Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Stimuli-responsive materials have important applications in chemistry and chemical engineering. Here, we synthesized five different polyetheramine-fatty acids (PEFA) ionic liquids (ILs), possessing the dual stimuli-responsive ability to temperature and CO2. These PEFA ILs have reversible lower critical solution temperature (LCST) phase behavior over a wide temperature range of 37–91 °C, and reversible heterogeneous-homogeneous phase transition towards the addition and removal of CO2. Furthermore, the droplet size of the IL–water mixture system increased from 6.5 to 21.0 nm as the temperature increased from 25 to 56 °C, and then recovered to 6.5 nm when the temperature decreased to 25 °C. The addition and removal of CO2 also reversibly modulated the droplet size of the system. Results from nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectra further showed that the temperature-dependent conformation of polyether amine chain in the cation dominates the temperature response, while the reversible formation of bicarbonate and fatty acids (FA) from CO2 and anion controls the CO2-based reversible phase transition. Molecular simulations revealed a microscopic response mechanism of the IL–water system to temperature and CO2, and a synergistic effect between the dual stimuli of temperature and CO2. These findings may provide a basis for the rational design and understanding of ILs-based stimuli-responsive materials and nanoreactors.
Zhang, J.; He, B. Z.; Hu, Y. B.; Alam, P.; Zhang, H. K.; Lam, J. W. Y.; Tang, B. Z. Stimuli-responsive aiegens. Adv. Mater. 2021, 33, 2008071.
Cao, Z. Q.; Wang, G. J. Multi-stimuli-responsive polymer materials: Particles, films, and bulk gels. Chem. Rec. 2016, 16, 1398–1435.
Biswas, Y.; Ghosh, P.; Mandal, T. K. Chemical tuning of zwitterionic ionic liquids for variable thermophysical behaviours, nanostructured aggregates and dual-stimuli responsiveness. Chem.—Eur. J. 2018, 24, 13322–13335.
Yuan, X. Q.; Zhang, Y. Q.; Li, Z. Y.; Huo, F.; Dong, Y. H.; He, H. Y. Stimuli-responsive ionic liquids and the regulation of aggregation structure and phase behavior. Chin. J. Chem. 2021, 39, 729–744.
Zhao, X. L.; Zhou, K. L.; Zhong, Y. J.; Liu, P.; Li, Z. C.; Pan, J. L.; Long, Y.; Huang, M. R.; Brakat, A.; Zhu, H. W. Hydrophobic ionic liquid-in-polymer composites for ultrafast, linear response and highly sensitive humidity sensing. Nano Res. 2021, 14, 1202–1209.
Liu, X. L.; Yang, Y.; Urban, M. W. Stimuli-responsive polymeric nanoparticles. Macromol. Rapid Commun. 2017, 38, 1700030.
Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101–113.
Andrade, F.; Roca-Melendres, M. M.; Duran-Lara, E. F.; Rafael, D.; Schwartz, S. Jr. Stimuli-responsive hydrogels for cancer treatment: The role of pH, light, ionic strength and magnetic field. Cancers 2021, 13, 1164.
Liu, Z. X.; Feng, Y.; Zhao, Z. Y.; Yan, Z. C.; He, Y. M.; Luo, X. J.; Liu, C. Y.; Fan, Q. H. A new class of dendritic metallogels with multiple stimuli-responsiveness and as templates for the in situ synthesis of silver nanoparticles. Chem.—Eur. J. 2014, 20, 533–541.
Petkovic, M.; Seddon, K. R.; Rebelo, L. P. N.; Silva Pereira, C. Ionic liquids: A pathway to environmental acceptability. Chem. Soc. Rev. 2011, 40, 1383–1403.
Wang, C. L.; Wang, Y. L.; Gan, Z. D.; Lu, Y. M.; Qian, C.; Huo, F.; He, H. Y.; Zhang, S. J. Topological engineering of two-dimensional ionic liquid islands for high structural stability and CO2 adsorption selectivity. Chem. Sci. 2021, 12, 15503–15510.
Li, M. C.; Chen, J.; Li, L.; Ye, C. S.; Lin, X. C.; Qiu, T. Novel multi-SO3H functionalized ionic liquids as highly efficient catalyst for synthesis of biodiesel. Green Energy Environ. 2021, 6, 271–282.
Wu, Z. W.; Ding, W. L.; Zhang, Y. Q.; Wang, Y. L.; He, H. Y. Interaction and mechanism between imidazolium ionic liquids and the zwitterionic amino acid tyr: A DFT study. Acta Phys. Chim. Sin. 2021, 37, 2002021.
Li, Z.; Chang, S. W.; Chen, C. C.; Cronin, S. B. Enhanced photocurrent and photoluminescence spectra in MoS2 under ionic liquid gating. Nano Res. 2014, 7, 973–980.
Sun, W. Z.; Wang, M. C.; Zhang, Y. Q.; Ding, W. L.; Huo, F.; Wei, L.; He, H. Y. Protic vs aprotic ionic liquid for CO2 fixation: A simulation study. Green Energy Environ. 2020, 5, 183–194.
Cui, J. C.; Li, Y.; Chen, D.; Zhan, T. G.; Zhang, K. D. Ionic liquid-based stimuli-responsive functional materials. Adv. Funct. Mater. 2020, 30, 2005522.
Pei, Y. C.; Zhang, Y. X.; Ma, J.; Fan, M. H.; Zhang, S. J.; Wang, J. J. Ionic liquids for advanced materials. Mater. Today Nano 2022, 17, 100159.
Su, L.; Sun, J. C.; Ding, F.; Gao, Y. P.; Gao, X.; Zheng, L. Q. Molecular insight into the reversible dispersion and aggregation of graphene utilizing photo-responsive surfactants. Appl. Surf. Sci. 2021, 567, 150840.
Shimakoshi, H.; Houfuku, N.; Chen, L.; Hisaeda, Y. Redox active ionic liquid as efficient mediator and solvent for visible light-driven B12 catalytic reactions. Green Energy Environ. 2019, 4, 116–120.
Yang, H. R.; Zhang, H. X.; Peng, J. X.; Zhang, Y. Y.; Du, G. Q.; Fang, Y. Smart magnetic ionic liquid-based pickering emulsions stabilized by amphiphilic Fe3O4 nanoparticles: Highly efficient extraction systems for water purification. J. Colloid Interface Sci. 2017, 485, 213–222.
Yao, W. H.; Wang, H. Y.; Cui, G. K.; Li, Z. Y.; Zhu, A. L.; Zhang, S. J.; Wang, J. J. Tuning the hydrophilicity and hydrophobicity of the respective cation and anion: Reversible phase transfer of ionic liquids. Angew. Chem., Int. Ed. 2016, 55, 7934–7938.
Yao, W. H.; Wang, H. Y.; Pei, Y. C.; Chen, Y. H.; Li, Z. Y.; Wang, J. J. Homogeneous capture and heterogeneous separation of proteins by PEG-functionalized ionic liquid–water systems. RSC Adv. 2017, 7, 11297–11303.
Feng, X.; Xu, X.; Liu, Z.; Xue, S.; Zhang, L. Novel functionalized magnetic ionic liquid green separation technology coupled with high performance liquid chromatography: A rapid approach for determination of estrogens in milk and cosmetics. Talanta 2020, 209, 120542.
Takahashi, Y.; Koizumi, N.; Kondo, Y. Demulsification of redox-active emulsions by chemical oxidation. Langmuir 2016, 32, 7556–7563.
Pei, X. Y.; Xiong, D. Z.; Pei, Y. C.; Wang, H. Y.; Wang, J. J. Switchable oil–water phase separation of ionic liquid-based microemulsions by CO2. Green Chem. 2018, 20, 4236–4244.
Liu, Y. M.; Zhou, Y.; Gong, W. Q.; Li, Z. M.; Wang, C. L.; Tao, D. J. Highly efficient synthesis of 1-methoxy-2-propanol using ionic liquid catalysts in a micro-tubular circulating reactor. Green Energy Environ. 2020, 5, 147–153.
Banerjee, P.; Anas, M.; Jana, S.; Mandal, T. K. Recent developments in stimuli-responsive poly(ionic liquid)s. J. Polym. Res. 2020, 27, 177.
Xiong, D. Z.; Cui, G. K.; Wang, J. J.; Wang, H. Y.; Li, Z. Y.; Yao, K. S.; Zhang, S. J. Reversible hydrophobic-hydrophilic transition of ionic liquids driven by carbon dioxide. Angew. Chem., Int. Ed. 2015, 54, 7265–7269.
Satoshi, H.; Hiro-O, H. Discovery of a magnetic ionic liquid [Bmim]FeCl4. Chem. Lett. 2004, 33, 1590–1591.
Qiao, Y. X.; Ma, W. B.; Theyssen, N.; Chen, C.; Hou, Z. S. Temperature-responsive ionic liquids: Fundamental behaviors and catalytic applications. Chem. Rev. 2017, 117, 6881–6928.
Kohno, Y.; Arai, H.; Ohno, H. Dual stimuli-responsive phase transition of an ionic liquid/water mixture. Chem. Commun. 2011, 47, 4772–4774.
Schömer, M.; Seiwert, J.; Frey, H. Hyperbranched poly(propylene oxide): A multifunctional backbone-thermoresponsive polyether polyol copolymer. ACS Macro Lett. 2012, 1, 888–891.
Jeong, B.; Kim, S. W.; Bae, Y. H. Thermosensitive sol-gel reversible hydrogels. Adv. Drug Delivery Rev. 2012, 64, 154–162.
Zhi, H. Z.; Lü, C. X.; Zhang, Q.; Luo, J. A new PEG-1000-based dicationic ionic liquid exhibiting temperature-dependent phase behavior with toluene and its application in one-pot synthesis of benzopyrans. Chem. Commun. 2009, 2878–2880.
Ren, G. H.; Sun, Z. C.; Wang, Z. Z.; Zheng, X. Y.; Xu, Z. H.; Sun, D. J. Nanoemulsion formation by the phase inversion temperature method using polyoxypropylene surfactants. J. Colloid Interface Sci. 2019, 540, 177–184.
Yao, W. H.; Wang, H. Y.; Cui, G. K.; Li, Z. Y.; Wang, J. J. Tuning phase behaviour of PEG-functionalized ionic liquids from UCST to LCST in alcohol–water mixtures. Phys. Chem. Chem. Phys. 2016, 18, 29192–29198.
Xu, G.; Yu, F. L.; Wang, Z. P.; Xie, C. X. Mild and highly selective preparation of alkylate gasoline promoted by using polyetheramine-based acidic ionic liquid. China Pet. Process. Petrochem. Technol. 2020, 22, 64–70.
Chen, X. Y. ; Ma, X. R. ; Yan, C. ; Sun, D. J. ; Yeung, T. ; Xu, Z. H. CO2-responsive O/W microemulsions prepared using a switchable superamphiphile assembled by electrostatic interactions. J. Colloid Interface Sci. 2019, 534, 595–604.
Fukumoto, K.; Ohno, H. LCST-phase changes of a mixture of water and ionic liquids derived from amino acids. Angew. Chem., Int. Ed. 2007, 46, 1852–1855.
Wang, Y. L.; He, H. Y.; Wang, C. L.; Lu, Y. M.; Dong, K.; Huo, F.; Zhang, S. J. Insights into ionic liquids: From Z-bonds to quasi-liquids. JACS Au 2022, 2, 543–561.
Martínez, L.; Andrade, R.; Birgin, E. G.; Martínez, J. M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164.
Xu, P. P.; Wang, Z. Z.; Xu, Z. H.; Hao, J. C.; Sun, D. J. Highly effective emulsification/demulsification with a CO2-switchable superamphiphile. J. Colloid Interface Sci. 2016, 480, 198–204.
Wang, Z. W.; Lai, H. J.; Wu, P. Y. Influence of PIL segment on solution properties of poly(N-isopropylacrylamide)-b-poly(ionic liquid) copolymer: Micelles, thermal phase behavior and microdynamics. Soft Matter 2012, 8, 11644–11653.
Zhang, Y. J.; Furyk, S.; Bergbreiter, D. E.; Cremer, P. S. Specific ion effects on the water solubility of macromolecules: PNIPAM and the hofmeister series. J. Am. Chem. Soc. 2005, 127, 14505–14510.
Korolovych, V. F.; Erwin, A.; Stryutsky, A.; Lee, H.; Heller, W. T.; Shevchenko, V. V.; Bulavin, L. A.; Tsukruk, V. V. Thermally responsive hyperbranched poly(ionic liquid)s: Assembly and phase transformations. Macromolecules 2018, 51, 4923–4937.
Deguchi, Y.; Nakamura, N.; Ohno, H. Thermoresponsive ionic liquid/water mixtures for separation and purification technologies. Sep. Purif. Technol. 2020, 251, 117286.
Kohno, Y.; Saita, S.; Murata, K.; Nakamura, N.; Ohno, H. Extraction of proteins with temperature sensitive and reversible phase change of ionic liquid/water mixture. Polym. Chem. 2011, 2, 862–867.
Shi, Y. L.; Xiong, D. Z.; Wang, H. Y.; Zhao, Y.; Wang, J. J. Reversible switching of amphiphilic self-assemblies of ionic liquids between micelle and vesicle by CO2. Langmuir 2016, 32, 6895–6901.
Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. NMR chemical shifts of common laboratory solvents as trace impurities. J. Org. Chem 1997, 62, 7512–7515.
Li, D. J.; Jones, G. J.; Dunlap, J. R.; Hua, F. J.; Zhao, B. Thermosensitive hairy hybrid nanoparticles synthesized by surface-initiated atom transfer radical polymerization. Langmuir 2006, 22, 3344–3351.
Schmidt, P.; Dybal, J.; Trchová, M. Investigations of the hydrophobic and hydrophilic interactions in polymer–water systems by ATR FTIR and Raman spectroscopy. Vib. Spectrosc. 2006, 42, 278–283.
Cho, E. C.; Lee, J.; Cho, K. Role of bound water and hydrophobic interaction in phase transition of poly(N-isopropylacrylamide) aqueous solution. Macromolecules 2003, 36, 9929–9934.