AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A self-supported heterogeneous bimetallic phosphide array electrode enables efficient hydrogen evolution from saline water splitting

Jingwen Li1,§Min Song1,§Yezhou Hu2Chang Zhang1Wei Liu1Xiao Huang1Jingjing Zhang1Ye Zhu2Jian Zhang1( )Deli Wang1( )
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hongkong 999077, China

§ Jingwen Li and Min Song contributed equally to this work.

Show Author Information

Graphical Abstract

Benefiting from the good erosion-resisting of heterogeneous bimetallic phosphide nanoarrays and the self-supported architecture, the obtained electrode (Ni2P-FeP/FF) exhibits excellent hydrogen evolution performance in alkaline saline water with an overpotential of 89 mV at 10 mA·cm−2 and long-term stability over 90 h at 200 mA·cm−2.

Abstract

Hydrogen generation from water splitting is of great prospect for the sustainable energy conversion. However, it is still challenging to explore stable and high-performance electrocatalysts toward hydrogen evolution reaction (HER) from saline water such as seawater due to the chloride corrosion. Herein, we developed a self-supported heterogeneous bimetallic phosphide (Ni2P-FeP) array electrode that possesses excellent HER performance in alkaline saline water with an overpotential of 89 mV at 10 mA·cm−2 and long-term stability over 90 h at 200 mA·cm−2. The analysis showed that the heterostructure between the interfaces of Ni2P-FeP plays a pivotal role in promoting the activity of catalyst. Moreover, the bimetallic phosphide nanoarrays can be employed as a shield for chlorine-corrosion resistance in the saline water, ensuring the long-term durability of hydrogen generation. When employed for alkaline saline water electrolysis, a current density of 100 mA·cm−2 is achieved at cell voltage of 1.68 V. This work presents an effective approach for the fabrication of high-performance electrode for HER in alkaline saline environments.

Electronic Supplementary Material

Video
12274_2022_4608_MOESM1_ESM.mp4
12274_2022_4608_MOESM2_ESM.mp4
Download File(s)
12274_2022_4608_MOESM3_ESM.pdf (867.2 KB)

References

[1]

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

[2]

Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P. E.; Ekins, P.; Shah, N.; Ward, K. R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491.

[3]

Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.

[4]
Ma, E. H. ; Liu, X. P. ; Shen, T. ; Wang, D. L. Constructing carbon-encapsulated NiFeV-based electrocatalysts by alkoxide-based self-template method for oxygen evolution reaction. J. Electrochem., in press, https://doi.org/10.13208/j.electrochem.211103.
[5]
Liu, Y.; Chen, N.; Li, W. D.; Sun, M. Z.; Wu, T.; Huang, B. L.; Yong, X.; Zhang, Q. H.; Gu, L.; Song, H. Q. et al. Engineering the synergistic effect of carbon dots-stabilized atomic and subnanometric ruthenium as highly efficient electrocatalysts for robust hydrogen evolution. SmartMat., in press, https://doi.org/10.1002/smm2.1067.
[6]

Anantharaj, S.; Ede, S. R.; Karthick, K.; Sam Sankar, S.; Sangeetha, K.; Karthik, P. E.; Kundu, S. Precision and correctness in the evaluation of electrocatalytic water splitting: Revisiting activity parameters with a critical assessment. Energy Environ. Sci. 2018, 11, 744–771.

[7]

Nikolaidis, P.; Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sust. Energ. Rev. 2017, 67, 597–611.

[8]

Yuan, W. J.; Cui, Z. D.; Zhu, S. L.; Li, Z. Y.; Wu, S. L.; Liang, Y. Q. Structure engineering of electrodeposited NiMo films for highly efficient and durable seawater splitting. Electrochim. Acta 2021, 365, 137366.

[9]

Ma, T. F.; Xu, W. W.; Li, B. R.; Chen, X.; Zhao, J. J.; Wan, S. S.; Jiang, K.; Zhang, S. X.; Wang, Z. F.; Tian, Z. Q. et al. The critical role of additive sulfate for stable alkaline seawater oxidation on nickel-based electrodes. Angew. Chem., Int. Ed. 2021, 60, 22740–22744.

[10]

Tong, W. M.; Forster, M.; Dionigi, F.; Dresp, S.; Sadeghi Erami, R.; Strasser, P.; Cowan, A. J.; Farràs, P. Electrolysis of low-grade and saline surface water. Nat. Energy 2020, 5, 367–377.

[11]

Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct electrolytic splitting of seawater: Opportunities and challenges. ACS Energy Lett. 2019, 4, 933–942.

[12]

Cui, B. H.; Hu, Z.; Liu, C.; Liu, S. L.; Chen, F. S.; Hu, S.; Zhang, J. F.; Zhou, W.; Deng, Y. D.; Qin, Z. B. et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149–1155.

[13]

Dionigi, F.; Reier, T.; Pawolek, Z.; Gliech, M.; Strasser, P. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem 2016, 9, 962–972.

[14]

Wu, X. H.; Zhou, S.; Wang, Z. Y.; Liu, J. S.; Pei, W.; Yang, P. J.; Zhao, J. J.; Qiu, J. S. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater. Adv. Energy Mater. 2019, 9, 1901333.

[15]

Wang, Y. H.; Zhang, L.; Hu, C. L.; Yu, S. N.; Yang, P. P.; Cheng, D. F.; Zhao, Z. J.; Gong, J. L. Fabrication of bilayer Pd-Pt nanocages with sub-nanometer thin shells for enhanced hydrogen evolution reaction. Nano Res. 2019, 12, 2268–2274.

[16]

Badreldin, A.; Nabeeh, A.; Youssef, E.; Mubarak, N.; ElSayed, H.; Mohsen, R.; Ahmed, F.; Wubulikasimu, Y.; Elsaid, K.; Abdel-Wahab, A. Adapting early transition metal and nonmetallic dopants on CoFe oxyhydroxides for enhanced alkaline and neutral pH saline water oxidation. ACS Appl. Energy Mater. 2021, 4, 6942–6956.

[17]

Badreldin, A.; Youssef, K.; El Ghenymy, A.; Wubulikasimu, Y.; Ghouri, Z. K.; Elsaid, K.; Kumar, D.; Abdel-Wahab, A. Solution combustion synthesis of novel S, B-codoped CoFe oxyhydroxides for the oxygen evolution reaction in saline water. ACS Omega 2022, 7, 5521–5536.

[18]

Samo, I. A.; Mughal, W.; Shakeel, M.; Samo, K. A.; Chen, C. T. Triple product overall water splitting—An environment friendly and new direction water splitting in sea-water mimicking electrolyte. ChemistrySelect 2021, 6, 12316–12322.

[19]

Lu, T. Y.; Li, T. F.; Shi, D. S.; Sun, J. L.; Pang, H.; Xu, L.; Yang, J.; Tang, Y. W. In situ establishment of Co/MoS2 heterostructures onto inverse opal-structured N, S-doped carbon hollow nanospheres: Interfacial and architectural dual engineering for efficient hydrogen evolution reaction. SmartMat 2021, 2, 591–602.

[20]

Huang, W. H.; Li, X. M.; Yang, X. F.; Zhang, H. B.; Wang, F.; Zhang, J. Highly efficient electrocatalysts for overall water splitting: Mesoporous CoS/MoS2 with hetero-interfaces. Chem. Commun. 2021, 57, 4847–4850.

[21]

Li, Y. C.; Wu, X. Y.; Wang, J. P.; Wei, H. X.; Zhang, S. Y.; Zhu, S. L.; Li, Z. Y.; Wu, S. L.; Jiang, H.; Liang, Y. Q. Sandwich structured Ni3S2-MoS2-Ni3S2@Ni foam electrode as a stable bifunctional electrocatalyst for highly sustained overall seawater splitting. Electrochim. Acta 2021, 390, 138833.

[22]

Jin, H. Y.; Wang, X. S.; Tang, C.; Vasileff, A.; Li, L. Q.; Slattery, A.; Qiao, S. Z. Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv. Mater. 2021, 33, 2007508.

[23]

Yu, L.; Zhu, Q.; Song, S. W.; McElhenny, B.; Wang, D. Z.; Wu, C. Z.; Qin, Z. J.; Bao, J. M.; Yu, Y.; Chen, S. et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.

[24]

Huang, H. W.; Jung, H.; Jun, H.; Woo, D. Y.; Han, J. W.; Lee, J. Design of grain boundary enriched bimetallic borides for enhanced hydrogen evolution reaction. Chem. Eng. J. 2021, 405, 126977.

[25]

Miao, J.; Lang, Z. L.; Zhang, X. Y.; Kong, W. G.; Peng, O. W.; Yang, Y.; Wang, S. P.; Cheng, J. J.; He, T. C.; Amini, A. et al. Polyoxometalate-derived hexagonal molybdenum nitrides (MXenes) supported by boron, nitrogen codoped carbon nanotubes for efficient electrochemical hydrogen evolution from seawater. Adv. Funct. Mater. 2019, 29, 1805893.

[26]

Xu, W. C.; Fan, G. L.; Zhu, S. L.; Liang, Y. Q.; Cui, Z. D.; Li, Z. Y.; Jiang, H.; Wu, S. L.; Cheng, F. Y. Electronic structure modulation of nanoporous cobalt phosphide by carbon doping for alkaline hydrogen evolution reaction. Adv. Funct. Mater. 2021, 31, 2107333.

[27]

Wei, Y. R.; Zhang, X. X.; Wang, Z. H.; Yin, J. M.; Huang, J. Z.; Zhao, G.; Xu, X. J. Metal-organic framework derived NiCoP hollow polyhedrons electrocatalyst for pH-universal hydrogen evolution reaction. Chin. Chem. Lett. 2021, 32, 119–124.

[28]

Ma, Y. Y.; Wu, C. X.; Feng, X. J.; Tan, H. Q.; Yan, L. K.; Liu, Y.; Kang, Z. H.; Wang, E. B.; Li, Y. G. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy Environ. Sci. 2017, 10, 788–798.

[29]

Yu, L.; Wu, L. B.; Song, S. W.; McElhenny, B.; Zhang, F. H.; Chen, S.; Ren, Z. F. Hydrogen generation from seawater electrolysis over a sandwich-like NiCoN|NixP|NiCoN microsheet array catalyst. ACS Energy Lett. 2020, 5, 2681–2689.

[30]

Tian, G. Q.; Wei, S. R.; Guo, Z. T.; Wu, S. W.; Chen, Z. L.; Xu, F. M.; Cao, Y.; Liu, Z.; Wang, J. Q.; Ding, L. et al. Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting. J. Mater. Sci. Technol. 2021, 77, 108–116.

[31]

Tang, C.; Gan, L. F.; Zhang, R.; Lu, W. B.; Jiang, X. E.; Asiri, A. M.; Sun, X. P.; Wang, J.; Chen, L. Ternary FexCo1−xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: Experimental and theoretical insight. Nano Lett. 2016, 16, 6617–6621.

[32]

Tan, Y. W.; Wang, H.; Liu, P.; Shen, Y. H.; Cheng, C.; Hirata, A.; Fujita, T.; Tang, Z.; Chen, M. W. Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. Energy Environ. Sci. 2016, 9, 2257–2261.

[33]

Lv, Q. L.; Han, J. X.; Tan, X. L.; Wang, W.; Cao, L. X.; Dong, B. H. Featherlike NiCoP holey nanoarrys for efficient and stable seawater splitting. ACS Appl. Energy Mater. 2019, 2, 3910–3917.

[34]

Mishra, I. K.; Zhou, H. Q.; Sun, J. Y.; Qin, F.; Dahal, K.; Bao, J. M.; Chen, S.; Ren, Z. F. Hierarchical CoP/Ni5P4/CoP microsheet arrays as a robust pH-universal electrocatalyst for efficient hydrogen generation. Energy Environ. Sci. 2018, 11, 2246–2252.

[35]

Ji, Y. Q.; Xie, J. Q.; Yang, Y.; Fu, X. Z.; Sun, R.; Wong, C. NiCoP 1D nanothorns grown on 3D hierarchically porous Ni films for high performance hydrogen evolution reaction. Chin. Chem. Lett. 2020, 31, 855–858.

[36]

Liu, X. P.; Gong, M. X.; Xiao, D. D.; Deng, S. F.; Liang, J. N.; Zhao, T. H.; Lu, Y.; Shen, T.; Zhang, J.; Wang, D. L. Turning waste into treasure: Regulating the oxygen corrosion on Fe foam for efficient electrocatalysis. Small 2020, 16, 2000663.

[37]

Liu, X. P.; Guo, X. Y.; Gong, M. X.; Deng, S. F.; Liang, J. N.; Zhao, T. H.; Lu, Y.; Zhu, Y.; Zhang, J.; Wang, D. L. Corrosion-assisted large-scale production of hierarchical iron rusts/Ni(OH)2 nanosheet-on-microsphere arrays for efficient electrocatalysis. Electrochim. Acta 2020, 353, 136478.

[38]

Liu, X. P.; Guo, X. Y.; Gong, M. X.; Zhao, T. H.; Zhang, J.; Zhu, Y.; Wang, D. L. Regulated iron corrosion towards fabricating large-area self-supporting electrodes for an efficient oxygen evolution reaction. J. Mater. Chem. A 2021, 9, 23188–23198.

[39]

Yu, L.; Zhou, H. Q.; Sun, J. Y; Qin, F.; Yu, F.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z. F. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 2017, 10, 1820–1827.

[40]

Yu, X. X.; Yu, Z. Y.; Zhang, X. L.; Zheng, Y. R.; Duan, Y.; Gao, Q.; Wu, R.; Sun, B.; Gao, M. R.; Wang, G. X. et al. “Superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities. J. Am. Chem. Soc. 2019, 141, 7537–7543.

[41]

Gao, Y. X.; Chen, Z.; Zhao, Y.; Yu, W. L.; Jiang, X. L.; He, M. S.; Li, Z. J.; Ma, T. Y.; Wu, Z. X.; Wang L. Facile synthesis of MoP-Ru2P on porous N, P co-doped carbon for efficiently electrocatalytic hydrogen evolution reaction in full pH range. Appl. Catal. B: Environ. 2022, 303, 120879.

[42]

Wu, Y. C.; Wang, Y. J.; Wang, Z. W.; Li, X. T. Highly dispersed CoP on three-dimensional ordered mesoporous FeP for efficient electrocatalytic hydrogen production. J. Mater. Chem. A 2021, 9, 23574–23581.

[43]

Wang, M. Q.; Ye, C.; Liu, H.; Xu, M. W.; Bao, S. J. Nanosized metal phosphides embedded in nitrogen-doped porous carbon nanofibers for enhanced hydrogen evolution at all pH values. Angew. Chem., Int. Ed. 2018, 57, 1963–1967.

[44]

Yu, L. P.; Zhang, J.; Dang, Y. L.; He, J. K.; Tobin, Z.; Kerns, P.; Dou, Y. H.; Jiang, Y.; He, Y. H.; Suib, S. L. In situ growth of Ni2P-Cu3P bimetallic phosphide with bicontinuous structure on self-supported NiCuC substrate as an efficient hydrogen evolution reaction electrocatalyst. ACS Catal. 2019, 9, 6919–6928.

[45]

Yu, L.; Zhou, H. Q.; Sun, J. Y.; Mishra, I. K.; Luo, D.; Yu, F.; Yu, Y.; Chen, S.; Ren, Z. F. Amorphous NiFe layered double hydroxide nanosheets decorated on 3D nickel phosphide nanoarrays: A hierarchical core–shell electrocatalyst for efficient oxygen evolution. J. Mater. Chem. A 2018, 6, 13619–13623.

[46]

Li, Y. P.; Liu, J. D.; Chen, C.; Zhang, X. H.; Chen, J. H. Preparation of NiCoP hollow quasi-polyhedra and their electrocatalytic properties for hydrogen evolution in alkaline solution. ACS Appl. Mater. Interfaces 2017, 9, 5982–5991.

[47]

Huang, C.; Ouyang, T.; Zou, Y.; Li, N.; Liu, Z. Q. Ultrathin NiCo2Px nanosheets strongly coupled with CNTs as efficient and robust electrocatalysts for overall water splitting. J. Mater. Chem. A 2018, 6, 7420–7427.

[48]

Mo, Q. J.; Zhang, W. B.; He, L. Q.; Yu, X.; Gao, Q. S. Bimetallic Ni2−xCoxP/N-doped carbon nanofibers: Solid-solution-alloy engineering toward efficient hydrogen evolution. Appl. Catal. B: Environ. 2019, 244, 620–627.

[49]

Guo, Y. N.; Tang, J.; Wang, Z. L.; Sugahara, Y.; Yamauchi, Y. Hollow porous heterometallic phosphide nanocubes for enhanced electrochemical water splitting. Small 2018, 14, 1802442.

[50]

Zhang, R.; Wang, X. X.; Yu, S. J.; Wen, T.; Zhu, X. W.; Yang, F. X.; Sun, X. N.; Wang, X. K.; Hu, W. P. Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv. Mater. 2017, 29, 1605502.

[51]

Fang, Z. W.; Peng, L. L.; Qian, Y. M.; Zhang, X.; Xie, Y. Y.; Cha, J. J.; Yu, G. H. Dual tuning of Ni-Co-A (A = P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. J. Am. Chem. Soc. 2018, 140, 5241–5247.

[52]

Boppella, R.; Tan, J. W.; Yang, W.; Moon, J. Homologous CoP/NiCoP heterostructure on N-doped carbon for highly efficient and pH-universal hydrogen evolution electrocatalysis. Adv. Funct. Mater. 2019, 29, 1807976.

[53]

Lu, X. F.; Yu, L.; Lou, X. W. Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. Sci. Adv. 2019, 5, eaav6009.

[54]

Kang, Q. L.; Li, M. Y.; Shi, J. W.; Lu, Q. Y.; Gao, F. A universal strategy for carbon-supported transition metal phosphides as high-performance bifunctional electrocatalysts towards efficient overall water splitting. ACS Appl. Mater. Interfaces 2020, 12, 19447–19456.

[55]

Du, Y. M.; Qu, H. Q.; Liu, Y. R.; Han, Y.; Wang, L.; Dong, B. Bimetallic CoFeP hollow microspheres as highly efficient bifunctional electrocatalysts for overall water splitting in alkaline media. Appl. Surf. Sci. 2019, 465, 816–823.

Nano Research
Pages 3658-3664
Cite this article:
Li J, Song M, Hu Y, et al. A self-supported heterogeneous bimetallic phosphide array electrode enables efficient hydrogen evolution from saline water splitting. Nano Research, 2023, 16(3): 3658-3664. https://doi.org/10.1007/s12274-022-4608-8
Topics:
Part of a topical collection:

1096

Views

26

Crossref

27

Web of Science

27

Scopus

0

CSCD

Altmetrics

Received: 20 January 2022
Revised: 18 May 2022
Accepted: 02 June 2022
Published: 30 June 2022
© Tsinghua University Press 2022
Return