Z. Q.; Tang, Y. H.; Lam, J. W. Y.; Xie, N.; Lu, P.; Chen, E. Q.; Tang, B. Z. High solid-state efficiency fluorescent main chain liquid crystalline polytriazoles with aggregation-induced emission characteristics. Macromolecules 2011, 44, 9618–9628.
Liu, L.; Wang, M.; Guo, L. X.; Sun, Y.; Zhang, X. Q.; Lin, B. P.; Yang, H. Aggregation-induced emission luminogen-functionalized liquid crystal elastomer soft actuators. Macromolecules 2018, 51, 4516–4524.
Yuan, Y. J.; Li, J. D.; He, L. F.; Liu, Y. W.; Zhang, H. L. Preparation and properties of side chain liquid crystalline polymers with aggregation-induced emission enhancement characteristics. J. Mater. Chem. C 2018, 6, 7119–7127.
Wu, Y. J.; Zhang, S. S.; Pei, J. W.; Chen, X. F. Photochromic fluorescence switching in liquid crystalline polynorbornenes with α-cyanostilbene side-chains. J. Mater. Chem. C 2020, 8, 6461–6469.
Zhu, Y. L.; Zheng, M. Q.; Tu, Y. Y.; Chen, X. F. Supramolecular fluorescent polymers containing α-cyanostilbene-based stereoisomers: Z/E-isomerization induced multiple reversible switching. Macromolecules 2018, 51, 3487–3496.
Mu, B.; Zhang, Z. L.; Zhao, Y.; Hao, X. N.; Tian, W. Fluorescent columnar liquid-crystalline polymers: Synthesis, mesomorphic behaviors and tunable emission wavelengths. Chin. J. Chem. 2021, 39, 2009–2015.
Zhang, Z. Y.; Wang, Q.; Hou, P. P.; Shen, Z. H.; Fan, X. H. Effects of rigid cores and flexible tails on the phase behaviors of polynorbornene-based mesogen-jacketed liquid crystalline polymers. Polym. Chem. 2015, 6, 7701–7710.
Zhu, Y. F.; Zhang, Z. Y.; Zhang, Q. K.; Hou, P. P.; Hao, D. Z.; Qiao, Y. Y.; Shen, Z. H.; Fan, X. H.; Zhou, Q. F. Mesogen-jacketed liquid crystalline polymers with a polynorbornene main chain: Green synthesis and phase behaviors. Macromolecules 2014, 47, 2803–2810.
Guo, Y.; Shi, D.; Luo, Z. W.; Xu, J. R.; Li, M. L.; Yang, L. H.; Yu, Z. Q.; Chen, E. Q.; Xie, H. L. High efficiency luminescent liquid crystalline polymers based on aggregation-induced emission and “jacketing” effect: Design, synthesis, photophysical property, and phase structure. Macromolecules 2017, 50, 9607–9616.
Tao, L.; Li, M. L.; Yang, K. P.; Guan, Y.; Wang, P.; Shen, Z. H.; Xie, H. L. Color-tunable and stimulus-responsive luminescent liquid crystalline polymers fabricated by hydrogen bonding. ACS Appl. Mater. Interfaces 2019, 11, 15051–15059.
Luo, Z. W.; Tao, L.; Zhong, C. L.; Li, Z. X.; Lan, K.; Feng, Y.; Wang, P.; Xie, H. L. High-efficiency circularly polarized luminescence from chiral luminescent liquid crystalline polymers with aggregation-induced emission properties. Macromolecules 2020, 53, 9758–9768.
Zhao, Z.; Chen, C.; Wu, W. T.; Wang, F. F.; Du, L. L.; Zhang, X. Y.; Xiong, Y.; He, X. W.; Cai, Y. J.; Kwok, R. T. K. et al. Highly efficient photothermal nanoagent achieved by harvesting energy via excited-state intramolecular motion within nanoparticles. Nat. Commun. 2019, 10, 768.
Li, H. X.; Wen, H. F.; Zhang, Z. J.; Song, N.; Kwok, R. T. K.; Lam, J. W. Y.; Wang, L.; Wang, D.; Tang, B. Z. Reverse thinking of the aggregation-induced emission principle: Amplifying molecular motions to boost photothermal efficiency of nanofibers. Angew. Chem. , Int. Ed. 2020, 59, 20371–20375.
Fu, K.; Zeng, X. X.; Zhao, X. P.; Wu, Y.; Li, M.; Li, X. S.; Pan, C. J.; Chen, Z. J.; Yu, Z. Q. Quantitative förster resonance energy transfer: Efficient light harvesting for sequential photo-thermo-electric conversion. Small 2021, 17, 2103172.
Kwon, M. S.; Gierschner, J.; Yoon, S. J.; Park, S. Y. Unique piezochromic fluorescence behavior of dicyanodistyrylbenzene based donor-acceptor-donor triad: Mechanically controlled photo-induced electron transfer (eT) in molecular assemblies. Adv. Mater. 2012, 24, 5487–5492.
Ramya, N. K.; Femina, C.; Suresh, S.; Mohanakumari, D. S.; Krishnan, R.; Thomas, R. Dicyanodistyrylbenzene based positional isomers: A comparative study of AIEE and stimuli responsive multicolour fluorescence switching. New J. Chem. 2022, 46, 1339–1346.