AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nanovoid-confinement and click-activated nanoreactor for synchronous delivery of prodrug pairs and precise photodynamic therapy

Peng Wang1,§Fang Zhou1,§Xia Yin1( )Qingji Xie2Guosheng Song1( )Xiao-Bing Zhang1
Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Hunan Normal University), Ministry of Education, Changsha 410082, China

§ Peng Wang and Fang Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

The nanovoid-confinement and click-activated (NCCA) nanoreactor is de novo developed for overcoming the space-time dislocation of bioorthogonal reagents. The NCCA nanoreactor utilized the nanoconfined bioorthogonal reactions in defined tetrazine-based covalent organic framework (COF) cages to boost the collision probability of bioorthogonal prodrug with tetrazine triggers, resulting in higher-efficiency photodynamic therapy (PDT) in vivo.

Abstract

Bioorthogonal cleavage reaction-triggered prodrug activation by the pretargeted methods can achieve accurate cancer therapy. However, the click and release efficiency of these methods in vivo is limited by the space-time dislocation of bioorthogonal prodrug-trigger pairs within the tumor area, caused by their asynchronous administration and inconsistent accumulation for most delivery systems. We herein created a nanovoid-confinement and click-activated (NCCA) core–shell nanoreactor by incorporating prodrugs within zeolitic imidazolate framework-90 (ZIF-90) as core and coating tetrazine-based covalent organic framework (COF) as shell. After surface modification of aptamer polymer, the NCCA nanoreactor enabled the sufficient delivery of photodynamic prodrugs within tumor. Notably, the core of ZIF-90 was decomposed by tumor acidic environment, inducing the high-efficiency activation of photodynamic prodrugs via nanoconfined bioorthogonal reaction with tetrazine-based COF shell. As a result, such photodynamic agents are efficiently and safely accumulated into tumor and specifically activated for precise photodynamic therapy of cancer cells and tumor bearing mice with minimizing toxic side effect. Taken together, such NCCA nanoreactor clearly demonstrates the critical feasibility to realize the synchronous delivery of both prodrugs and triggers for precise treatment, which most of delivery systems are not able to afford.

Electronic Supplementary Material

Download File(s)
12274_2022_4615_MOESM1_ESM.pdf (2.5 MB)

References

1

Kumar, R.; Shin, W. S.; Sunwoo, K.; Kim, W. Y.; Koo, S.; Bhuniya, S.; Kim, J. S. Small conjugate-based theranostic agents: An encouraging approach for cancer therapy. Chem. Soc. Rev. 2015, 44, 6670–6683.

2

Hu, Q. Q.; Li, H.; Wang, L. H.; Gu, H. Z.; Fan, C. H. DNA nanotechnology-enabled drug delivery systems. Chem. Rev. 2019, 119, 6459–6506.

3

Zhang, C.; Pu, K. Y. Molecular and nanoengineering approaches towards activatable cancer immunotherapy. Chem. Soc. Rev. 2020, 49, 4234–4253.

4

Zhou, Z. J.; Du, C.; Zhang, Q. Y.; Yu, G. C.; Zhang, F. W.; Chen, X. Y. Exquisite vesicular nanomedicine by paclitaxel mediated Co-assembly with camptothecin prodrug. Angew. Chem., Int. Ed. 2021, 60, 21033–21039.

5

Li, J.; Chen, P. R. Development and application of bond cleavage reactions in bioorthogonal chemistry. Nat. Chem. Biol. 2016, 12, 129–137.

6

Ji, X. Y.; Pan, Z. X.; Yu, B. C.; De La Cruz, L. K.; Zheng, Y. Q.; Ke, B. W.; Wang, B. H. Click and release: Bioorthogonal approaches to “on-demand” activation of prodrugs. Chem. Soc. Rev. 2019, 48, 1077–1094.

7

Wang, J.; Wang, X.; Fan, X. Y.; Chen, P. R. Unleashing the power of bond cleavage chemistry in living systems. ACS Cent. Sci. 2021, 7, 929–943.

8

Versteegen, R. M.; Rossin, R.; ten Hoeve, W.; Janssen, H. M.; Robillard, M. S. Click to release: Instantaneous doxorubicin elimination upon tetrazine ligation. Angew. Chem., Int. Ed. 2013, 52, 14112–14116.

9

Wu, H. X.; Alexander, S. C.; Jin, S. J.; Devaraj, N. K. A bioorthogonal near-infrared fluorogenic probe for mRNA detection. J. Am. Chem. Soc. 2016, 138, 11429–11432.

10

Jiménez-Moreno, E.; Guo, Z. J.; Oliveira, B. L.; Albuquerque, I. S.; Kitowski, A.; Guerreiro, A.; Boutureira, O.; Rodrigues, T.; Jiménez-Osés, G.; Bernardes, G. J. L. Vinyl ether/tetrazine pair for the traceless release of alcohols in cells. Angew. Chem., Int. Ed. 2017, 56, 243–247.

11

Rossin, R.; van Duijnhoven, S. M. J.; ten Hoeve, W.; Janssen, H. M.; Kleijn, L. H. J.; Hoeben, F. J. M.; Versteegen, R. M.; Robillard, M. S. Triggered drug release from an antibody-drug conjugate using fast “click-to-release” chemistry in mice. Bioconjug. Chem. 2016, 27, 1697–1706.

12

Neumann, K.; Jain, S.; Gambardella, A.; Walker, S. E.; Valero, E.; Lilienkampf, A.; Bradley, M. Tetrazine-responsive self-immolative linkers. ChemBioChem 2017, 18, 91–95.

13

Yao, Q. X.; Lin, F.; Fan, X. Y.; Wang, Y. P.; Liu, Y.; Liu, Z. F.; Jiang, X. Y.; Chen, P. R.; Gao, Y. Synergistic enzymatic and bioorthogonal reactions for selective prodrug activation in living systems. Nat. Commun. 2018, 9, 5032.

14

Neumann, K.; Gambardella, A.; Lilienkampf, A.; Bradley, M. Tetrazine-mediated bioorthogonal prodrug-prodrug activation. Chem. Sci. 2018, 9, 7198–7203.

15

Xie, X.; Li, B. W.; Wang, J.; Zhan, C. Y.; Huang, Y.; Zeng, F.; Wu, S. Z. Bioorthogonal nanosystem for near-infrared fluorescence imaging and prodrug activation in mouse model. ACS Materials Lett. 2019, 1, 549–557.

16

Dong, Y. S.; Tu, Y. L.; Wang, K. W.; Xu, C. F.; Yuan, Y. Y.; Wang, J. A general strategy for macrotheranostic prodrug activation: Synergy between the acidic tumor microenvironment and bioorthogonal chemistry. Angew. Chem., Int. Ed. 2020, 59, 7168–7172.

17

Li, H.; Conde, J.; Guerreiro, A.; Bernardes, G. J. L. Tetrazine carbon nanotubes for pretargeted in vivo “click-to-release” bioorthogonal tumour imaging. Angew. Chem., Int. Ed. 2020, 59, 16023–16032.

18

Rossin, R.; Verkerk, P. R.; van den Bosch, S. M.; Vulders, R. C. M.; Verel, I.; Lub, J.; Robillard, M. S. In vivo chemistry for pretargeted tumor imaging in live mice. Angew. Chem., Int. Ed. 2010, 49, 3375–3378.

19

Rossin, R.; Versteegen, R. M.; Wu, J.; Khasanov, A.; Wessels, H. J.; Steenbergen, E. J.; ten Hoeve, W.; Janssen, H. M.; van Onzen, A. H. A. M.; Hudson, P. J.; Robillard, M. S. Chemically triggered drug release from an antibody-drug conjugate leads to potent antitumour activity in mice. Nat. Commun. 2018, 9, 1484.

20
Mejia OnetoJ. M.KhanI.SeebaldL.RoyzenM. In vivo bioorthogonal chemistry enables local hydrogel and systemic pro-drug to treat soft tissue sarcomaACS Cent. Sci.2016247648210.1021/acscentsci.6b00150

Mejia Oneto, J. M.; Khan, I.; Seebald, L.; Royzen, M. In vivo bioorthogonal chemistry enables local hydrogel and systemic pro-drug to treat soft tissue sarcoma. ACS Cent. Sci. 2016, 2, 476–482.

21

Wu, K.; Yee, N. A.; Srinivasan, S.; Mahmoodi, A.; Zakharian, M.; Mejia Oneto, J. M.; Royzen, M. Click activated protodrugs against cancer increase the therapeutic potential of chemotherapy through local capture and activation. Chem. Sci. 2021, 12, 1259–1271.

22

Zhou, F.; Wang, P.; Peng, Y. B.; Zhang, P. G.; Huang, Q.; Sun, W. D.; He, N. Y.; Fu, T.; Zhao, Z. L.; Fang, X. H. et al. Molecular engineering-based aptamer-drug conjugates with accurate tunability of drug ratios for drug combination targeted cancer therapy. Angew. Chem., Int. Ed. 2019, 58, 11661–11665.

23

Wu, X. Q.; Liu, H. L.; Han, D. M.; Peng, B.; Zhang, H.; Zhang, L.; Li, J. L.; Liu, J.; Cui, C.; Fang, S. B. et al. Elucidation and structural modeling of CD71 as a molecular target for cell-specific aptamer binding. J. Am. Chem. Soc. 2019, 141, 10760–10769.

24

Deng, J. J.; Wang, K.; Wang, M.; Yu, P.; Mao, L. Q. Mitochondria targeted nanoscale zeolitic imidazole framework-90 for ATP imaging in live cells. J. Am. Chem. Soc. 2017, 139, 5877–5882.

25

Guan, Q.; Zhou, L. L.; Li, Y. A.; Dong, Y. B. Diiodo-bodipy-encapsulated nanoscale metal-organic framework for pH-driven selective and mitochondria targeted photodynamic therapy. Inorg. Chem. 2018, 57, 10137–10145.

26

Zhao, Y. T.; Chen, X. X.; Jiang, W. L.; Li, Y. F.; Fei, J. J.; Li, C. Y. Near-infrared fluorescence MOF nanoprobe for adenosine triphosphate-guided imaging in colitis. ACS Appl. Mater. Interfaces 2020, 12, 47840–47847.

27

Diercks, C. S.; Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, eaal1585.

28

Ma, T. Q.; Kapustin, E. A.; Yin, S. X.; Liang, L.; Zhou, Z. Y.; Niu, J.; Li, L. H.; Wang, Y. Y.; Su, J.; Li, J. et al. Single-crystal x-ray diffraction structures of covalent organic frameworks. Science 2018, 361, 48–52.

29

Liu, R. Y.; Tan, K. T.; Gong, Y. F.; Chen, Y. Z.; Li, Z. E.; Xie, S. L.; He, T.; Lu, Z.; Yang, H.; Jiang, D. Covalent organic frameworks: An ideal platform for designing ordered materials and advanced applications. Chem. Soc. Rev. 2021, 50, 120–242.

30

Liu, Y.; Zhou, W. Q.; Teo, W. L.; Wang, K.; Zhang, L. Y.; Zeng, Y. F.; Zhao, Y. L. Covalent-organic-framework-based composite materials. Chem 2020, 6, 3172–3202.

31

Lin, G. Q.; Ding, H. M.; Chen, R. F.; Peng, Z. K.; Wang, B. S.; Wang, C. 3D porphyrin-based covalent organic frameworks. J. Am. Chem. Soc. 2017, 139, 8705–8709.

32

Zhou, J. W.; Wang, B. Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chem. Soc. Rev. 2017, 46, 6927–6945.

33

Wang, P.; Jin, Z.; Song, G.; Zhang, X. B. Recent progress and strategies for precise framework structure-enabled drug delivery systems. Mater. Today Sustain. 2021, 13, 100065.

34

Wang, T.; Zhao, L.; Wang, K. W.; Bai, Y. F.; Feng, F. Research progress on the synthesis of covalent organic frameworks and their applications in tumor therapy. Acta Chim. Sin. 2021, 79, 600–613.

35

Li, M. M.; Qiao, S.; Zheng, Y. L.; Andaloussi, Y. H.; Li, X.; Zhang, Z. J.; Li, A.; Cheng, P.; Ma, S. Q.; Chen, Y. Fabricating covalent organic framework capsules with commodious microenvironment for enzymes. J. Am. Chem. Soc. 2020, 142, 6675–6681.

36

Zhang, L.; Liu, Z. W.; Deng, Q. Q.; Sang, Y. J.; Dong, K.; Ren, J. S.; Qu, X. G. Nature-inspired construction of MOF@COF nanozyme with active sites in tailored microenvironment and pseudopodia-like surface for enhanced bacterial inhibition. Angew. Chem., Int. Ed. 2021, 60, 3469–3474.

37
WangP.ZhouF.GuanK. S.WangY. J.FuX. Y.YangY.YinX.SongG. S.ZhangX. B.TanW. H. In vivo therapeutic response monitoring by a self-reporting upconverting covalent organic framework nanoplatformChem. Sci.2020111299130610.1039/c9sc04875h

Wang, P.; Zhou, F.; Guan, K. S.; Wang, Y. J.; Fu, X. Y.; Yang, Y.; Yin, X.; Song, G. S.; Zhang, X. B.; Tan, W. H. In vivo therapeutic response monitoring by a self-reporting upconverting covalent organic framework nanoplatform. Chem. Sci. 2020, 11, 1299–1306.

38

Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 2012, 134, 19524–19527.

39

Wang, P.; Zhou, F.; Zhang, C.; Yin, S. Y.; Teng, L. L.; Chen, L. L.; Hu, X. X.; Liu, H. W.; Yin, X.; Zhang, X. B. Ultrathin two-dimensional covalent organic framework nanoprobe for interference-resistant two-photon fluorescence bioimaging. Chem. Sci. 2018, 9, 8402–8408.

40

Ghosh, S.; Nakada, A.; Springer, M. A.; Kawaguchi, T.; Suzuki, K.; Kaji, H.; Baburin, I.; Kuc, A.; Heine, T.; Suzuki, H. et al. Identification of prime factors to maximize the photocatalytic hydrogen evolution of covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 9752–9762.

41

Yu, S.; Zhou, Y.; Sun, Y.; Wu, S. J.; Xu, T. T.; Chang, Y. C.; Bi, S.; Jiang, L. P.; Zhu, J. J. Endogenous mRNA triggered DNA-Au nanomachine for in situ imaging and targeted multimodal synergistic cancer therapy. Angew. Chem., Int. Ed. 2021, 60, 5948–5958.

42

Ouyang, C. H.; Zhang, S. B.; Xue, C.; Yu, X.; Xu, H.; Wang, Z. M.; Lu, Y.; Wu, Z. S. Precision-guided missile-like DNA nanostructure containing warhead and guidance control for aptamer-based targeted drug delivery into cancer cells in vitro and in vivo. J. Am. Chem. Soc. 2020, 142, 1265–1277.

43

Zhang, D.; Zheng, Y. S.; Lin, Z. G.; Liu, X. L.; Li, J.; Yang, H. H.; Tan, W. H. Equipping natural killer cells with specific targeting and checkpoint blocking aptamers for enhanced adoptive immunotherapy in solid tumors. Angew. Chem., Int. Ed. 2020, 59, 12022–12028.

44

Di, Z. H.; Zhao, J.; Chu, H. Q.; Xue, W. T.; Zhao, Y. L.; Li, L. L. An acidic-microenvironment-driven DNA nanomachine enables specific ATP imaging in the extracellular milieu of tumor. Adv. Mater. 2019, 31, 1901885.

Nano Research
Pages 9264-9273
Cite this article:
Wang P, Zhou F, Yin X, et al. Nanovoid-confinement and click-activated nanoreactor for synchronous delivery of prodrug pairs and precise photodynamic therapy. Nano Research, 2022, 15(10): 9264-9273. https://doi.org/10.1007/s12274-022-4615-9
Topics:

990

Views

12

Crossref

10

Web of Science

11

Scopus

1

CSCD

Altmetrics

Received: 28 March 2022
Revised: 01 June 2022
Accepted: 03 June 2022
Published: 02 July 2022
© Tsinghua University Press 2022
Return