AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Porous-structure engineered spacer for high-throughput and rapid growth of high-quality graphene films

Ziteng Ma1,2,§Heng Chen1,2,§Xiaofeng Song2,3Buhang Chen2,5Qin Li2Yanglizhi Li1,2,4Haiyang Liu1,2Kaicheng Jia1,2Shenghong Huang6( )Luzhao Sun2( )Zhongfan Liu1,2( )
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Beijing Graphene Institute, Beijing 100095, China
College of Materials Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China

§ Ziteng Ma and Heng Chen contributed equally to this work.

Show Author Information

Graphical Abstract

By alternate stacking of Cu foil substrates and porous carbon fiber paper, fast and high-throughput growth of high-quality graphene films can be achieved.

Abstract

Chemical vapor deposition (CVD) in conjunction with batch-to-batch manufacturing process is considered as the most promising technical route for mass-production of high-quality graphene films. To improve the space utilization of the CVD chamber and increase the throughput per batch, stacking of the Cu foil substrates is efficient, but suffers from the problems of adjacent fusion and the poor mass-transfer. Here, we demonstrate an efficient strategy for high-throughput and rapid growth of high-quality graphene by alternate stacking of Cu foils and porous carbon fiber paper (CFP). Relying on the unhindered mass-transfer through the pores of CFPs, full-covered high-quality graphene films on compact-stacked Cu foils were achieved within 2 min. Computational fluid dynamics (CFD) simulation and isotope labeling technique were performed to explore the gas diffusion and graphene growth process in the confined space of the Cu-CFP stacks. This work provides a feasible method for industrial production of graphene films, which may also be used for batch production of other two-dimensional materials.

Electronic Supplementary Material

Download File(s)
12274_2022_4609_MOESM1_ESM.pdf (2 MB)

References

[1]

Chang, C.; Chen, W.; Chen, Y.; Chen, Y. H.; Chen, Y.; Ding, F.; Fan, C. H.; Fan, H. J.; Fan, Z. X.; Gong, C. et al. Recent progress on two-dimensional materials. Acta Phys. -Chim. Sin. 2021, 37, 2108017.

[2]

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

[3]

Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

[4]

Han, Y.; Xu, Z.; Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 2013, 23, 3693–3700.

[5]

Wu, Z. S.; Zhou, G. M.; Yin, L. C.; Ren, W. C.; Li, F.; Cheng, H. M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107–131.

[6]

Sun, L. Z.; Yuan, G. W.; Gao, L. B.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M. H.; Gleason, K. K.; Choi, Y. S.; Hong, B. H.; Liu, Z. F. Chemical vapour deposition. Nat. Rev. Methods Primers 2021, 1, 5.

[7]

Jia, K. C.; Zhang, J. C.; Zhu, Y. S.; Sun, L. Z.; Lin, L.; Liu, Z. F. Toward the commercialization of chemical vapor deposition graphene films. Appl. Phys. Rev. 2021, 8, 041306.

[8]

Wu, T. R.; Zhang, X. F.; Yuan, Q. H.; Xue, J. C.; Lu, G. Y.; Liu, Z. H.; Wang, H. S.; Wang, H. M.; Ding, F.; Yu, Q. K. et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys. Nat. Mater. 2016, 15, 43–47.

[9]

Vlassiouk, I. V.; Stehle, Y.; Pudasaini, P. R.; Unocic, R. R.; Rack, P. D.; Baddorf, A. P.; Ivanov, I. N.; Lavrik, N. V.; List, F.; Gupta, N. et al. Evolutionary selection growth of two-dimensional materials on polycrystalline substrates. Nat. Mater. 2018, 17, 318–322.

[10]

Ma, T.; Liu, Z. B.; Wen, J. X.; Gao, Y.; Ren, X. B.; Chen, H. J.; Jin, C. H.; Ma, X. L.; Xu, N. S.; Cheng, H. M. et al. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering. Nat. Commun. 2017, 8, 14486.

[11]

Deng, B.; Pang, Z. Q.; Chen, S. L.; Li, X.; Meng, C. X.; Li, J. Y.; Liu, M. X.; Wu, J. X.; Qi, Y.; Dang, W. H. et al. Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates. ACS Nano 2017, 11, 12337–12345.

[12]

Li, B. W.; Luo, D.; Zhu, L. Y.; Zhang, X.; Jin, S.; Huang, M.; Ding, F.; Ruoff, R. S. Orientation-dependent strain relaxation and chemical functionalization of graphene on a Cu (111) foil. Adv. Mater. 2018, 30, 1706504.

[13]

Yuan, G. W.; Lin, D. J.; Wang, Y.; Huang, X. L.; Chen, W.; Xie, X. D.; Zong, J. Y.; Yuan, Q. Q.; Zheng, H.; Wang, D. et al. Proton-assisted growth of ultra-flat graphene films. Nature 2020, 577, 204–208.

[14]

Lin, L.; Zhang, J. C.; Su, H. S.; Li, J. Y.; Sun, L. Z.; Wang, Z. H.; Xu, F.; Liu, C.; Lopatin, S.; Zhu, Y. H. et al. Towards super-clean graphene. Nat. Commun. 2019, 10, 1912.

[15]

Jia, K. C.; Zhang, J. C.; Lin, L.; Li, Z. Z.; Gao, J.; Sun, L. Z.; Xue, R. W.; Li, J. Y.; Kang, N.; Luo, Z. T. et al. Copper-containing carbon feedstock for growing superclean graphene. J. Am. Chem. Soc. 2019, 141, 7670–7674.

[16]

Sun, L. Z.; Lin, L.; Wang, Z. H.; Rui, D. R.; Yu, Z. W.; Zhang, J. C.; Li, Y. L. Z.; Liu, X. T.; Jia, K. C.; Wang, K. X. et al. A force-engineered lint roller for superclean graphene. Adv. Mater. 2019, 31, 1902978.

[17]

Huang, M.; Bakharev, P. V.; Wang, Z. J.; Biswal, M.; Yang, Z.; Jin, S.; Wang, B.; Park, H. J.; Li, Y. Q.; Qu, D. S. et al. Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni (111) foil. Nat. Nanotechnol. 2020, 15, 289–295.

[18]

Nguyen, V. L.; Duong, D. L.; Lee, S. H.; Avila, J.; Han, G.; Kim, Y. M.; Asensio, M. C.; Jeong, S. Y.; Lee, Y. H. Layer-controlled single-crystalline graphene film with stacking order via Cu-Si alloy formation. Nat. Nanotechnol. 2020, 15, 861–867.

[19]

Sun, L. Z.; Wang, Z. H.; Wang, Y. C.; Zhao, L.; Li, Y. L. Z.; Chen, B. H.; Huang, S. H.; Zhang, S. S.; Wang, W. D.; Pei, D. et al. Hetero-site nucleation for growing twisted bilayer graphene with a wide range of twist angles. Nat. Commun. 2021, 12, 2391.

[20]

Wang, H. Z.; Yao, Z. P.; Jung, G. S.; Song, Q. C.; Hempel, M.; Palacios, T.; Chen, G.; Buehler, M. J.; Aspuru-Guzik, A.; Kong, J. Frank–van der Merwe growth in bilayer graphene. Matter 2021, 4, 3339–3353.

[21]

Jo, I.; Park, S.; Kim, D.; Moon, J. S.; Park, W. B.; Kim, T. H.; Kang, J. H.; Lee, W.; Kim, Y.; Lee, D. N. et al. Tension-controlled single-crystallization of copper foils for roll-to-roll synthesis of high-quality graphene films. 2D Mater. 2018, 5, 024002.

[22]

Sun, L. Z.; Chen, B. H.; Wang, W. D.; Li, Y. L. Z.; Zeng, X. Z.; Liu, H. Y.; Liang, Y.; Zhao, Z. Y.; Cai, A. L.; Zhang, R. et al. Toward epitaxial growth of misorientation-free graphene on Cu (111) foils. ACS Nano 2022, 16, 285–294.

[23]

Deng, B.; Liu, Z. F.; Peng, H. L. Toward mass production of CVD graphene films. Adv. Mater. 2019, 31, 1800996.

[24]

Hsieh, Y. P.; Shih, C. H.; Chiu, Y. J.; Hofmann, M. High-throughput graphene synthesis in gapless stacks. Chem. Mater. 2016, 28, 40–43.

[25]

Zhang, Z. B.; Qi, J. J.; Zhao, M. Z.; Shang, N. Z.; Cheng, Y.; Qiao, R. X.; Zhang, Z. H.; Ding, M. C.; Li, X. G.; Liu, K. H. et al. Scrolled production of large-scale continuous graphene on copper foils. Chin. Phys. Lett. 2020, 37, 108101.

[26]

Xu, J. B.; Hu, J. X.; Li, Q.; Wang, R. B.; Li, W. W.; Guo, Y. F.; Zhu, Y. B.; Liu, F. K.; Ullah, Z.; Dong, G. C. et al. Fast batch production of high-quality graphene films in a sealed thermal molecular movement system. Small 2017, 13, 1700651.

[27]

Wang, Y.; Qing, F.; Jia, Y.; Duan, Y. W.; Shen, C. Q.; Hou, Y. T.; Niu, Y. T.; Shi, H. F.; Li, X. S. Synthesis of large-area graphene films on rolled-up Cu foils by a “breathing” method. Chem. Eng. J. 2021, 405, 127014.

[28]

Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

[29]

Vlassiouk, I.; Fulvio, P.; Meyer, H.; Lavrik, N.; Dai, S.; Datskos, P.; Smirnov, S. Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon 2013, 54, 58–67.

[30]

Nagai, Y.; Sugime, H.; Noda, S. 1.5 minute-synthesis of continuous graphene films by chemical vapor deposition on Cu foils rolled in three dimensions. Chem. Eng. Sci. 2019, 201, 319–324.

[31]

Li, G.; Huang, S. H.; Li, Z. Y. Gas-phase dynamics in graphene growth by chemical vapour deposition. Phys. Chem. Chem. Phys. 2015, 17, 22832–22836.

[32]

Sun, L. Z.; Lin, L.; Zhang, J. C.; Wang, H.; Peng, H. L.; Liu, Z. F. Visualizing fast growth of large single-crystalline graphene by tunable isotopic carbon source. Nano Res. 2017, 10, 355–363.

[33]

Luo, D.; Wang, M. H.; Li, Y. Q.; Kim, C.; Yu, K. M.; Kim, Y.; Han, H. J.; Biswal, M.; Huang, M.; Kwon, Y. et al. Adlayer-free large-area single crystal graphene grown on a Cu (111) foil. Adv. Mater. 2019, 31, 1903615.

[34]

Li, Q. Y.; Chou, H.; Zhong, J. H.; Liu, J. Y.; Dolocan, A.; Zhang, J. Y.; Zhou, Y. H.; Ruoff, R. S.; Chen, S. S.; Cai, W. W. Growth of adlayer graphene on Cu studied by carbon isotope labeling. Nano Lett. 2013, 13, 486–490.

[35]

Parreiras, D. E.; Soares, E. A.; Abreu, G. J. P.; Bueno, T. E. P.; Fernandes, W. P.; de Carvalho, V. E.; Carara, S. S.; Chacham, H.; Paniago, R. Graphene/Ni (111) surface structure probed by low-energy electron diffraction, photoelectron diffraction, and first-principles calculations. Phys. Rev. B 2014, 90, 155454.

[36]

Li, X. S.; Magnuson, C. W.; Venugopal, A.; An, J.; Suk, J. W.; Han, B. Y.; Borysiak, M.; Cai, W. W.; Velamakanni, A.; Zhu, Y. W. et al. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 2010, 10, 4328–4334.

[37]

Hao, Y. F.; Bharathi, M. S.; Wang, L.; Liu, Y. Y.; Chen, H.; Nie, S.; Wang, X. H.; Chou, H.; Tan, C.; Fallahazad, B. et al. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 2013, 342, 720–723.

[38]

Deng, B.; Xin, Z. W.; Xue, R. W.; Zhang, S. S.; Xu, X. Z.; Gao, J.; Tang, J. L.; Qi, Y.; Wang, Y. N.; Zhao, Y. et al. Scalable and ultrafast epitaxial growth of single-crystal graphene wafers for electrically tunable liquid-crystal microlens arrays. Sci. Bull. 2019, 64, 659–668.

[39]

Liu, C.; Xu, X. Z.; Qiu, L.; Wu, M. H.; Qiao, R. X.; Wang, L.; Wang, J. H.; Niu, J. J.; Liang, J.; Zhou, X. et al. Kinetic modulation of graphene growth by fluorine through spatially confined decomposition of metal fluorides. Nat. Chem. 2019, 11, 730–736.

[40]

Wu, M. H.; Zhang, Z. B.; Xu, X. Z.; Zhang, Z. H.; Duan, Y. R.; Dong, J. C.; Qiao, R. X.; You, S. F.; Wang, L.; Qi, J. J. et al. Seeded growth of large single-crystal copper foils with high-index facets. Nature 2020, 581, 406–410.

[41]

Li, Y. L. Z.; Sun, L. Z.; Liu, H. Y.; Wang, Y. C.; Liu, Z. F. Preparation of single-crystal metal substrates for the growth of high-quality two-dimensional materials. Inorg. Chem. Front. 2021, 8, 182–200.

[42]

Ma, T.; Ren, W. C.; Zhang, X. Y.; Liu, Z. B.; Gao, Y.; Yin, L. C.; Ma, X. L.; Ding, F.; Cheng, H. M. Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition. Proc. Natl. Acad. Sci. USA 2013, 110, 20386–20391.

[43]

Xu, X. Z.; Zhang, Z. H.; Dong, J. C.; Yi, D.; Niu, J. J.; Wu, M. H.; Lin, L.; Yin, R. K.; Li, M. Q.; Zhou, J. Y. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 2017, 62, 1074–1080.

[44]

Li, Y. L. Z.; Sun, L. Z.; Chang, Z. H.; Liu, H. Y.; Wang, Y. C.; Liang, Y.; Chen, B. H.; Ding, Q. J.; Zhao, Z. Y.; Wang, R. Y. et al. Large single-crystal Cu foils with high-index facets by strain-engineered anomalous grain growth. Adv. Mater. 2020, 32, 2002034.

[45]

Jin, S.; Huang, M.; Kwon, Y.; Zhang, L. N.; Li, B. W.; Oh, S.; Dong, J. C.; Luo, D.; Biswal, M.; Cunning, B. V. et al. Colossal grain growth yields single-crystal metal foils by contact-free annealing. Science 2018, 362, 1021–1025.

Nano Research
Pages 9741-9746
Cite this article:
Ma Z, Chen H, Song X, et al. Porous-structure engineered spacer for high-throughput and rapid growth of high-quality graphene films. Nano Research, 2022, 15(11): 9741-9746. https://doi.org/10.1007/s12274-022-4609-7
Topics:
Part of a topical collection:

1198

Views

2

Crossref

3

Web of Science

2

Scopus

2

CSCD

Altmetrics

Received: 29 January 2022
Revised: 30 May 2022
Accepted: 31 May 2022
Published: 01 July 2022
© Tsinghua University Press 2022
Return