AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Two-dimensional CoNi@mesoporous carbon composite with heterogeneous structure toward broadband microwave absorber

Yun Qiu1Haibo Yang1( )Fanfan Hu2Ying Lin1( )
Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
Jiangsu Product Quality Testing & Inspection Institute, Nanjing 210007, China
Show Author Information

Graphical Abstract

Two-dimensional cobalt and nickel alloys@mesoporous carbon composite exhibited the maximum reflection loss of −70.86 dB and the widest absorption bandwidth of 7.74 GHz.

Abstract

Constructing composites with heterogeneous structure and dual loss mechanism shows great potential in designing microwave absorbers. In this work, two-dimensional cobalt and nickel alloys@mesoporous carbon (CoNi@MC) composites were constructed via using CoNi layered double hydroxide@mesoporous polydopamine (CoNi LDH@MPDA) as sacrifice template. During the pyrolysis process, the MPDA is transformed into mesoporous carbon coated the surface of CoNi LDH that is further reduced to CoNi alloys. The mesoporous structure is conducive to the multi-reflection of electromagnetic waves and facilitates optimizing impedance matching. Heterogeneous interfaces between CoNi alloys and mesoporous carbon induce interface polarization. Multiple attenuation mechanism promotes the electromagnetic waves conversion. The maximum reflection loss of CoNi@MC composite is −70.86 dB and the widest effective absorption bandwidth is 7.74 GHz covering almost the entire Ku band. This strategy will be a guidance for designing electromagnetic absorbers.

Electronic Supplementary Material

Download File(s)
12274_2022_4617_MOESM1_ESM.pdf (652.8 KB)

References

1

Lv, H. L.; Yang, Z. H.; Wang, P. L.; Ji, G. B.; Song, J. Z.; Zheng, L. R.; Zeng, H. B.; Xu, Z. J. A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 2018, 30, e1706343.

2
 Thermally conductive poly(lactic acid) composites withsuperior  electromagnetic  shielding  performances  via  3D  printingtechnology Chin. J. Polym. Sci. 2022 40 248 255 10.1007/s10118-022-2673-9

Ma, T. B.; Ma, H.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Gao, S. Y.; Gu, J. W. Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chin. J. Polym. Sci. 2022, 40, 248–255.

3

Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

4

Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

5
 Janus  (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances  Nano Res. 2022 15 4747 4755 10.1007/s12274-022-4159-z

Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

6
Wheat straw-derived magnetic carbon foams: In-situ preparation and  tunable  high-performance  microwave  absorption Nano Res. 2019 12 1423 1429 10.1007/s12274-019-2376-x

Gou, G. J.; Meng, F. B.; Wang, H. G.; Jiang, M.; Wei, W.; Zhou, Z. W. Wheat straw-derived magnetic carbon foams: In-situ preparation and tunable high-performance microwave absorption. Nano Res. 2019, 12, 1423–1429.

7
Gamma radiation induced microwave absorption properties of ultra-thin barium titanate (BaTiO3) ceramic tiles over X-band (8.2−12.4 GHz) Ceram. Int. 2021 47 22397 22403 10.1016/j.ceramint.2021.04.249

Saini, L.; Jani, R. K.; Janu, Y.; Kumar, M.; Patra, M. K.; Dixit, A. Gamma radiation induced microwave absorption properties of ultra-thin barium titanate (BaTiO3) ceramic tiles over X-band (8.2−12.4 GHz). Ceram. Int. 2021, 47, 22397–22403.

8
Interconnected magnetic carbon@NixCo1−xFe2O4 nanospheres  with  core–shellstructure: An efficient and thin electromagnetic wave absorber  J. Colloid Interface. Sci. 2022 606 526 536 10.1016/j.jcis.2021.07.094

Chen, X. L.; Wang, Y.; Liu, H. L.; Jin, S.; Wu, G. L. Interconnected magnetic carbon@NixCo1−xFe2O4 nanospheres with core–shell structure: An efficient and thin electromagnetic wave absorber. J. Colloid Interface. Sci. 2022, 606, 526–536.

9
Pan J. L. Guo H. G. Wang M. Yang H. Hu H. W. Liu P. Zhu H. W. Shape  anisotropic  Fe3O4 nanotubes  for  efficientmicrowave absorption Nano Res. 2020 13 621 629 10.1007/s12274-020-2656-5

Pan, J. L.; Guo, H. G.; Wang, M.; Yang, H.; Hu, H. W.; Liu, P.; Zhu, H. W. Shape anisotropic Fe3O4 nanotubes for efficient microwave absorption. Nano Res. 2020, 13, 621–629.

10

Yan, J.; Huang, Y.; Zhang, X. Y.; Gong, X.; Chen, C.; Nie, G. D.; Liu, X. D.; Liu, P. B. MoS2-decorated/integrated carbon fiber: Phase engineering well-regulated microwave absorber. Nano-Micro Lett. 2021, 13, 114.

11

Xiang, Z.; Shi, Y. Y.; Zhu, X. J.; Cai, L.; Lu, W. Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 2021, 13, 150.

12
From intrinsic dielectric loss to geometry  patterns:  Dual-principles  strategy  for  ultrabroad  band microwave absorption Nano Res. 2021 14 1495 1501 10.1007/s12274-020-3208-8

Quan, B.; Gu, W. H.; Sheng, J. Q.; Lv, X. F.; Mao, Y. Y.; Liu, L.; Huang, X. G.; Tian, Z. J.; Ji, G. B. From intrinsic dielectric loss to geometry patterns: Dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 2021, 14, 1495–1501.

13

Wang, Y. Y.; Zhou, Z. H.; Zhou, C. G.; Sun, W. J.; Gao, J. F.; Dai, K.; Yan, D. X.; Li, Z. M. Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Interfaces. 2020, 12, 8704–8712.

14
In situ-derived carbon nanotube-decorated nitrogen-doped  carbon-coated  nickel  hybrids  from  MOF/melamine  for efficient electromagnetic wave absorption  J. Colloid Interface. Sci. 2021 581 783 793 10.1016/j.jcis.2020.07.151

Qiu, Y.; Yang, H. B.; Ma, L.; Lin, Y.; Zong, H. W.; Wen, B.; Bai, X. Y.; Wang, M. Q. In situ-derived carbon nanotube-decorated nitrogen-doped carbon-coated nickel hybrids from MOF/melamine for efficient electromagnetic wave absorption. J. Colloid Interface. Sci. 2021, 581, 783–793.

15
Polymer-based  EMI  shielding  composites  with  3D  conductive networks: A mini-review  SusMat 2021 1 413 431 10.1002/sus2.21

Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431.

16

Wang, Y. Y.; Zhou, Z. H.; Zhu, J. L.; Sun, W. J.; Yan, D. X.; Dai, K.; Li, Z. M. Low-temperature carbonized carbon nanotube/cellulose aerogel for efficient microwave absorption. Compos. Part B:Eng. 2021, 220, 108985.

17

Zhao, Y. P.; Zuo, X. Q.; Guo, Y.; Huang, H.; Zhang, H.; Wang, T.; Wen, N. X.; Chen, H.; Cong, T. Z.; Muhammad, J. et al. Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 2021, 13, 144.

18

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

19

Qiu, Y.; Lin, Y.; Yang, H. B.; Wang, L.; Wang, M. Q.; Wen, B. Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption. Chem Eng J. 2020, 383, 123207.

20

Xu, C. Y.; Wang, L.; Li, X.; Qian, X.; Wu, Z. C.; You, W. B.; Pei, K.; Qin, G.; Zeng, Q. W.; Yang, Z. Q. et al. Hierarchical magnetic network constructed by cofe nanoparticles suspended within “tubes on rods” matrix toward enhanced microwave absorption. Nano-Micro Lett. 2021, 13, 47.

21

Jin, L. Q.; Yi, P. S.; Wan, L.; Hou, J. S.; Chen, P.; Zu, J. Q.; Wei, B.; Yao, Z. J.; Zhou, J. T. Thickness-controllable synthesis of MOF-derived Ni@N-doped carbon hexagonal nanoflakes with dielectric–magnetic synergy toward wideband electromagnetic wave absorption. Chem. Eng. J. 2022, 427, 130940.

22

Tong, Z. Y.; Bi, Y. X.; Ma, M. L.; Liao, Z. J.; Huang, W. B.; Chung, K. L.; Ma, Y.; Wu, G. L.; Qu, Y. L; Pan, C. B. et al. Fabrication of flower-like surface Ni@Co3O4 nanowires anchored on RGO nanosheets for high-performance microwave absorption. Appl. Surf. Sci. 2021, 565, 150483.

23

Shu, J. C.; Cao, W. Q.; Cao, M. S. Diverse metal-organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 2021, 31, 2100470.

24
Morphology-controlled CoNi/C hybrids with bifunctions of efficientanti-corrosion  and  microwave  absorption J. Mater. Sci. Technol. 2022 102 24 35 10.1016/j.jmst.2021.07.003

Ge, J. W.; Cui, Y.; Qian, J. X.; Liu, L.; Meng, F. D.; Wang, F. H. Morphology-controlled CoNi/C hybrids with bifunctions of efficient anti-corrosion and microwave absorption. J. Mater. Sci. Technol. 2022, 102, 24–35.

25

Qiu, Y.; Yang, H. B.; Cheng, Y.; Lin, Y. MOFs derived flower-like nickel and carbon composites with controllable structure toward efficient microwave absorption. Compos. Part A-Appl. S. 2022, 154, 10677.

26

Wen, B.; Yang, H. B.; Lin, Y.; Ma, L.; Qiu, Y.; Hu, F. F.; Zheng, Y. N. Synthesis of core–shell Co@S-doped carbon@mesoporous N-doped carbon nanosheets with a hierarchically porous structure for strong electromagnetic wave absorption. J. Mater. Chem. A 2021, 9, 3567–3575.

27

Qiu, Y.; Yang, H. B.; Cheng, Y.; Wen, B.; Lin, Y. Structure design of Prussian blue analogue derived CoFe@C composite with tunable microwave absorption performance. Appl. Surf. Sci. 2022, 571, 151334.

28

Yu, Y. L.; Wang, M.; Bai, Y. Q.; Zhang, B.; An, L. L.; Zhang, J. Y.; Zhong, B. Tuning the inner hollow structure of lightweight amorphous carbon for enhanced microwave absorption. Chem. Eng. J. 2019, 375, 121914.

29
Constructing a nitrogen-doped carbon and nickel composite derived from a mixed ligand nickel-based a metal-organic framework toward adjustable microwave absorption Nanoscale 2021 13 9204 9216 10.1039/d1nr01607e

Qiu, Y.; Yang, H. B.; Cheng, Y.; Bai, X. Y.; Wen, B.; Lin, Y. Constructing a nitrogen-doped carbon and nickel composite derived from a mixed ligand nickel-based a metal-organic framework toward adjustable microwave absorption. Nanoscale 2021, 13, 9204–9216.

30

Pan, F.; Liu, Z. C.; Deng, B. W.; Dong, Y. Y.; Zhu, X. J.; Huang, C.; Lu, W. Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 2021, 13, 43.

31

Lv, H. L.; Zhou, X. D.; Wu, G. L.; Kara, U. I.; Wang, X. G. Engineering defects in 2D g-C3N4 for wideband, efficient electromagnetic absorption at elevated temperature. J. Mater. Chem. A 2021, 9, 19710–19718.

32

Zhu, Y. Y.; An, S. L.; Sun, X. J.; Lan, D. W.; Cui, J. L.; Zhang, Y. Q.; He, W. X. Core-branched NiCo2S4@CoNi-LDH heterostructure as advanced electrode with superior energy storage performance. Chem. Eng. J. 2020, 383, 123206.

33

Lan, K.; Wei, Q. L.; Wang, R. C.; Xia, Y.; Tan, S. S.; Wang, Y. X.; Elzatahry, A.; Feng, P. Y.; Mai, L. Q.; Zhao, D. Y. Two-dimensional mesoporous heterostructure delivering superior pseudocapacitive sodium storage via bottom−up monomicelle assembly. J. Am. Chem. Soc. 2019, 141, 16755–16762.

34
Magnetic–dielectric synergy and interfacial engineering to design yolk–shell  structured  CoNi@void@C  and CoNi@void@C@MoS2nanocomposites  with  tunable  and  strong  wideband  microwaveabsorption Nano Res. 2022 15 6761 6771 10.1007/s12274-022-4468-2

Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic–dielectric synergy and interfacial engineering to design yolk–shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

35

Wu, F.; Wan, L. Y.; Wang, T.; Tariq, M. R.; Shah, T.; Liu, P.; Zhang, Q. Y.; Zhang, B. L.; Construction of binary assembled MOF-derived nanocages with dual-band microwave absorbing properties. J. Mater. Sci. Technol. 2022, 117, 36–48.

36

Xu, H.; Yin, X.; Zhu, M.; Han, M.; Hou, Z.; Li, X.; Zhang, L.; Cheng, L. Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces. 2017, 9, 6332–6341.

37

Qiu, X.; Wang, L. X.; Zhu, H. L.; Guan, Y. K.; Zhang, Q. T. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale 2017, 9, 7408–7418.

38

Peng, L.; Peng, H. R.; Hung, C. T.; Guo, D. Y.; Duan, L. L.; Ma, B.; Liu, L. L.; Li, W.; Zhao, D. Y. Programmable synthesis of radially gradient-structured mesoporous carbon nanospheres with tunable core–shell architectures. Chem 2021, 7, 1020–1032.

39

Liu, P. B.; Gao, S.; Wang, Y.; Zhou, F. T.; Huang, Y.; Huang, W. H.; Chang, N. H. Core–shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption. Carbon 2020, 170, 503–516.

40

Huang, W. H.; Zhang, X. X.; Zhao, Y. N.; Zhang, J.; Liu, P. B. Hollow N-doped carbon polyhedra embedded Co and Mo2C nanoparticles for high-efficiency and wideband microwave absorption. Carbon 2020, 167, 19–30.

41
 MoS2 wrapped  MOF-derived  N-doped  carbonnanocomposite  with  wideband  electromagnetic  wave  absorption Nano Res. 2022 15 5781 5789 10.1007/s12274-022-4411-6

Luo, J. H.; Feng, M. N.; Dai, Z. Y.; Jiang, C. Y.; Jiang, C. Y.; Yao, W.; Zhai, N. X. MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. 2022, 15, 5781–5789.

42

Duan, Y. P.; Liu, Z.; Jing, H.; Zhang, Y. H.; Li, S. Q. Novel microwave dielectric response of Ni/Co-doped manganese dioxides and their microwave absorbing properties. J. Mater. Chem. 2012, 22, 18291–18299.

43

Liu, Y.; Jia, Z. R.; Zhan, Q. Q.; Dong, Y. H.; Xu, Q, M.; Wu, G. L. Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nano Res. 2022, 15, 5590–5600.

44

Zhao, Y. Z.; Wang, W.; Wang, J. N.; Zhai, J. J.; Lei, X. Y.; Zhao, W.; Li, J. N.; Yang, H. W.; Tian, J. X.; Yan, J. F. Constructing multiple heterogeneous interfaces in the composite of bimetallic MOF-derivatives and rGO for excellent microwave absorption performance. Carbon 2021, 173, 1059–1072.

45

Zhang, C. W.; Peng, Y.; Song, Y.; Li, J. J.; Yin, F. X.; Yuan, Y. Periodic three-dimensional nitrogen-doped mesoporous carbon spheres embedded with Co/Co3O4 nanoparticles toward microwave absorption. ACS Appl. Mater. Inter. 2020, 12, 24102–24111.

46

Zhang, R. X.; Wang, L.; Xu, C. Y.; Liang, C. Y.; Liu, X. H.; Zhang, X. F.; Che, R. C. Vortex tuning magnetization configurations in porous Fe3O4 nanotube with wide microwave absorption frequency. Nano Res. 2022, 15, 6743–6750.

47
Graphene-wrappedmultiloculated  nickel  ferrite:  A  highly  efficient  electromagneticattenuation material for microwave absorbing and green shielding Nano Res. 2022 15 6751 6760 10.1007/s12274-022-4428-x

Wang, Y. C.; Yao, L. H.; Zheng, Q.; Cao, M. S. Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Res. 2022, 15, 6751–6760.

48

Wang, Y. Y.; Sun, W. J.; Lin, H.; Gao, P. P.; Gao, J. F.; Gai, K.; Yan, D. X.; Li, Z. M. Steric stabilizer-based promotion of uniform polyaniline shell for enhanced electromagnetic wave absorption of carbon nanotube/polyaniline hybrids. Compos Part B-Eng. 2020, 199, 108309.

49

Liu, J.; Tao, L. L.; Gao, X. X.; He, X. X.; Wei, B.; Gu, Y. S.; Yao, Z. J.; Zhou, J. T. Morphology-size synergy strategy of SiC@C nanoparticles towards lightweight and efficient microwave absorption. Chem. Eng. J. 2022, 433, 134484.

50

Pan, J. J.; Sun, X.; Jin, Z. Z.; Wang, T.; Zhao, Q. L.; Qu, H. J.; He, J. P. Constructing two-dimensional lamellar monometallic carbon nanocomposites by sodium chloride hard template for lightweight microwave scattering and absorption. Compos. Pt. B-Eng. 2022, 228, 109422.

51

Li, X.; You, W. B.; Xu, C. Y.; Wang, L.; Yang, L. T.; Li, Y. S.; Che, R. C. 3D seed-germination-like mxene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 2021, 13, 157.

52

Xiang, Z.; Zhang, X.; Shi, Y. Y.; Cai, L.; Cheng, J.; Jiang, H.; Zhu, X.; Dong, Y.; Lu, W. Efficient microwave absorption of MOFs derived laminated porous Ni@C nanocomposites with waterproof and infrared shielding versatility. Carbon 2021, 185, 477–490.

53

Wei, B.; Zhou, C. Y.; Yao, Z. J.; Chen, P.; Wang, M. Q.; Li, Z. J.; Zhou, J. T.; Hou, J. S.; Li, W. Encapsulation of high specific surface area red blood cell-like mesoporous carbon spheres by magnetic nanoparticles: A new strategy to realize multiple electromagnetic wave loss mechanism. Carbon 2021, 184, 232–244.

54

Tao, J. Q.; Xu, L. L.; Wan, L.; Hou, J. S.; Yi, P. S.; Chen, P.; Zhou, J. T.; Yao, Z. J. Cubic-like Co/NC composites derived from ZIF-67 with a dual control strategy of size and graphitization degree for microwave absorption. Nanoscale 2021, 13, 12896–12909.

55

Lei, L.; Yao, Z. J.; Zhou, J. T.; Zheng, W. J.; Wei, B.; Zu, J. Q.; Yan, Y. K. Hydrangea-like Ni/NiO/C composites derived from metal-organic frameworks with superior microwave absorption. Carbon 2021, 173, 69–79.

56

Li, J. J.; Zhang, F.; Lu, H. B.; Guo, W. B.; He, X. D.; Yuan, Y. Heterogeneous rod-like Ni@C composites toward strong and stable microwave absorption performance. Carbon 2021, 181, 358–369.

57

Liu, D. W.; Du, Y. C.; Xu, P.; Wang, F. Y.; Wang, Y. H.; Cui, L. R.; Zhao, H. H.; J., H. X. Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption. J. Mater. Chem. A 2021, 9, 5086–5096.

58

Xu, X. Q.; Ran, F. T.; Fan, Z. M.; Cheng, Z. J.; Lv, T.; Shao, L.; Liu, Y. Y. Bimetallic metal-organic framework-derived pomegranate-like nanoclusters coupled with CoNi-doped graphene for strong wideband microwave absorption. ACS Appl. Mater. Inter. 2020, 12, 17882–17892.

59

Wang, Y. Q.; Wang, H. G.; Ye, J. H.; Shi, L. Y.; Feng, X. Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123096.

60

Zhou, J.; Guo, F.; Luo, J. L.; Hao, G. Z.; Liu, G. G.; Hu, Y. B.; Zhang, G. P.; Guo, H.; Zhou, H.; Jiang, W. Designed 3D heterostructure with 0D/1D/2D hierarchy for low-frequency microwave absorption in the S-band. J. Mater. Chem. C. 2022, 10, 1470–1478.

61

Di, X. C.; Wang, Y.; Fu, Y. Q.; Wu, X. M.; Wang, P. Wheat flour-derived nanoporous carbon@ZnFe2O4 hierarchical composite as an outstanding microwave absorber. Carbon 2021, 173, 174–184.

Nano Research
Pages 7769-7777
Cite this article:
Qiu Y, Yang H, Hu F, et al. Two-dimensional CoNi@mesoporous carbon composite with heterogeneous structure toward broadband microwave absorber. Nano Research, 2022, 15(9): 7769-7777. https://doi.org/10.1007/s12274-022-4617-7
Topics:
Part of a topical collection:

1321

Views

63

Crossref

55

Web of Science

57

Scopus

2

CSCD

Altmetrics

Received: 06 April 2022
Revised: 30 May 2022
Accepted: 30 May 2022
Published: 11 July 2022
© Tsinghua University Press 2022
Return