Graphical Abstract

Ferroelectric memristors, as one of the most potential non-volatile memory to meet the rapid development of the artificial intelligence era, have the comprehensive function of simulating brain storage and calculation. However, due to the high dielectric loss of traditional ferroelectric materials, the durability of ferroelectric memristors and Si based integration have a great challenge. Here, we report a silicon-based epitaxial ferroelectric memristor based on self-assembled vertically aligned nano-composites BaTiO3(BTO)-CeO2 films. The BTO-CeO2 memristors exhibit a stable resistance switching behavior at a high temperature of 100 °C due to higher Curie temperatures of BTO-CeO2 films with in-plane compressive strain. And the endurance of the device can reach the order of magnitude of 1 × 106 times. More importantly, the device has excellent functions for simulating artificial synaptic behavior, including excitatory post-synaptic current, paired-pulse facilitation, paired-pulse depression, spike-time-dependent plasticity, and short and long-term plasticity. Digits recognition ability of the memristor devices is evaluated though a single-layer perceptron model, in which recognition accuracy of digital can reach 86.78% after 20 training iterations. These results provide new way for epitaxial composite ferroelectric films as memristor medium with high temperature intolerance and better durability integrated on silicon.
Ielmini, D.; Wong, H. S. P. In-memory computing with resistive switching devices. Nat. Electron. 2018, 1, 333–343.
Zhang, Y.; Wang, Z. R.; Zhu, J. D.; Yang, Y. C.; Rao, M. Y.; Song, W. H.; Zhuo, Y.; Zhang, X. M.; Cui, M. L.; Shen, L. L. et al. Brain-inspired computing with memristors: Challenges in devices, circuits, and systems. Appl. Phys. Rev. 2020, 7, 011308.
Berdan, R.; Marukame, T.; Ota, K.; Yamaguchi, M.; Saitoh, M.; Fujii, S.; Deguchi, J.; Nishi, Y. Low-power linear computation using nonlinear ferroelectric tunnel junction memristors. Nat. Electron. 2020, 3, 259–266.
Yan, J. M.; Ying, J. S.; Yan, M. Y.; Wang, Z. C.; Li, S. S.; Chen, T. W.; Gao, G. Y.; Liao, F. Y.; Luo, H. S.; Zhang, T. et al. Optoelectronic coincidence detection with two-dimensional Bi2O2Se ferroelectric field-effect transistors. Adv. Funct. Mater. 2021, 31, 2103982.
Soni, R.; Petraru, A.; Meuffels, P.; Vavra, O.; Ziegler, M.; Kim, S. K.; Jeong, D. S.; Pertsev, N. A.; Kohlstedt, H. Giant electrode effect on tunnelling electroresistance in ferroelectric tunnel junctions. Nat. Commun. 2014, 5, 5414.
Zhou, C. J.; Chai, Y. Ferroelectric-gated two-dimensional-material-based electron devices. Adv. Electron. Mater. 2017, 3, 1600400.
Nuraje, N., Su, K. Perovskite ferroelectric nanomaterials. Nanoscale 2013, 5, 8752–8780.
Hu, Z. Q.; Li, Q.; Li, M. Y.; Wang, Q. W.; Zhu, Y. D.; Liu, X. L.; Zhao, X. Z.; Liu, Y.; Dong, S. X. Ferroelectric memristor based on Pt/BiFeO3/Nb-doped SrTiO3 heterostructure. Appl. Phys. Lett. 2013, 102, 102901.
Yan, F.; Xing, G. Z.; Li, L. Low temperature dependent ferroelectric resistive switching in epitaxial BiFeO3 films. Appl. Phys. Lett. 2014, 104, 132904.
Li, J. K.; Ge, C.; Du, J. Y.; Wang, C.; Yang, G. Z.; Jin, K. J. Reproducible ultrathin ferroelectric domain switching for high-performance neuromorphic computing. Adv. Mater. 2020, 32, 1905764.
Lee, J. S.; Lee, S.; Noh, T. W. Resistive switching phenomena: A review of statistical physics approaches. Appl. Phys. Rev. 2015, 2, 031303.
Haertling, G. H. Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc. 1999, 82, 797–818.
Issa, M. A. A.; Molokhia, N. M.; Dughaish, Z. H. Effect of cerium oxide (CeO2) additives on the dielectric properties of BaTiO3 ceramics. J. Phys. D Appl. Phys. 1983, 16, 1109–1114.
Khatkhatay, F.; Chen, A. P.; Lee, J. H.; Zhang, W. R.; Abdel-Raziq, H.; Wang, H. Y. Ferroelectric properties of vertically aligned nanostructured BaTiO3-CeO2 thin films and their integration on silicon. ACS Appl. Mater. Interfaces 2013, 5, 12541–12547.
Hwang, J. H.; Han, Y. H. Dielectric properties of (Ba1−xCex) TiO3. Jpn. J. Appl. Phys. 2000, 39, 2701.
Yoon, J. H.; Wang, Z. R.; Kim, K. M.; Wu, H. Q.; Ravichandran, V.; Xia, Q. F.; Hwang, C. S.; Yang, J. J. An artificial nociceptor based on a diffusive memristor. Nat. Commun. 2018, 9, 417.
Jia, C. H.; Li, J. C.; Yang, G.; Chen, Y. H.; Zhang, W. F. Ferroelectric field effect induced asymmetric resistive switching effect in BaTiO3/Nb: SrTiO3 epitaxial heterojunctions. Nanoscale Res. Lett. 2018, 13, 102.
Guo, R.; Zhou, Y. X.; Wu, L. J.; Wang, Z. R.; Lim, Z.; Yan, X. B.; Lin, W. N.; Wang, H.; Yoong, H. Y.; Chen, S. H. et al. Control of synaptic plasticity learning of ferroelectric tunnel memristor by nanoscale interface engineering. ACS Appl. Mater. Interfaces 2018, 10, 12862–12869.
Zhou, Z. Y.; Yan, X. B.; Zhao, J. H.; Lu, C.; Ren, D. L.; Lu, N. D.; Wang, J. J.; Zhang, L.; Li, X. Y.; Wang, H. et al. Synapse behavior characterization and physical mechanism of a TiN/SiOx/p-Si tunneling memristor device. J. Mater. Chem. C 2019, 7, 1561–1567.
Pantel, D.; Alexe, M. Electroresistance effects in ferroelectric tunnel barriers. Phys. Rev. B 2010, 82, 134105.
Tung, R. T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 2014, 1, 011304.
Yang, N.; Ren, Z. Q.; Hu, C. Z.; Guan, Z.; Tian, B. B.; Zhong, N.; Xiang, P. H.; Duan, C. G.; Chu, J. H. Ultra-wide temperature electronic synapses based on self-rectifying ferroelectric memristors. Nanotechnology 2019, 30, 464001.
Wang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003, 299, 1719–1722.
Lin, W. J.; Tseng, T. Y.; Lu, H. B.; Tu, S. L.; Yang, S. J.; Lin, I. Growth and ferroelectricity of epitaxial-like BaTiO3 films on single-crystal MgO, SrTiO3, and silicon substrates synthesized by pulsed laser deposition. J. Appl. Phys. 1995, 77, 6466–6471.
Ma, C.; Luo, Z.; Huang, W. C.; Zhao, L. T.; Chen, Q. L.; Lin, Y.; Liu, X.; Chen, Z. W.; Liu, C. C.; Sun, H. Y. et al. Sub-nanosecond memristor based on ferroelectric tunnel junction. Nat. Commun. 2020, 11, 1439.
Wen, Z.; Li, C.; Wu, D.; Li, A. D.; Ming, N. B. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/ semiconductor tunnel junctions. Nat. Mater. 2013, 12, 617–621.
Yan, X. B.; Zhao, J. H.; Liu, S.; Zhou, Z. Y.; Liu, Q.; Chen, J. S.; Liu, X. Y. Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing. Adv. Funct. Mater. 2018, 28, 1705320.
Covi, E.; Brivio, S.; Fanciulli, M.; Spiga, S. Synaptic potentiation and depression in Al: HfO2-based memristor. Microelectron. Eng. 2015, 147, 41–44.
Yang, R.; Huang, H. M.; Hong, Q. H.; Yin, X. B.; Tan, Z. H.; Shi, T.; Zhou, Y. X.; Miao, X. S.; Wang, X. P.; Mi, S. B. et al. Synaptic suppression triplet-STDP learning rule realized in second-order memristors. Adv. Funct. Mater. 2018, 28, 1704455.
Luo, Z. D.; Peters, J. J. P.; Sanchez, A. M.; Alexe, M. Flexible memristors based on single-crystalline ferroelectric tunnel junctions. ACS Appl. Mater. Interfaces 2019, 11, 23313–23319.
Hu, J. W.; Wang, Z. H.; Yu, W. L.; Wu, T. Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions. Nat. Commun. 2016, 7, 10808.
Garcia, V.; Bibes, M. Ferroelectric tunnel junctions for information storage and processing. Nat. Commun. 2014, 5, 4289.
Li, C. J.; Huang, L. S.; Li, T.; Lü, W. M.; Qiu, X. P.; Huang, Z.; Liu, Z. Q.; Zeng, S. W.; Guo, R.; Zhao, Y. L. et al. Ultrathin BaTiO3-based ferroelectric tunnel junctions through interface engineering. Nano Lett. 2015, 15, 2568–2573.
Fan, Z.; Xiao, J. X.; Wang, J. X.; Zhang, L.; Deng, J. Y.; Liu, Z. Y.; Dong, Z. L.; Wang, J.; Chen, J. S. Ferroelectricity and ferroelectric resistive switching in sputtered Hf0.5Zr0. 5O2 thin films. Appl. Phys. Lett. 2016, 108, 232905.
Kozodaev, M. G.; Chernikova, A. G.; Korostylev, E. V.; Park, M. H.; Schroeder, U.; Hwang, C. S.; Markeev, A. M. Ferroelectric properties of lightly doped La: HfO2 thin films grown by plasma-assisted atomic layer deposition. Appl. Phys. Lett. 2017, 111, 132903.
Pei, Y. F.; Yan, L.; Wu, Z. H.; Lu, J. K.; Zhao, J. H.; Chen, J. S.; Liu, Q.; Yan, X. B. Artificial visual perception nervous system based on low-dimensional material photoelectric memristors. ACS Nano 2021, 15, 17319–17326.
Wang, Z. R.; Joshi, S.; Savel'ev, S.; Song, W. H.; Midya, R.; Li, Y. N.; Rao, M. Y.; Yan, P.; Asapu, S.; Zhuo, Y. et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 2018, 1, 137–145.
Mikheev, V.; Chouprik, A.; Lebedinskii, Y.; Zarubin, S.; Matveyev, Y.; Kondratyuk, E.; Kozodaev, M. G.; Markeev, A. M.; Zenkevich, A.; Negrov, D. Ferroelectric second-order memristor. ACS Appl. Mater. Interfaces 2019, 11, 32108–32114.
Yan, X. B.; Wang, K. Y.; Zhao, J. H.; Zhou, Z. Y.; Wang, H.; Wang, J. J.; Zhang, L.; Li, X. Y.; Xiao, Z. A.; Zhao, Q. L. et al. A new memristor with 2D Ti3C2Tx MXene flakes as an artificial bio-synapse. Small 2019, 15, 1900107.
Zuo, F.; Panda, P.; Kotiuga, M.; Li, J. R.; Kang, M. G.; Mazzoli, C.; Zhou, H.; Barbour, A.; Wilkins, S.; Narayanan, B. et al. Habituation based synaptic plasticity and organismic learning in a quantum perovskite. Nat. Commun. 2017, 8, 240.
Yan, X. B.; Cao, G.; Wang, J. J.; Man, M. H.; Zhao, J. H.; Zhou, Z. Y.; Wang, H.; Pei, Y. F.; Wang, K. Y.; Gao, C. et al. Memristors based on multilayer graphene electrodes for implementing a low-power neuromorphic electronic synapse. J. Mater. Chem. C 2020, 8, 4926–4933.
Ren, Y.; Yang, J. Q.; Zhou, L.; Mao, J. Y.; Zhang, S. R.; Zhou, Y.; Han, S. T. Gate-tunable synaptic plasticity through controlled polarity of charge trapping in fullerene composites. Adv. Funct. Mater. 2018, 28, 1805599.
Yang, C. S.; Shang, D. S.; Liu, N.; Shi, G.; Shen, X.; Yu, R. C.; Li, Y. Q.; Sun, Y. A synaptic transistor based on quasi-2D molybdenum oxide. Adv. Mater. 2017, 29, 1700906.
Zhou, L.; Yang, S. W.; Ding, G. Q.; Yang, J. Q.; Ren, Y.; Zhang, S. R.; Mao, J. Y.; Yang, Y. C.; Zhou, Y.; Han, S. T. Tunable synaptic behavior realized in C3N composite based memristor. Nano Energy 2019, 58, 293–303.
Prezioso, M.; Merrikh-Bayat, F.; Hoskins, B. D.; Adam, G. C.; Likharev, K. K.; Strukov, D. B. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 2015, 521, 61–64.
Yan, X. B.; Pei, Y. F.; Chen, H. W.; Zhao, J. H.; Zhou, Z. Y.; Wang, H.; Zhang, L.; Wang, J. J.; Li, X. Y.; Qin, C. Y. et al. Self-assembled networked PbS distribution quantum dots for resistive switching and artificial synapse performance boost of memristors. Adv. Mater. 2019, 31, 1805284.
Hahnloser, R. H. R.; Sarpeshkar, R.; Mahowald, M. A.; Douglas, R. J.; Seung, H. S. Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 2000, 405, 947–951.
Krishnaprasad, A.; Choudhary, N.; Das, S.; Dev, D.; Kalita, H.; Chung, H. S.; Aina, O.; Jung, Y.; Roy, T. Electronic synapses with near-linear weight update using MoS2/graphene memristors. Appl. Phys. Lett. 2019, 115, 103104.
Lee, M. S.; Lee, J. W.; Kim, C. H.; Park, B. G.; Lee, J. H. Implementation of short-term plasticity and long-term potentiation in a synapse using Si-based type of charge-trap memory. IEEE Trans. Electron Devices 2015, 62, 569–573.
Park, Y.; Park, M. J.; Lee, J. S. Reduced graphene oxide-based artificial synapse yarns for wearable textile device applications. Adv. Funct. Mater. 2018, 28, 1804123.
Li, Y.; Chu, J. X.; Duan, W. J.; Cai, G. S.; Fan, X. H.; Wang, X. Z.; Wang, G.; Pei, Y. L. Analog and digital bipolar resistive switching in solution-combustion-processed NiO memristor. ACS Appl. Mater Interfaces 2018, 10, 24598–24606.
Pei, Y. F.; Zhou, Z. Y.; Chen, A. P.; Chen, J. S.; Yan, X. B. A carbon-based memristor design for associative learning activities and neuromorphic computing. Nanoscale 2020, 12, 13531–13539.
Ambrogio, S.; Ciocchini, N.; Laudato, M.; Milo, V.; Pirovano, A.; Fantini, P.; Ielmini, D. Unsupervised learning by spike timing dependent plasticity in phase change memory (PCM) synapses. Front. Neurosci. 2016, 10, 56.
Gao, C.; Wang, H.; Zhu, Z. P.; Zhang, L.; Yang, Y. Q.; Cao, G.; Yan, X. B. A high-performance memristor device and its filter circuit application. Phys. Status Solidi Rapid Res. Lett. 2020, 14, 2000389.
Tan, S. H.; Lin, P.; Yeon, H.; Choi, S.; Park, Y.; Kim, J. Perspective: Uniform switching of artificial synapses for large-scale neuromorphic arrays. APL Mater. 2018, 6, 120901.
Ryu, J. H.; Hussain, F.; Mahata, C.; Ismail, M.; Abbas, Y.; Kim, M. H.; Choi, C.; Park, B. G.; Kim, S. Filamentary and interface switching of CMOS-compatible Ta2O5 memristor for non-volatile memory and synaptic devices. Appl. Surf. Sci. 2020, 529, 147167.
Yang, Y. H.; Xi, Z. N.; Dong, Y. H.; Zheng, C. Y.; Hu, H. H.; Li, X. F.; Jiang, Z. Z.; Lu, W. C.; Wu, D.; Wen, Z. Spin-filtering ferroelectric tunnel junctions as multiferroic synapses for neuromorphic computing. ACS Appl. Mater. Interfaces 2020, 12, 56300–56309.