AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Reduction-induced interface reconstruction to fabricate MoNi4-based hollow nanorods for hydrazine oxidation assisted energy-saving hydrogen production in seawater

Lili Guo1Qingping Yu1Xuejun Zhai1,3Jingqi Chi1,2( )Tong Cui1Yu Zhang1Jianping Lai1Lei Wang1,3( )
Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Show Author Information

Graphical Abstract

The MoNi alloys supported on MoO2 nanorods with enlarged hollow diameter on Ni foam (MoNi@NF) are synthesized, which is constructed by limiting the outward diffusion of Ni via annealing and thermal reduction of NiMoO4 nanorods. When coupling hydrazine oxidation reaction (HzOR) and hydrogen evolution reaction (HER) by employing MoNi@NF as both anode and cathode in a two-electrode seawater system, a low cell voltage of 0.54 V is required to achieve 1,000 mA·cm−2, with long-term durability for 100 h to keep above 100 mA·cm−2 and nearly 100% Faradaic efficiency.

Abstract

Seawater electrolysis could address the water scarcity issue and realize the grid-scale production of carbon-neutral hydrogen, while facing the challenge of high energy consumption and chloride corrosion. Thermodynamically more favorable hydrazine oxidation reaction (HzOR) assisted water electrolysis is efficiency for energy-saving and chlorine-free hydrogen production. Herein, the MoNi alloys supported on MoO2 nanorods with enlarged hollow diameter on Ni foam (MoNi@NF) are synthesized, which is constructed by limiting the outward diffusion of Ni via annealing and thermal reduction of NiMoO4 nanorods. When coupling HzOR and hydrogen evolution reaction (HER) by employing MoNi@NF as both anode and cathode in two-electrode seawater system, a low cell voltage of 0.54 V is required to achieve 1,000 mA·cm−2 and with long-term durability for 100 h to keep above 100 mA·cm−2 and nearly 100% Faradaic efficiency. It can save 2.94 W·h to generate per liter H2 relative to alkaline seawater electrolysis with 37% lower energy equivalent input.

Electronic Supplementary Material

Download File(s)
12274_2022_4614_MOESM1_ESM.pdf (2.2 MB)

References

1
ZhaoS. L.WangD. W.AmalR.DaiL. Carbon-based metal-free catalysts for key reactions involved in energy conversion and storageAdv. Mater.201931180152610.1002/adma.201801526

Zhao, S. L.; Wang, D. W.; Amal, R.; Dai, L. Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage. Adv. Mater. 2019, 31, 1801526.

2

Liang, H. F.; Gandi, A. N.; Xia, C.; Hedhili, M. N.; Anjum, D. H.; Schwingenschlögl, U.; Alshareef, H. N. Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett. 2017, 2, 1035–1042.

3

Wang, F.; Niu, S. W.; Liang, X. Q.; Wang, G. M.; Chen, M. H. Phosphorus incorporation activates the basal plane of tungsten disulfide for efficient hydrogen evolution catalysis. Nano Res. 2022, 15, 2855–2861.

4

Zhang, X. Y.; Zhang, S.; Li, J.; Wang, E. K. One-step synthesis of well-structured NiS-Ni2P2S6 nanosheets on nickel foam for efficient overall water splitting. J. Mater. Chem. A 2017, 5, 22131–22136.

5

Liu, W. X.; Yu, L. H.; Yin, R. L.; Xu, X. L.; Feng, J. X.; Jiang, X.; Zheng, D.; Gao, X. L.; Gao, X. B.; Que, W. B. et al. Non-3D metal modulation of a 2D Ni-Co heterostructure array as multifunctional electrocatalyst for portable overall water splitting. Small 2020, 16, 1906775.

6

Jiao, L.; Zhou, Y. X.; Jiang, H. L. Metal-organic framework-based CoP/reduced graphene oxide: High-performance bifunctional electrocatalyst for overall water splitting. Chem. Sci. 2016, 7, 1690–1695.

7

Yu, W. L.; Gao, Y. X.; Chen, Z.; Zhao, Y.; Wu, Z. X.; Wang, L. Strategies on improving the electrocatalytic hydrogen evolution performances of metal phosphides. Chin. J. Catal. 2021, 42, 1876–1902.

8

Zhao, Q. L.; Wang, Y. A.; Lai, W. H.; Xiao, F.; Lyu, Y. X.; Liao, C. Z.; Shao, M. H. Approaching a high-rate and sustainable production of hydrogen peroxide: Oxygen reduction on Co-N-C single-atom electrocatalysts in simulated seawater. Energy Environ. Sci. 2021, 14, 5444–5456.

9

Qian, Q. Z.; Zhang, J. H.; Li, J. M.; Li, Y. P.; Jin, X.; Zhu, Y.; Liu, Y.; Li, Z. Y.; El-Harairy, A.; Xiao, C. et al. Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis. Angew. Chem., Int. Ed. 2021, 60, 5984–5993.

10

Ma, B.; Yang, Z. C.; Chen, Y. T.; Yuan, Z. H. Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 2019, 12, 375–380.

11

Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct electrolytic splitting of seawater: Opportunities and challenges. ACS Energy Lett. 2019, 4, 933–942.

12

Chen, L. F.; Hou, C. C.; Zou, L. L.; Kitta, M.; Xu, Q. Uniformly bimetal-decorated holey carbon nanorods derived from metal-organic framework for efficient hydrogen evolution. Sci. Bull. 2021, 66, 170–178.

13

Menezes, P. W.; Panda, C.; Loos, S.; Bunschei-Bruns, F.; Walter, C.; Schwarze, M.; Deng, X. H.; Dau, H.; Driess, M. A structurally versatile nickel phosphite acting as a robust bifunctional electrocatalyst for overall water splitting. Energy Environ. Sci. 2018, 11, 1287–1298.

14

Yu, L.; Zhu, Q.; Song, S. W.; McElhenny, B.; Wang, D. Z.; Wu, C. Z.; Qin, Z. J.; Bao, J. M.; Yu, Y.; Chen, S. et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.

15

Sun, H. M.; Xu, X. B.; Yan, Z. H.; Chen, X.; Cheng, F. Y.; Weiss, P. S.; Chen, J. Porous multishelled Ni2P hollow microspheres as an active electrocatalyst for hydrogen and oxygen evolution. Chem. Mater. 2017, 29, 8539–8547.

16

Han, L. L.; Guo, L. M.; Dong, C. Q.; Zhang, C.; Gao, H.; Niu, J. Z.; Peng, Z. Q.; Zhang, Z. H. Ternary mesoporous cobalt-iron-nickel oxide efficiently catalyzing oxygen/hydrogen evolution reactions and overall water splitting. Nano Res. 2019, 12, 2281–2287.

17

Lv, C. N.; Zhang, L.; Huang, X. H.; Zhu, Y. X.; Zhang, X.; Hu, J. S.; Lu, S. Y. Double functionalization of N-doped carbon carved hollow nanocubes with mixed metal phosphides as efficient bifunctional catalysts for electrochemical overall water splitting. Nano Energy 2019, 65, 103995.

18

Song, Y. Y.; Cheng, J. L.; Liu, J.; Ye, Q.; Gao, X.; Lu, J. J.; Cheng, Y. L. Modulating electronic structure of cobalt phosphide porous nanofiber by ruthenium and nickel dual doping for highly-efficiency overall water splitting at high current density. Appl. Catal. B Environ. 2021, 298, 120488.

19

Xing, J. N.; Lin, F.; Huang, L. T.; Si, Y. C.; Wang, Y. J.; Jiao, L. F. Coupled cobalt-doped molybdenum carbide@N-doped carbon nanosheets/nanotubes supported on nickel foam as a binder-free electrode for overall water splitting. Chin. J. Catal. 2019, 40, 1352–1359.

20

Wu, L. B.; Yu, L.; Zhang, F. H.; McElhenny, B.; Luo, D.; Karim, A.; Chen, S.; Ren, Z. F. Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 2021, 31, 2006484.

21

Zhao, Y.; Gao, Y. X.; Chen, Z.; Li, Z. J.; Ma, T. Y.; Wu, Z. X.; Wang, L. Trifle Pt coupled with NiFe hydroxide synthesized via corrosion engineering to boost the cleavage of water molecule for alkaline water-splitting. Appl. Catal. B Environ. 2021, 297, 120395.

22

Yao, M. Q.; Wang, B. J.; Sun, B. L.; Luo, L. F.; Chen, Y. J.; Wang, J. W.; Wang, N.; Komarneni, S.; Niu, X. B.; Hu, W. B. et al. Rational design of self-supported Cu@WC core–shell mesoporous nanowires for pH-universal hydrogen evolution reaction. Appl. Catal. B Environ. 2021, 280, 119451.

23

Dong, B.; Xie, J. Y.; Tong, Z.; Chi, J. Q.; Zhou, Y. N.; Ma, X.; Lin, Z. Y.; Wang, L.; Chai, Y. M. Synergistic effect of metallic nickel and cobalt oxides with nitrogen-doped carbon nanospheres for highly efficient oxygen evolution. Chin. J. Catal. 2020, 41, 1782–1789.

24

Li, Y. P.; Li, J. M.; Qian, Q. Z.; Jin, X.; Liu, Y.; Li, Z. Y.; Zhu, Y.; Guo, Y. M.; Zhang, G. Q. Superhydrophilic Ni-based multicomponent nanorod-confined-nanoflake array electrode achieves waste-battery-driven hydrogen evolution and hydrazine oxidation. Small 2021, 17, 2008148.

25

Chala, S. A.; Tsai, M. C.; Olbasa, B. W.; Lakshmanan, K.; Huang, W. H.; Su, W. N.; Liao, Y. F.; Lee, J. F.; Dai, H. J.; Hwang, B. J. Tuning dynamically formed active phases and catalytic mechanisms of in situ electrochemically activated layered double hydroxide for oxygen evolution reaction. ACS Nano 2021, 15, 14996–15006.

26

Sun, F.; Qin, J. S.; Wang, Z. Y.; Yu, M. Z.; Wu, X. H.; Sun, X. M.; Qiu, J. S. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 2021, 12, 4182.

27

Dang, Y. L.; Wu, T. L.; Tan, H. Y.; Wang, J. L.; Cui, C.; Kerns, P.; Zhao, W.; Posada, L.; Wen, L. Y.; Suib, S. L. Partially reduced Ru/RuO2 composites as efficient and pH-universal electrocatalysts for hydrogen evolution. Energy Environ. Sci. 2021, 14, 5433–5443.

28

Tang, T.; Jiang, W. J.; Niu, S.; Liu, N.; Luo, H.; Chen, Y. Y.; Jin, S. F.; Gao, F.; Wan, L. J.; Hu, J. S. Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. J. Am. Chem. Soc. 2017, 139, 8320–8328.

29

Wang, Q.; Huang, X.; Zhao, Z. L.; Wang, M. Y.; Xiang, B.; Li, J.; Feng, Z. X.; Xu, H.; Gu, M. Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 7425–7433.

30

Chen, Y. Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z. H.; Wan, L. J.; Hu, J. S. Self-templated fabrication of MoNi4/MoO3−x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater. 2017, 29, 1703311.

31

Su, L. X.; Gong, D.; Yao, N.; Li, Y. B.; Li, Z.; Luo, W. Modification of the intermediate binding energies on Ni/Ni3N heterostructure for enhanced alkaline hydrogen oxidation reaction. Adv. Funct. Mater. 2021, 31, 2106156.

32

Song, L. T.; Zheng, T. L.; Zheng, L. R.; Lu, B.; Chen, H. Q.; He, Q. G.; Zheng, W. Z.; Hou, Y.; Lian, J. L.; Wu, Y. et al. Cobalt-doped basic iron phosphate as bifunctional electrocatalyst for long-life and high-power-density rechargeable zinc-air batteries. Appl. Catal. B Environ. 2022, 300, 120712.

33

Singh, V. K.; Gupta, U.; Mukherjee, B.; Chattopadhyay, S.; Das, S. MoS2 nanosheets on MoNi4/MoO2 nanorods for hydrogen evolution. ACS Appl. Nano Mater. 2021, 4, 886–896.

34

Wu, X. F.; Li, J. W.; Li, Y.; Wen, Z. H. NiFeP-MoO2 hybrid nanorods on nickel foam as high-activity and high-stability electrode for overall water splitting. Chem. Eng. J. 2021, 409, 128161.

35

Kamp, C. J.; Perez Garza, H. H.; Fredriksson, H.; Kasemo, B.; Andersson, B.; Skoglundh, M. Nanofabricated catalyst particles for the investigation of catalytic carbon oxidation by oxygen spillover. Langmuir 2017, 33, 4903–4912.

36

Ananyev, M. V.; Porotnikova, N. M.; Eremin, V. A.; Kurumchin, E. K. Interaction of O2 with LSM-YSZ composite materials and oxygen spillover effect. ACS Catal. 2021, 11, 4247–4262.

37

Gaigneaux, E. M.; Ruiz, P.; Delmon, B. Further on the mechanism of the synergy between MoO3 and α-Sb2O4 in the selective oxidation of isobutene to methacrolein: Reconstuction of MoO3 via spillover oxygen. Catal. Today 1996, 32, 37–46.

38

Meng, L. S.; Li, L. P.; Wang, J. H.; Fu, S. X.; Zhang, Y. L.; Li, J.; Xue, C. L.; Wei, Y. H.; Li, G. S. Valence-engineered MoNi4/MoOx@NF as a Bi-functional electrocatalyst compelling for urea-assisted water splitting reaction. Electrochim. Acta 2020, 350, 136382.

39

Yan, G.; Gu, Y. F.; Shaga, A.; Wang, K.; Zhan, L. J.; Liu, Z. M. Improving hydrogen evolution activity of two-dimensional nanosheets MoNi4/MoO2.5-NF self-supporting electrocatalyst by electrochemical-cycling activation. J. Mater. Sci. 2021, 56, 6945–6954.

40

Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

41

Wang, M.; Yang, H.; Shi, J. N.; Chen, Y. F.; Zhou, Y.; Wang, L. G.; Di, S. J.; Zhao, X.; Zhong, J.; Cheng, T. et al. Alloying nickel with molybdenum significantly accelerates alkaline hydrogen electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 5771–5777.

42

Yu, Z. Y.; Lang, C. C.; Gao, M. R.; Chen, Y.; Fu, Q. Q.; Duan, Y.; Yu, S. H. Ni-Mo-O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy Environ. Sci. 2018, 11, 1890–1897.

43

Wang, Z. J.; Guo, P.; Cao, S. F.; Chen, H. Y.; Zhou, S. N.; Liu, H. H.; Wang, H. W.; Zhang, J. B.; Liu, S. Y.; Wei, S. X. et al. Contemporaneous inverse manipulation of the valence configuration to preferred Co2+ and Ni3+ for enhanced overall water electrocatalysis. Appl. Catal. B Environ. 2021, 284, 119725.

44

Cheng, Y.; Guo, H. R.; Yuan, P. F.; Li, X. P.; Zheng, L. R.; Song, R. Self-supported bifunctional electrocatalysts with Ni nanoparticles encapsulated in vertical N-doped carbon nanotube for efficient overall water splitting. Chem. Eng. J. 2021, 413, 127531.

45

Du, W.; Shi, Y. M.; Zhou, W.; Yu, Y. F.; Zhang, B. Unveiling the in situ dissolution and polymerization of Mo in Ni4Mo alloy for promoting the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 7051–7055.

46

Pan, U. N.; Paudel, D. R.; Kumar Das, A.; Singh, T. I.; Kim, N. H.; Lee, J. H. Ni-nanoclusters hybridized 1T-Mn-VTe2 mesoporous nanosheets for ultra-low potential water splitting. Appl. Catal. B Environ. 2022, 301, 120780.

47

Liu, Y.; Zhang, J. H.; Li, Y. P.; Qian, Q. Z.; Li, Z. Y.; Zhu, Y.; Zhang, G. Q. Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production. Nat. Commun. 2020, 11, 1853.

Nano Research
Pages 8846-8856
Cite this article:
Guo L, Yu Q, Zhai X, et al. Reduction-induced interface reconstruction to fabricate MoNi4-based hollow nanorods for hydrazine oxidation assisted energy-saving hydrogen production in seawater. Nano Research, 2022, 15(10): 8846-8856. https://doi.org/10.1007/s12274-022-4614-x
Topics:

1109

Views

46

Crossref

42

Web of Science

45

Scopus

0

CSCD

Altmetrics

Received: 26 February 2022
Revised: 30 May 2022
Accepted: 31 May 2022
Published: 04 July 2022
© Tsinghua University Press 2022
Return