AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

AIEgen containing side-chain liquid crystalline polymers: Photoluminecence or photothermal, which dominate?

Lei Tao1,2He-Lou Xie3( )Xin Qi1Jun Song2Hong Xin1( )Zhen-Qiang Yu1,2( )
College of Chemistry and Environmental Engineering, Institute of Low-dimensional Materials Genome Initiative, Shenzhen University, Shenzhen 518060, China
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518071, China
Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
Show Author Information

Graphical Abstract

A series of α-dicyanodistyrylbenzene (a-DCS) containing luminescent liquid crystalline polymers (LLCPs) with polynorbornene as main chain are successfully prepared via ring-opening metathesis polymerization to reveal the relationship between photoluminescence (PL) and photothermal behavior. The liquid crystal (LC) phase structure, molecular packing model, photoluminescence behavior, lifetime, and photothermal effect of the resultant polymers are strongly dependent on the alkyl tail length and the photothermal effect plays a dominant role during the excited states energy decay.

Abstract

Why many luminescent liquid crystalline polymers (LLCPs) containing aggregation-induced emission luminogen (AIEgen) show weak emission is a question still to be answered. Herein, a series of LLCPs (α-Pns, n = 4, 8, and 12) with polynorbornene as main chain and two α-dicyanodistyrylbenzene (α-DCS) as side chain are successfully synthesized to solve this issue. Differential scanning calorimetry (DSC), polarized light microscopy (PLM), one-dimentional (1D), two-dimentional (2D) middle-angle and wide-angle X-ray scattering (MAXS and WAXS) results demonstrate that the polymers form smectic A (SmA) phase with the side chains interdigitated packed within the smectic layers. Meanwhile, the photophysical properties of α-Pns were investigated by ultraviolet–visible (UV–vis) absorption, steady state and time-resolved spectroscopy, and photothermal effect. Results show that the polymers are AIE active, but emit weak emission. The emission peak of α-Pns film red-shift from 473 to 531 nm, the quantum yield gradually increases from around 1.6% to 14.7%, and the photothermal conversion efficiency decreases from 39% to 19% with the alkyl tail length increased. The photothermal effect, but not photoluminescence, dominates the excited state relaxation.

Electronic Supplementary Material

Download File(s)
12274_2022_4603_MOESM1_ESM.pdf (1.4 MB)

References

1

Bisoyi, H. K.; Li, Q. Liquid crystals: Versatile self-organized smart soft materials. Chem. Rev. 2022, 122, 4887–4926.

2

Bisoyi, H. K.; Kumar, S. Liquid-crystal nanoscience: An emerging avenue of soft self-assembly. Chem. Soc. Rev. 2011, 40, 306–319.

3

Fleischmann, E. K.; Zentel, R. Liquid-crystalline ordering as a concept in materials science: From semiconductors to stimuli-responsive devices. Angew. Chem. , Int. Ed. 2013, 52, 8810–8827.

4

Kato, T.; Uchida, J.; Ichikawa, T.; Sakamoto, T. Functional liquid crystals towards the next generation of materials. Angew. Chem. , Int. Ed. 2018, 57, 4355–4371.

5

Liu, B.; Ma, Y. R.; Zhao, D. Y.; Xu, L. H.; Liu, F. S.; Zhou, W.; Guo, L. Effects of morphology and concentration of cus nanoparticles on alignment and electro-optic properties of nematic liquid crystal. Nano Res. 2017, 10, 618–625.

6

Wen, Z. B.; Snap, R. F.; Raquez, J. M.; Clark, N. A.; Yang, K. K.; Wang, Y. Z. Unique two-way free-standing thermo- and photo-responsive shape memory azobenzene-containing polyurethane liquid crystal network. Sci. China Mater. 2020, 63, 2590–2598.

7

Gabinet, U. R.; Osuji, C. O. Optical materials and metamaterials from nanostructured soft matter. Nano Res. 2019, 12, 2172–2183.

8

Zhao, D. Y.; Bi, W. H.; Tang, B. Z. A light-emitting liquid crystal display device without polarizers and alignment layers. Adv. Opt. Mater. 2021, 9, 2100489.

9

Hu, X. W.; de Haan, L. T.; Khandelwal, H.; Schenning, A. P. H. J.; Nian, L.; Zhou, G. F. Cell thickness dependence of electrically tunable infrared reflectors based on polymer stabilized cholesteric liquid crystals. Sci. China Mater. 2018, 61, 745–751.

10

Lu, H. B.; Zhang, S. N.; Ding, A. X.; Yuan, M.; Zhang, G. Y.; Xu, W.; Zhang, G. B.; Wang, X. H.; Qiu, L. Z.; Yang, J. X. A luminescent liquid crystal with multistimuli tunable emission colors based on different molecular packing structures. New J. Chem. 2014, 38, 3429–3433.

11

Voskuhl, J.; Giese, M. Mesogens with aggregation-induced emission properties: Materials with a bright future. Aggregate 2022, 3, e124.

12

Jakubiak, R.; Collison, C. J.; Wan, W. C.; Rothberg, L. J.; Hsieh, B. R. Aggregation quenching of luminescence in electroluminescent conjugated polymers. J. Phys. Chem. A 1999, 103, 2394–2398.

13

Chi, C. Y.; Lieser, G.; Enkelmann, V.; Wegner, G. Packing and uniaxial alignment of liquid crystalline oligofluorenes. Macromol. Chem. Phys. 2005, 206, 1597–1609.

14

Durban, M. M.; Kazarinoff, P. D.; Luscombe, C. K. Synthesis and characterization of thiophene-containing naphthalene diimide n-type copolymers for OFET applications. Macromolecules 2010, 43, 6348–6352.

15
Valeur, B. ; Berberan-Santos, M. N. , Molecular Fluorescence: Principles and Applications; 2nd ed. John Wiley & Sons: Weinheim, 2012.
16

Wang, Y. F.; Shi, J. W.; Chen, J. H.; Zhu, W. G.; Baranoff, E. Recent progress in luminescent liquid crystal materials: Design, properties and application for linearly polarised emission. J. Mater. Chem. C 2015, 3, 7993–8005.

17

Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B. et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole. Chem. Commun. 2001, 1740–1741.

18

Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388.

19

Liu, B.; Tang, B. Z. Aggregation-induced emission: More is different. Angew. Chem. , Int. Ed. 2020, 59, 9788–9789.

20

Peng, Q.; Shuai, Z. G. Molecular mechanism of aggregation-induced emission. Aggregate 2021, 2, e91.

21

Chen, L.; Chen, C. L.; Sun, Y.; Lu, S.; Huo, H. H.; Tan, T. Y.; Li, A. Q.; Li, X. P.; Ungar, G.; Liu, F. et al. Luminescent metallacycle-cored liquid crystals induced by metal coordination. Angew. Chem. , Int. Ed. 2020, 59, 10143–10150.

22

Guo, L. X.; Xing, Y. B.; Wang, M.; Sun, Y.; Zhang, X. Q.; Lin, B. P.; Yang, H. Luminescent liquid crystals bearing an aggregation-induced emission active tetraphenylthiophene fluorophore. J. Mater. Chem. C 2019, 7, 4828–4837.

23

Dai, S. X.; Zhou, Y. D.; Zhang, H. L.; Cai, Z. X.; Tong, B.; Shi, J. B.; Dong, Y. P. Turn-on and color-switchable red luminescent liquid crystals based on pyrrolopyrrole derivatives. J. Mater. Chem. C 2020, 8, 11177–11184.

24

Mitani, M.; Yoshio, M.; Kato, T. Tuning of luminescence color of π-conjugated liquid crystals through co-assembly with ionic liquids. J. Mater. Chem. C 2017, 5, 9972–9978.

25

Lin, S. Y.; Gutierrez-Cuevas, K. G.; Zhang, X. F.; Guo, J. B.; Li, Q. Fluorescent photochromic α-cyanodiarylethene molecular switches: An emerging and promising class of functional diarylethene. Adv. Funct. Mater. 2021, 31, 2007957.

26

Park, S. K.; Cho, I.; Gierschner, J.; Kim, J. H.; Kim, J. H.; Kwon, J. E.; Kwon, O. K.; Whang, D. R.; Park, J. H.; An, B. K. et al. Stimuli-responsive reversible fluorescence switching in a crystalline donor-acceptor mixture film: Mixed stack charge-transfer emission versus segregated stack monomer emission. Angew. Chem. , Int. Ed. 2016, 55, 203–207.

27

Martínez-Abadía, M.; Giménez, R.; Ros, M. B. Self-assembled α-cyanostilbenes for advanced functional materials. Adv. Mater. 2018, 30, 1704161.

28

Zeng, X. X.; Wu, Y.; Zou, L.; Liu, X. W.; Qi, X.; Yu, Z. Q. Light-driven self-assembly of cyanostilbene derivative with reversible chirality in aqueous media. Sci. China Mater. 2022, 65, 1413–1416.

29

Zhang, Z. W.; Li, J. T.; Wei, W. Y.; Wei, J.; Guo, J. B. A luminescent dicyanodistyrylbenzene-based liquid crystal polymer network for photochemically patterned photonic composite film. Chin. J. Polym. Sci. 2018, 36, 776–782.

30

Wu, Y.; You, L. H.; Yu, Z. Q.; Wang, J. H.; Meng, Z. G.; Liu, Y.; Li, X. S.; Fu, K.; Ren, X. K.; Tang, B. Z. Rational design of circularly polarized luminescent aggregation-induced emission luminogens (AIEgens): Promoting the dissymmetry factor and emission efficiency synchronously. ACS Mater. Lett. 2020, 2, 505–510.

31

Cao, X. J.; Li, W.; Li, J. H.; Zou, L.; Liu, X. W.; Ren, X. K.; Yu, Z. Q. Controlling the balance of photoluminescence and photothermal effect in cyanostilbene-based luminescent liquid crystals. Chin. J. Chem. 2022, 40, 902–910.

32

Yoon, S. J.; Kim, J. H.; Kim, K. S.; Chung, J. W.; Heinrich, B.; Mathevet, F.; Kim, P.; Donnio, B.; Attias, A. J.; Kim, D. et al. Mesomorphic organization and thermochromic luminescence of dicyanodistyrylbenzene-based phasmidic molecular disks: Uniaxially aligned hexagonal columnar liquid crystals at room temperature with enhanced fluorescence emission and semiconductivity. Adv. Funct. Mater. 2012, 22, 61–69.

33

Martínez-Abadía, M.; Varghese, S.; Giménez, R.; Ros, M. B. Multiresponsive luminescent dicyanodistyrylbenzenes and their photochemistry in solution and in bulk. J. Mater. Chem. C 2016, 4, 2886–2893.

34

Ren, Y. M.; Zhang, R. L.; Yan, C.; Wang, T. Y.; Cheng, H. F.; Cheng, X. H. Self-assembly, AIEE and mechanochromic properties of amphiphilic α-cyanostilbene derivatives. Tetrahedron 2017, 73, 5253–5259.

35

Koo, J.; Lim, S. I.; Lee, S. H.; Kim, J. S.; Yu, Y. T.; Lee, C. R.; Kim, D. Y.; Jeong, K. U. Polarized light emission from uniaxially oriented and polymer-stabilized aie luminogen thin films. Macromolecules 2019, 52, 1739–1745.

36

Mu, B.; Zhao, Y.; Li, X.; Quan, X. H.; Tian, W. Enhanced conductivity and thermochromic luminescence in hydrogen bond-stabilized columnar liquid crystals. ACS Appl. Mater. Interfaces 2020, 12, 9637–9645.

37

Kim, D. Y.; Koo, J.; Lim, S. I.; Jeong, K. U. Solid-state light emission controlled by tuning the hierarchical superstructure of self-assembled luminogens. Adv. Funct. Mater. 2018, 28, 1707075.

38

Li, J. T.; Zhang, Z. W.; Tian, J. J.; Li, G. Q.; Wei, J.; Guo, J. B. Dicyanodistyrylbenzene-based chiral fluorescence photoswitches: An emerging class of multifunctional switches for dual-mode phototunable liquid crystals. Adv. Opt. Mater. 2017, 5, 1700014.

39

Zhao, D. Y.; Xu, L. H.; Shang, Y.; Li, X. X.; Guo, L. Facet-dependent electro-optical properties of cholesteric liquid crystals doped with Cu2O nanocrystals. Nano Res. 2018, 11, 4836–4845.

40

Yuan, W. Z.; Yu, Z. Q.; Tang, Y. H.; Lam, J. W. Y.; Xie, N.; Lu, P.; Chen, E. Q.; Tang, B. Z. High solid-state efficiency fluorescent main chain liquid crystalline polytriazoles with aggregation-induced emission characteristics. Macromolecules 2011, 44, 9618–9628.

41

Liu, L.; Wang, M.; Guo, L. X.; Sun, Y.; Zhang, X. Q.; Lin, B. P.; Yang, H. Aggregation-induced emission luminogen-functionalized liquid crystal elastomer soft actuators. Macromolecules 2018, 51, 4516–4524.

42
Wang, J. ; Jiang, Q. ; Cao, S. ; Sun, C. C. ; Zhang, Y. P. ; Qiu, Y. ; Wang, H. ; Yin, G. C. ; Liao, Y. G. ; Xie, X. L. Z/E effect on phase behavior of main-chain liquid crystalline polymers bearing AIEgens. Macromolecules 2021, 54, 10740–10749.
43

Yuan, Y. J.; Li, J. D.; He, L. F.; Liu, Y. W.; Zhang, H. L. Preparation and properties of side chain liquid crystalline polymers with aggregation-induced emission enhancement characteristics. J. Mater. Chem. C 2018, 6, 7119–7127.

44

Wu, Y. J.; Zhang, S. S.; Pei, J. W.; Chen, X. F. Photochromic fluorescence switching in liquid crystalline polynorbornenes with α-cyanostilbene side-chains. J. Mater. Chem. C 2020, 8, 6461–6469.

45

Zhu, Y. L.; Zheng, M. Q.; Tu, Y. Y.; Chen, X. F. Supramolecular fluorescent polymers containing α-cyanostilbene-based stereoisomers: Z/E-isomerization induced multiple reversible switching. Macromolecules 2018, 51, 3487–3496.

46

Mu, B.; Zhang, Z. L.; Zhao, Y.; Hao, X. N.; Tian, W. Fluorescent columnar liquid-crystalline polymers: Synthesis, mesomorphic behaviors and tunable emission wavelengths. Chin. J. Chem. 2021, 39, 2009–2015.

47

Zhang, Z. Y.; Wang, Q.; Hou, P. P.; Shen, Z. H.; Fan, X. H. Effects of rigid cores and flexible tails on the phase behaviors of polynorbornene-based mesogen-jacketed liquid crystalline polymers. Polym. Chem. 2015, 6, 7701–7710.

48

Zhu, Y. F.; Zhang, Z. Y.; Zhang, Q. K.; Hou, P. P.; Hao, D. Z.; Qiao, Y. Y.; Shen, Z. H.; Fan, X. H.; Zhou, Q. F. Mesogen-jacketed liquid crystalline polymers with a polynorbornene main chain: Green synthesis and phase behaviors. Macromolecules 2014, 47, 2803–2810.

49

Guo, Y.; Shi, D.; Luo, Z. W.; Xu, J. R.; Li, M. L.; Yang, L. H.; Yu, Z. Q.; Chen, E. Q.; Xie, H. L. High efficiency luminescent liquid crystalline polymers based on aggregation-induced emission and “jacketing” effect: Design, synthesis, photophysical property, and phase structure. Macromolecules 2017, 50, 9607–9616.

50

Tao, L.; Li, M. L.; Yang, K. P.; Guan, Y.; Wang, P.; Shen, Z. H.; Xie, H. L. Color-tunable and stimulus-responsive luminescent liquid crystalline polymers fabricated by hydrogen bonding. ACS Appl. Mater. Interfaces 2019, 11, 15051–15059.

51

Luo, Z. W.; Tao, L.; Zhong, C. L.; Li, Z. X.; Lan, K.; Feng, Y.; Wang, P.; Xie, H. L. High-efficiency circularly polarized luminescence from chiral luminescent liquid crystalline polymers with aggregation-induced emission properties. Macromolecules 2020, 53, 9758–9768.

52

Zhao, Z.; Chen, C.; Wu, W. T.; Wang, F. F.; Du, L. L.; Zhang, X. Y.; Xiong, Y.; He, X. W.; Cai, Y. J.; Kwok, R. T. K. et al. Highly efficient photothermal nanoagent achieved by harvesting energy via excited-state intramolecular motion within nanoparticles. Nat. Commun. 2019, 10, 768.

53

Li, H. X.; Wen, H. F.; Zhang, Z. J.; Song, N.; Kwok, R. T. K.; Lam, J. W. Y.; Wang, L.; Wang, D.; Tang, B. Z. Reverse thinking of the aggregation-induced emission principle: Amplifying molecular motions to boost photothermal efficiency of nanofibers. Angew. Chem. , Int. Ed. 2020, 59, 20371–20375.

54

Fu, K.; Zeng, X. X.; Zhao, X. P.; Wu, Y.; Li, M.; Li, X. S.; Pan, C. J.; Chen, Z. J.; Yu, Z. Q. Quantitative förster resonance energy transfer: Efficient light harvesting for sequential photo-thermo-electric conversion. Small 2021, 17, 2103172.

55

Kwon, M. S.; Gierschner, J.; Yoon, S. J.; Park, S. Y. Unique piezochromic fluorescence behavior of dicyanodistyrylbenzene based donor-acceptor-donor triad: Mechanically controlled photo-induced electron transfer (eT) in molecular assemblies. Adv. Mater. 2012, 24, 5487–5492.

56

Ramya, N. K.; Femina, C.; Suresh, S.; Mohanakumari, D. S.; Krishnan, R.; Thomas, R. Dicyanodistyrylbenzene based positional isomers: A comparative study of AIEE and stimuli responsive multicolour fluorescence switching. New J. Chem. 2022, 46, 1339–1346.

Nano Research
Pages 9334-9340
Cite this article:
Tao L, Xie H-L, Qi X, et al. AIEgen containing side-chain liquid crystalline polymers: Photoluminecence or photothermal, which dominate?. Nano Research, 2022, 15(10): 9334-9340. https://doi.org/10.1007/s12274-022-4603-0
Topics:

763

Views

1

Crossref

2

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 28 April 2022
Revised: 27 May 2022
Accepted: 28 May 2022
Published: 12 July 2022
© Tsinghua University Press 2022
Return