AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synergizing high valence metal sites and amorphous/crystalline interfaces in electrochemical reconstructed CoFeOOH heterostructure enables efficient oxygen evolution reaction

Xiangjian LiuRui LiuJinming WangYarong LiuLiuhua LiWenxiu Yang( )Xiao FengBo Wang( )
Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
Show Author Information

Graphical Abstract

The CoFeOOH nanosheet/Ni foam (CoFeOOHNS/NF) with abundant high valence metal and amorphous/crystalline heterostructure interfaces was prepared by an electrochemical reconstructed method. The resulting CoFeOOHNS/NF electrode exhibited excellent oxygen evolution reaction (OER) performance and comparable water splitting activity in alkaline solution.

Abstract

Cobalt hydroxide nanosheet is among the most popular oxygen evolution reaction (OER) catalyst yet still suffers from sluggish catalytic kinetics, limited activity, and poor stability. Here, an efficient in situ electrochemical reconstructed CoFe-hydroxides derived OER electrocatalyst was reported. The introduction of Fe promoted the transformation of Co2+ into Co3+ in CoFe-hydroxides nanosheet, along with the formation of abundant amorphous/crystalline interfaces. Thanks for the retained nanosheet microstructure, high valence Co3+ and Fe3+ species, and the amorphous/crystalline heterostructure interfaces, the as-designed electrochemical reconstructed CoFeOOH nanosheet/Ni foam (CoFeOOHNS/NF) electrode delivers 100 mA·cm−2 in alkaline at an overpotential of 275 mV and can stably electrocatalyze water oxidation for at least 35 h at 100 mA·cm−2. Meanwhile, the alkaline full water splitting electrolyzer achieves a current density of 10 mA·cm−2 only at 1.522 V for CoFeOOHNS/NF‖Pt/C/NF, which is much lower than that of Ru/C/NF‖Pt/C/NF (1.655 V@10 mA·cm−2). This work paves the way for in-situ synergetic modification engineering of electrochemical active components.

Electronic Supplementary Material

Download File(s)
12274_2022_4618_MOESM1_ESM.pdf (1.5 MB)

References

1

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

2

Yang, W. X.; Wang, Z. C.; Zhang, W. Y.; Guo, S. J. Electronic-structure tuning of water-splitting nanocatalysts. Trends Chem. 2019, 1, 259–271.

3

Li, S.; Chen, B. B.; Wang, Y.; Ye, M. Y.; Van Aken, P. A.; Cheng, C.; Thomas, A. Oxygen-evolving catalytic atoms on metal carbides. Nat. Mater. 2021, 20, 1240–1247.

4

Wu, T. Z.; Ren, X.; Sun, Y. M.; Sun, S. N.; Xian, G. Y.; Scherer, G. G.; Fisher, A. C.; Mandler, D.; Ager, J. W.; Grimaud, A. et al. Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. Nat. Commun. 2021, 12, 3634.

5
DionigiF.ZengZ. H.SinevI.MerzdorfT.DeshpandeS.LopezM. B.KunzeS.ZegkinoglouI.SarodnikH.FanD. X. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolutionNat. Commun.202011252210.1038/s41467-020-16237-1

Dionigi, F.; Zeng, Z. H.; Sinev, I.; Merzdorf, T.; Deshpande, S.; Lopez, M. B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D. X. et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 2020, 11, 2522.

6

McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347–4357.

7

Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.

8

Li, Y. G.; Wang, Y.; Lu, J. M; Yang, B.; San, X. Y.; Wu, Z. S. 2D intrinsically defective RuO2/graphene heterostructures as all-pH efficient oxygen evolving electrocatalysts with unprecedented activity. Nano Energy 2020, 78, 105185.

9

Wu, C. C.; Li, H. Q.; Xia, Z. X.; Zhang, X. M.; Deng, R. Y.; Wang, S. L.; Sun, G. Q. NiFe layered double hydroxides with unsaturated metal sites via precovered surface strategy for oxygen evolution reaction. ACS Catal. 2020, 10, 11127–11135.

10

Yu, L.; Wu, L. B.; Song, S. W.; McElhenny, B.; Zhang, F. H.; Chen, S.; Ren, Z. F. Hydrogen generation from seawater electrolysis over a sandwich-like NiCoN|NixP|NiCoN microsheet array catalyst. ACS Energy Lett. 2020, 5, 2681–2689.

11

Gao, Z. W.; Ma, T.; Chen, X. M.; Liu, H.; Cui, L.; Qiao, S. Z.; Yang, J.; Du, X. W. Strongly coupled CoO nanoclusters/CoFe LDHs hybrid as a synergistic catalyst for electrochemical water oxidation. Small 2018, 14, 1800195.

12

Hu, L. Y.; Zeng, X.; Wei, X. Q.; Wang, H. J.; Wu, Y.; Gu, W. L.; Shi, L.; Zhu, C. Z. Interface engineering for enhancing electrocatalytic oxygen evolution of NiFe LDH/NiTe heterostructures. Appl. Catal. B: Environ. 2020, 273, 119014.

13

Zhao, Y.; Gao, Y. X.; Chen, Z.; Li, Z. J.; Ma, T. Y.; Wu, Z. X.; Wang, L. Trifle Pt coupled with nife hydroxide synthesized via corrosion engineering to boost the cleavage of water molecule for alkaline water-splitting. Appl. Catal. B: Environ. 2021, 297, 120395.

14

Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

15

Zhang, H.; Li, H. Y.; Akram, B.; Wang, X. Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Res. 2019, 12, 1327–1331.

16

Aqueel Ahmed, A. T.; Hou, B.; Chavan, H. S.; Jo, Y.; Cho, S.; Kim, J.; Pawar, S. M.; Cha, S.; Inamdar, A. I.; Kim, H. et al. Self-assembled nanostructured CuCo2O4 for electrochemical energy storage and the oxygen evolution reaction via morphology engineering. Small 2018, 14, 1800742.

17

Deng, S. Z.; Yuan, Z. S.; Tie, Z. W.; Wang, C. D.; Song, L.; Niu, Z. Q. Electrochemically induced metal-organic-framework-derived amorphous V2O5 for superior rate aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 22002–22006.

18

Zhai, P. L.; Zhang, Y. X.; Wu, Y. Z.; Gao, J. F.; Zhang, B.; Cao, S. Y.; Zhang, Y. T.; Li, Z. W.; Sun, L. C.; Hou, J. G. Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting. Nat. Commun. 2020, 11, 5462.

19

Zhang, W.; Jiang, X.; Dong, Z. M.; Wang, J.; Zhang, N.; Liu, J.; Xu, G. R.; Wang, L. Porous Pd/NiFeOx nanosheets enhance the pH-universal overall water splitting. Adv. Funct. Mater. 2021, 31, 2107181.

20

Ma, F. X.; Lyu, F. C.; Diao, Y. X.; Zhou, B. B.; Wu, J. H.; Kang, F. W.; Li, Z. B.; Xiao, X. F.; Wang, P.; Lu, J. et al. Self-templated formation of twin-like metal-organic framework nanobricks as pre-catalysts for efficient water oxidation. Nano Res. 2022, 15, 2887–2894.

21

Yu, J. H.; Cheng, G. Z.; Luo, W. 3D mesoporous rose-like nickel-iron selenide microspheres as advanced electrocatalysts for the oxygen evolution reaction. Nano Res. 2018, 11, 2149–2158.

22

Gao, X. R.; Liu, X. M.; Zang, W. J.; Dong, H. L.; Pang, Y. J.; Kou, Z. K.; Wang, P. Y.; Pan, Z. H.; Wei, S. R.; Mu, S. C. et al. Synergizing in-grown Ni3N/Ni heterostructured core and ultrathin Ni3N surface shell enables self-adaptive surface reconfiguration and efficient oxygen evolution reaction. Nano Energy 2020, 78, 105355.

23

Zhang, J.; He, W. H.; Aiyappa, H. B.; Quast, T.; Dieckhöfer, S.; Öhl, D.; Junqueira, J. R. C.; Chen, Y. T.; Masa, J.; Schuhmann, W. Hollow CeO2@Co2N nanosheets derived from Co-ZIF-L for boosting the oxygen evolution reaction. Adv. Mater. Interfaces 2021, 8, 2100041.

24

Quan, L.; Li, S. H.; Zhao, Z. P.; Liu, J. Q.; Ran, Y.; Cui, J. Y.; Lin, W.; Yu, X. L.; Wang, L.; Zhang, Y. H. et al. Hierarchically assembling CoFe prussian blue analogue nanocubes on CoP nanosheets as highly efficient electrocatalysts for overall water splitting. Small Methods 2021, 5, 2100125.

25

Wang, Z. C.; Liu, H. L.; Ge, R. X.; Ren, X.; Ren, J.; Yang, D. J.; Zhang, L. X.; Sun, X. P. Phosphorus-doped Co3O4 nanowire array: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 2018, 8, 2236–2241.

26

Feng, K.; Zhang, D.; Liu, F. F.; Li, H.; Xu, J. B.; Xia, Y. J.; Li, Y. Y.; Lin, H. P.; Wang, S. A.; Shao, M. M. et al. Highly efficient oxygen evolution by a thermocatalytic process cascaded electrocatalysis over sulfur-treated Fe-based metal-organic-frameworks. Adv. Energy Mater. 2020, 10, 2000184.

27

Dai, T. Y.; Zhang, X.; Sun, M. Z.; Huang, B. L.; Zhang, N.; Da, P. F.; Yang, R.; He, Z. D.; Wang, W.; Xi, P. X. et al. Uncovering the promotion of CeO2/CoS1.97 heterostructure with specific spatial architectures on oxygen evolution reaction. Adv. Mater. 2021, 33, 2102593.

28

An, L.; Feng, J. R.; Zhang, Y.; Wang, R.; Liu, H. W.; Wang, G. C.; Cheng, F. Y.; Xi, P. X. Epitaxial heterogeneous interfaces on N-NiMoO4/NiS2 nanowires/nanosheets to boost hydrogen and oxygen production for overall water splitting. Adv. Funct. Mater. 2019, 29, 1805298.

29

Zhai, P. L.; Xia, M. Y.; Wu, Y. Z.; Zhang, G. H.; Gao, J. F.; Zhang, B.; Cao, S. Y.; Zhang, Y. T.; Li, Z. W.; Fan, Z. Z. et al. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 2021, 12, 4587.

30

Cui, B. H.; Hu, Z.; Liu, C.; Liu, S. L.; Chen, F. S.; Hu, S.; Zhang, J. F.; Zhou, W.; Deng, Y. D.; Qin, Z. B. et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149–1155.

31

Wu, H.; Lu, Q.; Zhang, J. F.; Wang, J. J.; Han, X. P.; Zhao, N. Q.; Hu, W. B.; Li, J. J.; Chen, Y. N.; Deng, Y. D. Thermal shock-activated spontaneous growing of nanosheets for overall water splitting. Nanomicro Lett 2020, 12, 162.

32

Wu, Y. J.; Yang, J.; Tu, T. X.; Li, W. Q.; Zhang, P. F.; Zhou, Y.; Li, J. F.; Li, J. T.; Sun, S. G. Evolution of cationic vacancy defects: A motif for surface restructuration of OER precatalyst. Angew. Chem., Int. Ed. 2021, 60, 26829–26836.

33

Gao, L. K.; Cui, X.; Sewell, C. D.; Li, J.; Lin, Z. Q. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chem. Soc. Rev. 2021, 50, 8428–8469.

34

Wang, J.; Kim, S. J.; Liu, J. P.; Gao, Y.; Choi, S.; Han, J.; Shin, H.; Jo, S.; Kim, J.; Ciucci, F. et al. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 2021, 4, 212–222.

35

Xu, Q. C.; Jiang, H.; Duan, X. Z.; Jiang, Z.; Hu, Y. J.; Boettcher, S. W.; Zhang, W. Y.; Guo, S. J.; Li, C. Z. Fluorination-enabled reconstruction of NiFe electrocatalysts for efficient water oxidation. Nano Lett. 2021, 21, 492–499.

36

Zhuang, L. Z.; Jia, Y.; He, T. W.; Du, A. J.; Yan, X. C.; Ge, L.; Zhu, Z. H.; Yao, X. D. Tuning oxygen vacancies in two-dimensional iron-cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity. Nano Res. 2018, 11, 3509–3518.

37

Stevens, M. B.; Enman, L. J.; Korkus, E. H.; Zaffran, J.; Trang, C. D. M.; Asbury, J.; Kast, M. G.; Toroker, M. C.; Boettcher, S. W. Ternary Ni-Co-Fe oxyhydroxide oxygen evolution catalysts: Intrinsic activity trends, electrical conductivity, and electronic band structure. Nano Res. 2019, 12, 2288–2295.

38

Liu, C.; Zhou, W.; Zhang, J. F.; Chen, Z. L.; Liu, S. L.; Zhang, Y.; Yang, J. X.; Xu, L. Y.; Hu, W. B.; Chen, Y. N. et al. Air-assisted transient synthesis of metastable nickel oxide boosting alkaline fuel oxidation reaction. Adv. Energy Mater. 2020, 10, 2001397.

39

Cui, B. H.; Liu, C.; Zhang, J. F.; Lu, J. J.; Liu, S. L.; Chen, F. S.; Zhou, W.; Qian, G. Y.; Wang, Z.; Deng, Y. D. et al. Waste to wealth: Defect-rich Ni-incorporated spent LiFePO4 for efficient oxygen evolution reaction. Sci. China Mater. 2021, 64, 2710–2718.

40

Pan, Y.; Sun, K. A.; Lin, Y.; Cao, X.; Cheng, Y. S.; Liu, S. J.; Zeng, L. Y.; Cheong, W. C.; Zhao, D.; Wu, K. L. et al. Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy 2019, 56, 411–419.

41

Ling, T.; Jaroniec, M.; Qiao, S. Z. Recent progress in engineering the atomic and electronic structure of electrocatalysts via cation exchange reactions. Adv. Mater. 2020, 32, 2001866.

42

Chung, D. Y.; Lopes, P. P.; Martins, P. F. B. D.; He, H. Y.; Kawaguchi, T.; Zapol, P.; You, H.; Tripkovic, D.; Strmcnik, D.; Zhu, Y. S. et al. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat. Energy 2020, 5, 222–230.

43

Ye, S. H.; Shi, Z. X.; Feng, J. X.; Tong, Y. X.; Li, G. R. Activating CoOOH porous nanosheet arrays by partial iron substitution for efficient oxygen evolution reaction. Angew. Chem., Int. Ed. 2018, 57, 2672–2676.

44

Huang, Z. F.; Song, J. J.; Du, Y. H.; Xi, S. B.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang, X. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 2019, 4, 329–338.

45

Ling, X. T.; Du, F.; Zhang, Y. T.; Shen, Y.; Gao, W.; Zhou, B.; Wang, Z. Y.; Li, G. L.; Li, T.; Shen, Q. et al. Bimetallic oxyhydroxide in situ derived from an Fe2Co-MOF for efficient electrocatalytic oxygen evolution. J. Mater. Chem. A 2021, 9, 13271–13278.

46

Kang, T.; Kim, K.; Kim, M.; Kim, J. Electronic structure modulation of nickel hydroxide and tungsten nanoparticles for fast structure transformation and enhanced oxygen evolution reaction activity. Chem. Eng. J. 2021, 418, 129403.

47

Yan, Z. H.; Sun, H. M.; Chen, X.; Liu, H. H.; Zhao, Y. R.; Li, H. X.; Xie, W.; Cheng, F. Y.; Chen, J. Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nat. Commun. 2018, 9, 2373.

48

Kuang, M.; Zhang, J. M.; Liu, D. B.; Tan, H. T.; Dinh, K. N.; Yang, L.; Ren, H.; Huang, W. J.; Fang, W.; Yao, J. D. et al. Amorphous/crystalline heterostructured cobalt-vanadium-iron (oxy)hydroxides for highly efficient oxygen evolution reaction. Adv. Energy Mater. 2020, 10, 2002215.

49

Yang, N. L.; Cheng, H. F.; Liu, X. Z.; Yun, Q. B.; Chen, Y.; Li, B.; Chen, B.; Zhang, Z. C.; Chen, X. P.; Lu, Q. P. et al. Amorphous/crystalline hetero-phase Pd nanosheets: One-pot synthesis and highly selective hydrogenation reaction. Adv. Mater. 2018, 30, 1803234.

50

Liu, J. Z.; Nai, J. W.; You, T. T.; An, P. F.; Zhang, J.; Ma, G. S.; Niu, X. G.; Liang, C. Y.; Yang, S. H.; Guo, L. The flexibility of an amorphous cobalt hydroxide nanomaterial promotes the electrocatalysis of oxygen evolution reaction. Small 2018, 14, 1703514.

51

Huang, L.; Gao, G.; Zhang, H.; Chen, J. X.; Fang, Y. X.; Dong, S. J. Self-dissociation-assembly of ultrathin metal-organic framework nanosheet arrays for efficient oxygen evolution. Nano Energy 2020, 68, 104296.

52

Wang, Z. Y.; Wang, L.; Liu, S.; Li, G. R.; Gao, X. P. Conductive CoOOH as carbon-free sulfur immobilizer to fabricate sulfur-based composite for lithium-sulfur battery. Adv. Funct. Mater. 2019, 29, 1901051.

53

Zhang, Z.; Li, X. P.; Zhong, C.; Zhao, N. Q.; Deng, Y. D.; Han, X. P.; Hu, W. B. Spontaneous synthesis of silver-nanoparticle-decorated transition-metal hydroxides for enhanced oxygen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 7245–7250.

54

Lv, L.; Chang, Y. X.; Ao, X.; Li, Z. S.; Li, J. G.; Wu, Y.; Xue, X. Y.; Cao, Y. L.; Hong, G.; Wang, C. D. Interfacial electron transfer on heterostructured Ni3Se4/FeOOH endows highly efficient water oxidation in alkaline solutions. Mater. Today Energy 2020, 17, 100462.

55

Peng, M.; Qiao, Y. J.; Luo, M.; Wang, M. J.; Chu, S. F.; Zhao, Y.; Liu, P.; Liu, J.; Tan, Y. W. Bioinspired Fe3C@C as highly efficient electrocatalyst for nitrogen reduction reaction under ambient conditions. ACS Appl. Mater. Interfaces 2019, 11, 40062–40068.

56

Chen, H. Y.; Chen, J. X.; Ning, P.; Chen, X.; Liang, J. H.; Yao, X.; Chen, D.; Qin, L. S.; Huang, Y. X.; Wen, Z. H. 2D heterostructure of amorphous CoFeB coating black phosphorus nanosheets with optimal oxygen intermediate absorption for improved electrocatalytic water oxidation. ACS Nano 2021, 15, 12418–12428.

57

Li, F.; Du, J.; Li, X. N.; Shen, J. Y.; Wang, Y.; Zhu, Y.; Sun, L. C. Integration of FeOOH and zeolitic imidazolate framework-derived nanoporous carbon as an efficient electrocatalyst for water oxidation. Adv. Energy Mater. 2018, 8, 1702598.

58

Zhang, P. L.; Li, L.; Nordlund, D.; Chen, H.; Fan, L. Z.; Zhang, B. B.; Sheng, X.; Daniel, Q.; Sun, L. C. Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation. Nat. Commun. 2018, 9, 381.

59

Suryawanshi, M. P.; Ghorpade, U. V.; Shin, S. W.; Suryawanshi, U. P.; Jo, E.; Kim, J. H. Hierarchically coupled Ni: FeOOH nanosheets on 3D N-doped graphite foam as self-supported electrocatalysts for efficient and durable water oxidation. ACS Catal. 2019, 9, 5025–5034.

60

Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 2015, 137, 3638–3648.

61

Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Trudel, S.; Berlinguette, C. P. Water oxidation catalysis: Electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 2013, 135, 11580–11586.

62

Dionigi, F.; Zhu, J.; Zeng, Z. H.; Merzdorf, T.; Sarodnik, H.; Gliech, M.; Pan, L. J.; Li, W. X.; Greeley, J.; Strasser, P. Intrinsic electrocatalytic activity for oxygen evolution of crystalline 3d-transition metal layered double hydroxides. Angew. Chem., Int. Ed. 2021, 60, 14446–14457.

63

Shang, L.; Zhao, Y. X.; Kong, X. Y.; Shi, R.; Waterhouse, G. I. N.; Wen, L. P.; Zhang, T. R. Underwater superaerophobic Ni nanoparticle-decorated nickel-molybdenum nitride nanowire arrays for hydrogen evolution in neutral media. Nano Energy 2020, 78, 105375.

64

Yong, J. L.; Chen, F.; Fang, Y.; Huo, J. L.; Yang, Q.; Zhang, J. Z.; Bian, H.; Hou, X. Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti- or capturing bubbles. ACS Appl. Mater. Interfaces 2017, 9, 39863–39871.

65

Xu, W. W.; Lu, Z. Y.; Sun, X. M.; Jiang, L.; Duan, X. Superwetting electrodes for gas-involving electrocatalysis. Acc. Chem. Res. 2018, 51, 1590–1598.

66

Wang, L. P.; Zhu, Y. J.; Wen, Y. Z.; Li, S. Y.; Cui, C. Y.; Ni, F. L.; Liu, Y. X.; Lin, H. P.; Li, Y. Y.; Peng, H. S. et al. Regulating the local charge distribution of Ni active sites for the urea oxidation reaction. Angew. Chem., Int. Ed. 2021, 60, 10577–10582.

67

Wang, Z. L.; Liu, W. J.; Hu, Y. M.; Guan, M. L.; Xu, L.; Li, H. P.; Bao, J.; Li, H. M. Cr-doped CoFe layered double hydroxides: Highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea. Appl. Catal. B: Environ. 2020, 272, 118959.

68

Zhu, B. J.; Liang, Z. B.; Zou, R. Q. Designing advanced catalysts for energy conversion based on urea oxidation reaction. Small 2020, 16, 1906133.

Nano Research
Pages 8857-8864
Cite this article:
Liu X, Liu R, Wang J, et al. Synergizing high valence metal sites and amorphous/crystalline interfaces in electrochemical reconstructed CoFeOOH heterostructure enables efficient oxygen evolution reaction. Nano Research, 2022, 15(10): 8857-8864. https://doi.org/10.1007/s12274-022-4618-6
Topics:

1014

Views

25

Crossref

22

Web of Science

21

Scopus

1

CSCD

Altmetrics

Received: 12 April 2022
Revised: 26 May 2022
Accepted: 31 May 2022
Published: 26 July 2022
© Tsinghua University Press 2022
Return