AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Polypeptide analysis for nanopore-based protein identification

Mazdak Afshar Bakshloo1Safia Yahiaoui1Fabien Piguet1Manuela Pastoriza-Gallego1Régis Daniel2Jérôme Mathé2John J. Kasianowicz3,4Abdelghani Oukhaled1( )
CY Cergy Paris Université, CNRS, LAMBE, 95000, Cergy, France
Université Paris-Saclay, Univ Evry, CNRS, LAMBE, 91025, Evry-Courcouronnes, France
University of South Florida, Dept. of Physics, Tampa, FL 33620, USA
Freiburg Institute for Advanced Studies, Universität Freiburg, Freiburg 79104, Germany
Show Author Information

Graphical Abstract

Under specific experimental conditions (relatively high ionic strength and high applied voltages), the aerolysin nanopore captures and discriminates between net negative, neutral, and positive charged polypeptides with the same voltage polarity, which partly simplifies protein identification by nanopores based on fragment-induced current blockade patterns.

Abstract

Presently, proteins are identified by cleaving them with proteases, measuring the mass to charge ratio of the fragments with a mass spectrometer, and matching the fragments to segments within known proteins in databases. We earlier demonstrated that a nanometer-scale pore formed by aerolysin (AeL) can discriminate between, and therefore identify, three similar size proteins from their trypsin-cleaved polypeptide fragments. With this nanopore-protease method, the protein’s identity is instead determined from characteristic ionic current blockade patterns caused by the polypeptide fragments that enter the nanopore. The results also suggested that not all of the theoretically expected cleavage products partition into the pore. To better understand the mechanism by which polypeptide fragments are captured, and how different polypeptides reduce the pore’s ionic current, we studied the effects of 11 identical length polypeptides with different net charges and charge distributions. We show that under certain experimental conditions, negative, positive, and neutral polypeptides are driven into the AeL pore by the same applied voltage polarity. The capture rate and dwell time of polypeptides in the pore depend strongly on the ionic strength, the magnitude of the applied voltage, and the net charge and charge distribution of the polypeptides. The dwell time distribution depends non-monotonically on the applied voltage (regardless of the polymer’s net charge), and its maximum value depends on the polypeptide net charge and charge distribution. The maximum dwell time for different polypeptides does not occur at the same applied voltage amplitude, which conceivably might complicate the detection and discrimination of some polypeptide fragments. Although additional experiments, computer simulations, and artificial intelligence research are needed to better understand how to optimize the partitioning of enzymatically cleaved fragments into the AeL nanopore, the method is still capable of accurately identifying proteins.

Electronic Supplementary Material

Download File(s)
12274_2022_4610_MOESM1_ESM.pdf (469.9 KB)

References

[1]

Edman, P. A method for the determination of amino acid sequence in peptides. Arch. Biochem. 1949, 22, 475.

[2]

Sanger, F.; Nicklen, S.; Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467.

[3]

Ansorge, W. J. Next-generation DNA sequencing techniques. New Biotechnol. 2009, 25, 195–203.

[4]

Kasianowicz, J. J.; Bezrukov, S. M. Protonation dynamics of the α-toxin ion channel from spectral analysis of PH-dependent current fluctuations. Biophys. J. 1995, 69, 94–105.

[5]

Bezrukov, S. M.; Vodyanoy, I.; Brutyan, R. A.; Kasianowicz, J. J. Dynamics and free energy of polymers partitioning into a nanoscale pore. Macromolecules 1996, 29, 8517–8522.

[6]

Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 1996, 93, 13770–13773.

[7]

Kasianowicz, J. J.; Robertson, J. W. F.; Chan, E. R.; Reiner, J. E.; Stanford, V. M. Nanoscopic porous sensors. Annu. Rev. Anal. Chem. 2008, 1, 737–766.

[8]

Howorka, S.; Siwy, Z. Nanopore analytics: Sensing of single molecules. Chem. Soc. Rev. 2009, 38, 2360–2384.

[9]

Reiner, J. E.; Balijepalli, A.; Robertson, J. W. F.; Campbell, J.; Suehle, J.; Kasianowicz, J. J. Disease detection and management via single nanopore-based sensors. Chem. Rev. 2012, 112, 6431–6451.

[10]

Schibel, A. E. P.; An, N.; Jin, Q.; Fleming, A. M.; Burrows, C. J.; White, H. S. Nanopore detection of 8-oxo-7, 8-dihydro-2'-deoxyguanosine in immobilized single-stranded DNA via adduct formation to the DNA damage site. J. Am. Chem. Soc. 2010, 132, 17992–17995.

[11]

Oukhaled, G.; Mathé, J.; Biance, A. L.; Bacri, L.; Betton, J. M.; Lairez, D.; Pelta, J.; Auvray, L. Unfolding of proteins and long transient conformations detected by single nanopore recording. Phys. Rev. Lett. 2007, 98, 158101.

[12]

Oukhaled, A.; Cressiot, B.; Bacri, L.; Pastoriza-Gallego, M.; Betton, J. M.; Bourhis, E.; Jede, R.; Gierak, J.; Auvray, L.; Pelta, J. Dynamics of completely unfolded and native proteins through solid-state nanopores as a function of electric driving force. ACS Nano 2011, 5, 3628–3638.

[13]

Reiner, J. E.; Kasianowicz, J. J.; Nablo, B. J.; Robertson, J. W. F. Theory for polymer analysis using nanopore-based single-molecule mass spectrometry. Proc. Natl. Acad. Sci. USA 2010, 107, 12080–12085.

[14]

Derrington, I. M.; Butler, T. Z.; Collins, M. D.; Manrao, E.; Pavlenok, M.; Niederweis, M.; Gundlach, J. H. Nanopore DNA sequencing with MspA. Proc. Natl. Acad. Sci. USA 2010, 107, 16060–16065.

[15]

Manrao, E. A.; Derrington, I. M.; Laszlo, A. H.; Langford, K. W.; Hopper, M. K.; Gillgren, N.; Pavlenok, M.; Niederweis, M.; Gundlach, J. H. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 2012, 30, 349–353.

[16]

Robertson, J. W. F.; Rodrigues, C. G.; Stanford, V. M.; Rubinson, K. A.; Krasilnikov, O. V.; Kasianowicz, J. J. Single-molecule mass spectrometry in solution using a solitary nanopore. Proc. Natl. Acad. Sci. USA 2007, 104, 8207–8211.

[17]

Kumar, S.; Tao, C. J.; Chien, M.; Hellner, B.; Balijepalli, A.; Robertson, J. W. F.; Li, Z. M.; Russo, J. J.; Reiner, J. E.; Kasianowicz, J. J. et al. PEG-labeled nucleotides and nanopore detection for single molecule DNA sequencing by synthesis. Sci. Rep. 2012, 2, 684.

[18]

Fuller, C. W.; Kumar, S.; Porel, M.; Chien, M.; Bibillo, A.; Stranges, P. B.; Dorwart, M.; Tao, C. J.; Li, Z. M.; Guo, W. J. et al. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array. Proc. Natl. Acad. Sci. USA 2016, 113, 5233–5238.

[19]

Movileanu, L.; Howorka, S.; Braha, O.; Bayley, H. Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat. Biotechnol. 2000, 18, 1091–1095.

[20]

Kasianowicz, J. J.; Henrickson, S. E.; Weetall, H. H.; Robertson, B. Simultaneous multianalyte detection with a nanometer-scale pore. Anal. Chem. 2001, 73, 2268–2272.

[21]

Sutherland, T. C.; Long, Y. T.; Stefureac, R. I.; Bediako-Amoa, I.; Kraatz, H. B.; Lee, J. S. Structure of peptides investigated by nanopore analysis. Nano Lett. 2004, 4, 1273–1277.

[22]

Movileanu, L.; Schmittschmitt, J. P.; Scholtz, J. M.; Bayley, H. Interactions of peptides with a protein pore. Biophys. J. 2005, 89, 1030–1045.

[23]

Stefureac, R.; Long, Y. T.; Kraatz, H. B.; Howard, P.; Lee, J. S. Transport of α-helical peptides through α-hemolysin and aerolysin pores. Biochemistry 2006, 45, 9172–9179.

[24]

Wolfe, A. J.; Mohammad; Cheley, S.; Bayley, H.; Movileanu, L. Catalyzing the translocation of polypeptides through attractive interactions. J. Am. Chem. Soc. 2007, 129, 14034–14041.

[25]

Zhao, Q. T.; Jayawardhana, D. A.; Guan, X. Y. Stochastic study of the effect of ionic strength on noncovalent interactions in protein pores. Biophys. J. 2008, 94, 1267–1275.

[26]

Zhao, Q. T.; Jayawardhana, D. A.; Wang, D. Q.; Guan, X. Y. Study of peptide transport through engineered protein channels. J. Phys. Chem. B 2009, 113, 3572–3578.

[27]

Singh, P. R.; Bárcena-Uribarri, I.; Modi, N.; Kleinekathöfer, U.; Benz, R.; Winterhalter, M.; Mahendran, K. R. Pulling peptides across nanochannels: Resolving peptide binding and translocation through the hetero-oligomeric channel from Nocardia farcinica. ACS Nano 2012, 6, 10699–10707.

[28]

Boersma, A. J.; Bayley, H. Continuous stochastic detection of amino acid enantiomers with a protein nanopore. Angew. Chem. 2012, 124, 9744–9747.

[29]

Nivala, J.; Marks, D. B.; Akeson, M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore. Nat. Biotechnol. 2013, 31, 247–250.

[30]

Mereuta, L.; Asandei, A.; Seo, C. H.; Park, Y.; Luchian, T. Quantitative understanding of pH- and salt-mediated conformational folding of histidine-containing, β-hairpin-like peptides, through single-molecule probing with protein nanopores. ACS Appl. Mater. Interfaces 2014, 6, 13242–13256.

[31]

Mereuta, L.; Roy, M.; Asandei, A.; Lee, J. K.; Park, Y.; Andricioaei, I.; Luchian, T. Slowing down single-molecule trafficking through a protein nanopore reveals intermediates for peptide translocation. Sci. Rep. 2015, 4, 3885.

[32]

Asandei, A.; Chinappi, M.; Kang, H. K.; Seo, C. H.; Mereuta, L.; Park, Y.; Luchian, T. Acidity-mediated, electrostatic tuning of asymmetrically charged peptides interactions with protein nanopores. ACS Appl. Mater. Interfaces 2015, 7, 16706–16714.

[33]

Asandei, A.; Chinappi, M.; Lee, J. K.; Seo, C. H.; Mereuta, L.; Park, Y.; Luchian, T. Placement of oppositely charged aminoacids at a polypeptide termini determines the voltage-controlled braking of polymer transport through nanometer-scale pores. Sci. Rep. 2015, 5, 10419.

[34]

Varongchayakul, N.; Song, J. X.; Meller, A.; Grinstaff, M. W. Single-molecule protein sensing in a nanopore: A tutorial. Chem. Soc. Rev. 2018, 47, 8512–8524.

[35]

Restrepo-Pérez, L.; Joo, C.; Dekker, C. Paving the way to single-molecule protein sequencing. Nat. Nanotechnol. 2018, 13, 786–796.

[36]

Alfaro, J. A.; Bohländer, P.; Dai, M. J.; Filius, M.; Howard, C. J.; van Kooten, X. F.; Ohayon, S.; Pomorski, A.; Schmid, S.; Aksimentiev, A. et al. The emerging landscape of single-molecule protein sequencing technologies. Nat. Methods 2021, 18, 604–617.

[37]

Hu, Z. L.; Huo, M. Z.; Ying, Y. L.; Long, Y. T. Biological nanopore approach for single-molecule protein sequencing. Angew. Chem. 2021, 133, 14862–14873.

[38]

Asandei, A.; Di Muccio, G.; Schiopu, I.; Mereuta, L.; Dragomir, I. S.; Chinappi, M.; Luchian, T. Nanopore-based protein sequencing using biopores: Current achievements and open challenges. Small Methods 2020, 4, 1900595.

[39]

Cressiot, B.; Bacri, L.; Pelta, J. The promise of nanopore technology: Advances in the discrimination of protein sequences and chemical modifications. Small Methods 2020, 4, 2000090.

[40]

Han, A. P.; Schürmann, G.; Mondin, G.; Bitterli, R. A.; Hegelbach, N. G.; de Rooij, N. F.; Staufer, U. Sensing protein molecules using nanofabricated pores. Appl. Phys. Lett. 2006, 88, 093901.

[41]

Uram, J. D.; Ke, K.; Hunt, A. J.; Mayer, M. Label-free affinity assays by rapid detection of immune complexes in submicrometer pores. Angew. Chem., Int. Ed. 2006, 45, 2281–2285.

[42]

Sexton, L. T.; Horne, L. P.; Sherrill, S. A.; Bishop, G. W.; Baker, L. A.; Martin, C. R. Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. J. Am. Chem. Soc. 2007, 129, 13144–13152.

[43]

Fologea, D.; Ledden, B.; McNabb, D. S.; Li, J. L. Electrical characterization of protein molecules by a solid-state nanopore. Appl. Phys. Lett. 2007, 91, 053901.

[44]

Talaga, D. S.; Li, J. L. Single-molecule protein unfolding in solid state nanopores. J. Am. Chem. Soc. 2009, 131, 9287–9297.

[45]

Firnkes, M.; Pedone, D.; Knezevic, J.; Döblinger, M.; Rant, U. Electrically facilitated translocations of proteins through silicon nitride nanopores: Conjoint and competitive action of diffusion, electrophoresis, and electroosmosis. Nano Lett. 2010, 10, 2162–2167.

[46]

Yusko, E. C.; Johnson, J. M.; Majd, S.; Prangkio, P.; Rollings, R. C.; Li, J. L.; Yang, J.; Mayer, M. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat. Nanotechnol. 2011, 6, 253–260.

[47]

Plesa, C.; Kowalczyk, S. W.; Zinsmeester, R.; Grosberg, A. Y.; Rabin, Y.; Dekker, C. Fast translocation of proteins through solid state nanopores. Nano Lett. 2013, 13, 658–663.

[48]

Kennedy, E.; Dong, Z. X.; Tennant, C.; Timp, G. Reading the primary structure of a protein with 0.07 nm3 resolution using a subnanometre-diameter pore. Nat. Nanotechnol. 2016, 11, 968–976.

[49]

Lamichhane, U.; Islam, T.; Prasad, S.; Weingart, H.; Mahendran, K. R.; Winterhalter, M. Peptide translocation through the mesoscopic channel: Binding kinetics at the single molecule level. Eur. Biophys. J. 2013, 42, 363–369.

[50]

Mahendran, K. R.; Romero-Ruiz, M.; Schlösinger, A.; Winterhalter, M.; Nussberger, S. Protein translocation through Tom40: Kinetics of peptide release. Biophys. J. 2012, 102, 39–47.

[51]

Pastoriza-Gallego, M.; Rabah, L.; Gibrat, G.; Thiebot, B.; van der Goot, F. G.; Auvray, L.; Betton, J. M.; Pelta, J. Dynamics of unfolded protein transport through an aerolysin pore. J. Am. Chem. Soc. 2011, 133, 2923–2931.

[52]

Oukhaled, A.; Bacri, L.; Pastoriza-Gallego, M.; Betton, J. M.; Pelta, J. Sensing proteins through nanopores: Fundamental to applications. ACS Chem. Biol. 2012, 7, 1935–1949.

[53]

Huang, G.; Willems, K.; Bartelds, M.; van Dorpe, P.; Soskine, M.; Maglia, G. Electro-osmotic vortices promote the capture of folded proteins by PlyAB nanopores. Nano Lett. 2020, 20, 3819–3827.

[54]

Bikwemu, R.; Wolfe, A. J.; Xing, X. J.; Movileanu, L. Facilitated translocation of polypeptides through a single nanopore. J. Phys.: Condens. Matter 2010, 22, 454117.

[55]

Krishnan, R. S.; Puthumadathil, N.; Shaji, A. H.; Kumar, K. S.; Mohan, G.; Mahendran, K. R. Designed alpha-helical barrels for charge-selective peptide translocation. Chem. Sci. 2021, 12, 639–649.

[56]

Thakur, A. K.; Movileanu, L. Real-time measurement of protein-protein interactions at single-molecule resolution using a biological nanopore. Nat. Biotechnol. 2019, 37, 96–101.

[57]

Plesa, C.; Ruitenberg, J. W.; Witteveen, M. J.; Dekker, C. Detection of individual proteins bound along DNA using solid-state nanopores. Nano Lett. 2015, 15, 3153–3158.

[58]

Hornblower, B.; Coombs, A.; Whitaker, R. D.; Kolomeisky, A.; Picone, S. J.; Meller, A.; Akeson, M. Single-molecule analysis of DNA-protein complexes using nanopores. Nat. Methods 2007, 4, 315–317.

[59]

Hu, Y. X.; Ying, Y. L.; Gu, Z.; Cao, C.; Yan, B. Y.; Wang, H. F.; Long, Y. T. Single molecule study of initial structural features on the amyloidosis process. Chem. Commun. 2016, 52, 5542–5545.

[60]

Balme, S.; Coulon, P. E.; Lepoitevin, M.; Charlot, B.; Yandrapalli, N.; Favard, C.; Muriaux, D.; Bechelany, M.; Janot, J. M. Influence of adsorption on proteins and amyloid detection by silicon nitride nanopore. Langmuir 2016, 32, 8916–8925.

[61]

Yusko, E. C.; Bruhn, B. R.; Eggenberger, O. M.; Houghtaling, J.; Rollings, R. C.; Walsh, N. C.; Nandivada, S.; Pindrus, M.; Hall, A. R.; Sept, D. et al. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat. Nanotechnol. 2017, 12, 360–367.

[62]

Waduge, P.; Hu, R.; Bandarkar, P.; Yamazaki, H.; Cressiot, B.; Zhao, Q.; Whitford, P. C.; Wanunu, M. Nanopore-based measurements of protein size, fluctuations, and conformational changes. ACS Nano 2017, 11, 5706–5716.

[63]

Van Meervelt, V.; Soskine, M.; Maglia, G. Detection of two isomeric binding configurations in a protein-aptamer complex with a biological nanopore. ACS Nano 2014, 8, 12826–12835.

[64]

Van Meervelt, V.; Soskine, M.; Singh, S.; Schuurman-Wolters, G. K.; Wijma, H. J.; Poolman, B.; Maglia, G. Real-time conformational changes and controlled orientation of native proteins inside a protein nanoreactor. J. Am. Chem. Soc. 2017, 139, 18640–18646.

[65]

Liu, Y.; Wang, K. F.; Wang, Y. Q.; Wang, L. Y.; Yan, S. H.; Du, X. Y.; Zhang, P. K.; Chen, H. Y.; Huang, S. Machine learning assisted simultaneous structural profiling of differently charged proteins in a Mycobacterium smegmatis porin A (MspA) electroosmotic trap. J. Am. Chem. Soc. 2022, 144, 757–768.

[66]

Ouldali, H.; Sarthak, K.; Ensslen, T.; Piguet, F.; Manivet, P.; Pelta, J.; Behrends, J. C.; Aksimentiev, A.; Oukhaled, A. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat. Biotechnol. 2020, 38, 176–181.

[67]

Brinkerhoff, H.; Kang, A. S. W.; Liu, J. Q.; Aksimentiev, A.; Dekker, C. Multiple rereads of single proteins at single-amino acid resolution using nanopores. Science 2021, 374, 1509–1513.

[68]

Huang, G.; Voet, A.; Maglia, G. FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution. Nat. Commun. 2019, 10, 835.

[69]

Piguet, F.; Ouldali, H.; Pastoriza-Gallego, M.; Manivet, P.; Pelta, J.; Oukhaled, A. Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore. Nat. Commun. 2018, 9, 966.

[70]

Chavis, A. E.; Brady, K. T.; Hatmaker, G. A.; Angevine, C. E.; Kothalawala, N.; Dass, A.; Robertson, J. W. F.; Reiner, J. E. Single molecule nanopore spectrometry for peptide detection. ACS Sens. 2017, 2, 1319–1328.

[71]

Huang, G.; Willems, K.; Soskine, M.; Wloka, C.; Maglia, G. Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores. Nat. Commun. 2017, 8, 935.

[72]

Yuan, B.; Li, S.; Ying, Y. L.; Long, Y. T. The analysis of single cysteine molecules with an aerolysin nanopore. Analyst 2020, 145, 1179–1183.

[73]

Asandei, A.; Rossini, A. E.; Chinappi, M.; Park, Y.; Luchian, T. Protein nanopore-based discrimination between selected neutral amino acids from polypeptides. Langmuir 2017, 33, 14451–14459.

[74]

Restrepo-Pérez, L.; Huang, G.; Bohländer, P. R.; Worp, N.; Eelkema, R.; Maglia, G.; Joo, C.; Dekker, C. Resolving chemical modifications to a single amino acid within a peptide using a biological nanopore. ACS Nano 2019, 13, 13668–13676.

[75]

Nir, I.; Huttner, D.; Meller, A. Direct sensing and discrimination among ubiquitin and ubiquitin chains using solid-state nanopores. Biophys. J. 2015, 108, 2340–2349.

[76]

Hu, R.; Rodrigues, J. V.; Waduge, P.; Yamazaki, H.; Cressiot, B.; Chishti, Y.; Makowski, L.; Yu, D. P.; Shakhnovich, E.; Zhao, Q. et al. Differential enzyme flexibility probed using solid-state nanopores. ACS Nano 2018, 12, 4494–4502.

[77]

Rosen, C. B.; Rodriguez-Larrea, D.; Bayley, H. Single-molecule site-specific detection of protein phosphorylation with a nanopore. Nat. Biotechnol. 2014, 32, 179–181.

[78]

Restrepo-Pérez, L.; Wong, C. H.; Maglia, G.; Dekker, C.; Joo, C. Label-free detection of post-translational modifications with a nanopore. Nano Lett. 2019, 19, 7957–7964.

[79]
LiS.WuX. Y.LiM. Y.LiuS. C.YingY. L.LongY. T. T232K/K238Q aerolysin nanopore for mapping adjacent phosphorylation sites of a single tau peptideSmall Methods20204200001410.1002/smtd.202000014

Li, S.; Wu, X. Y.; Li, M. Y.; Liu, S. C.; Ying, Y. L.; Long, Y. T. T232K/K238Q aerolysin nanopore for mapping adjacent phosphorylation sites of a single tau peptide. Small Methods 2020, 4, 2000014.

[80]

Yan, S. H.; Zhang, J. Y.; Wang, Y.; Guo, W. M.; Zhang, S. Y.; Liu, Y.; Cao, J.; Wang, Y. Q.; Wang, L. Y.; Ma, F. B. et al. Single molecule ratcheting motion of peptides in a Mycobacterium smegmatis porin A (MspA) nanopore. Nano Lett. 2021, 21, 6703–6710.

[81]

Bakshloo, M. A.; Talarimoghari, M.; Ouldali, H.; Behrends, J. C.; Oukhaled, A. Protein fingerprinting using the aerolysin nanopore. Biophys. J. 2020, 118, 475a.

[82]

Lucas, F. L. R.; Versloot, R. C. A.; Yakovlieva, L.; Walvoort, M. T. C.; Maglia, G. Protein identification by nanopore peptide profiling. Nat. Commun. 2021, 12, 5795.

[83]

Bakshloo, M. A.; Kasianowicz, J. J.; Pastoriza-Gallego, M.; Mathé, J.; Daniel, R.; Piguet, F.; Oukhaled, A. Nanopore-based protein identification. J. Am. Chem. Soc. 2022, 144, 2716–2725.

[84]

Parker, M. W.; Buckley, J. T.; Postma, J. P. M.; Tucker, A. D.; Leonard, K.; Pattus, F.; Tsernoglou, D. Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states. Nature 1994, 367, 292–295.

[85]

Wilmsen, H. U.; Pattus, F.; Buckley, J. T. Aerolysin, a hemolysin from Aeromonas hydrophila, forms voltage-gated channels in planar lipid bilayers. J. Membrane Biol. 1990, 115, 71–81.

[86]

Degiacomi, M. T.; Iacovache, I.; Pernot, L.; Chami, M.; Kudryashev, M.; Stahlberg, H.; van der Goot, F. G.; Dal Peraro, M. Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism. Nat. Chem. Biol. 2013, 9, 623–629.

[87]

Li, S.; Cao, C.; Yang, J.; Long, Y. T. Detection of peptides with different charges and lengths by using the aerolysin nanopore. ChemElectroChem 2019, 6, 126–129.

[88]

Hu, F. Z.; Angelov, B.; Li, S.; Li, N.; Lin, X. B.; Zou, A. H. Single-molecule study of peptides with the same amino acid composition but different sequences by using an aerolysin nanopore. ChemBioChem 2020, 21, 2467–2473.

[89]

Sigworth, F. J.; Sine, S. M. Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys. J. 1987, 52, 1047–1054.

[90]

Yusko, E. C.; Prangkio, P.; Sept, D.; Rollings, R. C.; Li, J. L.; Mayer, M. Single-particle characterization of Aβ oligomers in solution. ACS Nano 2012, 6, 5909–5919.

[91]

Niu, H. Y.; Li, M. Y.; Ying, Y. L.; Long, Y. T. An engineered third electrostatic constriction of aerolysin to manipulate heterogeneously charged peptide transport. Chem. Sci. 2022, 13, 2456–2461.

[92]

Boukhet, M.; Piguet, F.; Ouldali, H.; Pastoriza-Gallego, M.; Pelta, J.; Oukhaled, A. Probing driving forces in aerolysin and α-hemolysin biological nanopores: Electrophoresis versus electroosmosis. Nanoscale 2016, 8, 18352–18359.

[93]

Piguet, F.; Discala, F.; Breton, M. F.; Pelta, J.; Bacri, L.; Oukhaled, A. Electroosmosis through α-hemolysin that depends on alkali cation type. J. Phys. Chem. Lett. 2014, 5, 4362–4367.

[94]
Di Muccio, G.; della Rocca, B. M.; Chinappi, M. Geometrically induced selectivity and unidirectional electroosmosis in uncharged nanopores. ACS Nano, in press, https://doi.org/10.1021/acsnano.1c03017.
[95]

Piguet, F.; Ensslen, T.; Bakshloo, M. A.; Talarimoghari, M.; Ouldali, H.; Baaken, G.; Zaitseva, E.; Pastoriza-Gallego, M.; Behrends, J. C.; Oukhaled, A. Pore-forming toxins as tools for polymer analytics: From sizing to sequencing. Methods Enzymol. 2021, 649, 587–634.

[96]

Krasilnikov, O. V.; Rodrigues, C. G.; Bezrukov, S. M. Single polymer molecules in a protein nanopore in the limit of a strong polymer-pore attraction. Phys. Rev. Lett. 2006, 97, 018301.

[97]

Rodrigues, C. G.; Machado, D. C.; Chevtchenko, S. F.; Krasilnikov, O. V. Mechanism of KCl enhancement in detection of nonionic polymers by nanopore sensors. Biophys. J. 2008, 95, 5186–5192.

[98]

Baaken, G.; Halimeh, I.; Bacri, L.; Pelta, J.; Oukhaled, A.; Behrends, J. C. High-resolution size-discrimination of single nonionic synthetic polymers with a highly charged biological nanopore. ACS Nano 2015, 9, 6443–6449.

[99]

Li, M. Y.; Ying, Y. L.; Yu, J.; Liu, S. C.; Wang, Y. Q.; Li, S.; Long, Y. T. Revisiting the origin of nanopore current blockage for volume difference sensing at the atomic level. JACS Au 2021, 1, 967–976.

[100]

Breton, M. F.; Discala, F.; Bacri, L.; Foster, D.; Pelta, J.; Oukhaled, A. Exploration of neutral versus polyelectrolyte behavior of poly(ethylene glycol)s in alkali ion solutions using single-nanopore recording. J. Phys. Chem. Lett. 2013, 4, 2202–2208.

[101]

Iacovache, I.; Degiacomi, M. T.; Pernot, L.; Ho, S.; Schiltz, M.; Dal Peraro, M.; van der Goot, F. G. Dual chaperone role of the C-terminal propeptide in folding and oligomerization of the pore-forming toxin aerolysin. PLoS Pathog. 2011, 7, e1002135.

[102]
Bakshloo, M. A.; Yahiaoui, S.; Ouldali, H.; Pastoriza-Gallego, M.; Piguet, F.; Oukhaled, A. On possible trypsin-induced biases in peptides analysis with aerolysin nanopore. Proteomics, in press, https://doi.org/10.1002/pmic.202100056.
Nano Research
Pages 9831-9842
Cite this article:
Bakshloo MA, Yahiaoui S, Piguet F, et al. Polypeptide analysis for nanopore-based protein identification. Nano Research, 2022, 15(11): 9831-9842. https://doi.org/10.1007/s12274-022-4610-1
Topics:
Part of a topical collection:

881

Views

9

Crossref

10

Web of Science

11

Scopus

1

CSCD

Altmetrics

Received: 31 January 2022
Revised: 18 May 2022
Accepted: 01 June 2022
Published: 01 July 2022
© Tsinghua University Press 2022
Return