Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The practical application of aqueous zinc-ion batteries (ZIBs) is limited by the growth of dendrite during cycling. How to rationally design and construct an efficient artificial interface layer by selecting suitable building units to control the dendrite growth is still a challenge. Herein, a porous boron nitride nanofibers (BNNFs) artificial interface layer was constructed, and its working mechanisms were revealed by both experiments (electrochemical characterization and in-situ optical microscope) and theoretical calculations (density functional theory (DFT) and finite element simulation). The insulated BNNFs layer leads to position-selected electroplating between BNNFs layer and Zn foil. The unique negatively charged surface and porosity of BNNFs contribute to the self-concentrating and pumping features of Zn ions, thus suppressing the concentration polarization on the Zn surface. Additionally, densely arranged porous BNNFs have a shunt effect on Zn ions diffusion, resulting in uniform distributions of Zn ions and electric field. The introduced BNNFs layer not only makes Zn deposition uniform but also restrains the dendrite growth, therefore the Zn+BNNFs symmetric cells perform ultralong stable cycling for 1,600 h at 1 mA·cm–2 and more than 500 h at 10 mA·cm–2. Moreover, Zn+BNNFs || CNT/MnO2 battery presents a high initial capacity of 293.6 mAh·g–1 and an excellent retention rate of 97.6% at 1 A·g–1 after 400 cycles, while Zn || CNT/MnO2 battery only maintains 37.1% discharge capacity. This artificial interface layer with negatively charged BNNFs exhibits excellent dendrite-inhibit and may have enormous prospects in other metal batteries.
Wang, Z.; Huang, J. H.; Guo, Z. W.; Dong, X. L.; Liu, Y.; Wang, Y. G.; Xia, Y. Y. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 2019, 3, 1289–1300.
Bayaguud, A.; Luo, X.; Fu, Y. P.; Zhu, C. B. Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 2020, 5, 3012–3020.
Zhang, X. T.; Li, J. X.; Liu, D. Y.; Liu, M. K.; Zhou, T. S.; Qi, K. W.; Shi, L.; Zhu, Y. C.; Qian, Y. T. Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ. Sci. 2021, 14, 3120–3129.
Huang, J. H.; Dong, X. L.; Guo, Z. W.; Ma, Y. Y.; Wang, Y. R.; Wang, Y. G. Electrochemical energy storage and conversion based on organic electrodes. J. Electrochem. 2020, 26, 486–494.
Huang, J. T.; Zhou, J.; Liang, S. Q. Guest pre-intercalation strategy to boost the electrochemical performance of aqueous zinc-ion battery cathodes. Acta Phys. - Chim. Sin. 2021, 37, 2005020.
Zhi, J.; Li, S. K.; Han, M.; Chen, P. Biomolecule-guided cation regulation for dendrite-free metal anodes. Sci. Adv. 2020, 6, eabb1342.
Wang, P. J.; Xie, X. S.; Xing, Z. Y.; Chen, X. H.; Fang, G. Z.; Lu, B. G.; Zhou, J.; Liang, S. Q.; Fan, H. J. Mechanistic insights of Mg2+-electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors. Adv. Energy Mater. 2021, 11, 2101158.
Zhang, S. J.; Hao, J. N.; Luo, D.; Zhang, P. F.; Zhang, B. K.; Davey, K.; Lin, Z.; Qiao, S. Z. Dual-function electrolyte additive for highly reversible Zn anode. Adv. Energy Mater. 2021, 11, 2102010.
Yao, R.; Qian, L.; Sui, Y. M.; Zhao, G. Y.; Guo, R. S.; Hu, S. Y.; Liu, P.; Zhu, H. J.; Wang, F. C.; Zhi, C. Y. et al. A versatile cation additive enabled highly reversible zinc metal anode. Adv. Energy Mater. 2022, 12, 2102780.
Zhang, Q.; Luan, J. Y.; Fu, L.; Wu, S. G.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. 2019, 131, 15988–15994.
Zhang, Q.; Ma, Y. L.; Lu, Y.; Zhou, X. Z.; Lin, L.; Li, L.; Yan, Z. H.; Zhao, Q.; Zhang, K.; Chen, J. Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode. Angew. Chem. 2021, 133, 23545–23552.
Liu, S.; Lei, T.; Song, Q. Q.; Zhu, J.; Zhu, C. B. High energy, long cycle, and superior low temperature performance aqueous Na-Zn hybrid batteries enabled by a low-cost and protective interphase film-forming electrolyte. ACS Appl. Mater. Interfaces 2022, 14, 11425–11434.
Zhu, Y. P.; Yin, J.; Zheng, X. L.; Emwas, A. H.; Lei, Y. J.; Mohammed, O. F.; Cui, Y.; Alshareef, H. N. Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy Environ. Sci. 2021, 14, 4463–4473.
Wu, X. Y.; Xu, Y. K.; Zhang, C.; Leonard, D. P.; Markir, A.; Lu, J.; Ji, X. L. Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. J. Am. Chem. Soc. 2019, 141, 6338–6344.
Guo, W. B.; Cong, Z. F.; Guo, Z. H.; Chang, C. Y.; Liang, X. Q.; Liu, Y. D.; Hu, W. G.; Pu, X. Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries. Energy Storage Mater. 2020, 30, 104–112.
Zeng, Y. X.; Zhang, X. Y.; Qin, R. F.; Liu, X. Q.; Fang, P. P.; Zheng, D. Z.; Tong, Y. X.; Lu, X. H. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 2019, 31, 1903675.
Zhang, N. N.; Huang, S.; Yuan, Z. S.; Zhu, J. C.; Zhao, Z. F.; Niu, Z. Q. Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem. , Int. Ed. 2021, 60, 2861–2865.
Li, X. L.; Li, M.; Luo, K.; Hou, Y.; Li, P.; Yang, Q.; Huang, Z. D.; Liang, G. J.; Chen, Z.; Du, S. Y. et al. Lattice matching and halogen regulation for synergistically induced uniform zinc electrodeposition by halogenated Ti3C2 MXenes. ACS Nano 2022, 16, 813–822.
Xie, F. X.; Li, H.; Wang, X. S.; Zhi, X.; Chao, D. L.; Davey, K.; Qiao, S. Z. Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv. Energy Mater. 2021, 11, 2003419.
Hao, J. N.; Li, X. L.; Zhang, S. L.; Yang, F. H.; Zeng, X. H.; Zhang, S.; Bo, G. Y.; Wang, C. S.; Guo, Z. P. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 2020, 30, 2001263.
Kang, L. T.; Cui, M. W.; Jiang, F. Y.; Gao, Y. F.; Luo, H. J.; Liu, J. J.; Liang, W.; Zhi, C. Y. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 2018, 8, 1801090.
Hao, J. N.; Li, B.; Li, X. L.; Zeng, X. H.; Zhang, S. L.; Yang, F. H.; Liu, S. L.; Li, D.; Wu, C.; Guo, Z. P. An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 2020, 32, 2003021.
Kim, J. Y.; Liu, G. C.; Shim, G. Y.; Kim, H.; Lee, J. K. Functionalized Zn@ZnO hexagonal pyramid array for dendrite-free and ultrastable zinc metal anodes. Adv. Funct. Mater. 2020, 30, 2004210.
Zhao, R. R.; Yang, Y.; Liu, G. X.; Zhu, R. J.; Huang, J. B.; Chen, Z. Y.; Gao, Z. H.; Chen, X.; Qie, L. Redirected Zn electrodeposition by an anti-corrosion elastic constraint for highly reversible Zn anodes. Adv. Funct. Mater. 2021, 31, 2001867.
Zhou, S.; Wang, Y. P.; Lu, H. T.; Zhang, Y. F.; Fu, C. Y.; Usman, I.; Liu, Z. X.; Feng, M. Y.; Fang, G. Z.; Cao, X. X. et al. Anti-corrosive and Zn-ion-regulating composite interlayer enabling long-life Zn metal anodes. Adv. Funct. Mater. 2021, 31, 2104361.
Liu, P. G.; Zhang, Z. Y.; Hao, R.; Huang, Y. P.; Liu, W. F.; Tan, Y. Y.; Li, P. L.; Yan, J.; Liu, K. Y. Ultra-highly stable zinc metal anode via 3D-printed g-C3N4 modulating interface for long life energy storage systems. Chem. Eng. J. 2021, 403, 126425.
Liu, M. Q.; Yang, L. Y.; Liu, H.; Amine, A.; Zhao, Q. H.; Song, Y. L.; Yang, J. L.; Wang, K.; Pan, F. Artificial solid-electrolyte interface facilitating dendrite-free zinc metal anodes via nanowetting effect. ACS Appl. Mater. Interfaces 2019, 11, 32046–32051.
Yuksel, R.; Buyukcakir, O.; Seong, W. K.; Ruoff, R. S. Metal-organic framework integrated anodes for aqueous zinc-ion batteries. Adv. Energy Mater. 2020, 10, 1904215.
Zhao, Z. D.; Wang, R.; Peng, C. X.; Chen, W. J.; Wu, T. Q.; Hu, B.; Weng, W. J.; Yao, Y.; Zeng, J. X.; Chen, Z. H. et al. Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat. Commun. 2021, 12, 6606.
Zhao, Z. M.; Zhao, J. W.; Hu, Z. L.; Li, J. D.; Li, J. J.; Zhang, Y. J.; Wang, C.; Cui, G. L. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 2019, 12, 1938–1949.
Zhu, M. S.; Hu, J. P.; Lu, Q. Q.; Dong, H. Y.; Karnaushenko, D. D.; Becker, C.; Karnaushenko, D.; Li, Y.; Tang, H. M.; Qu, Z. et al. A patternable and in situ formed polymeric zinc blanket for a reversible zinc anode in a skin-mountable microbattery. Adv. Mater. 2021, 33, 2007497.
Hieu, L. T.; So, S.; Kim, I. T.; Hur, J. Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life. Chem. Eng. J. 2021, 411, 128584.
Chen, P.; Yuan, X. H.; Xia, Y. B.; Zhang, Y.; Fu, L. J.; Liu, L. L.; Yu, N. F.; Huang, Q. H.; Wang, B.; Hu, X. W. et al. An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries. Adv. Sci. 2021, 8, 2100309.
Yang, H. J.; Chang, Z.; Qiao, Y.; Deng, H.; Mu, X. W.; He, P.; Zhou, H. S. Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. , Int. Ed. 2020, 59, 9377–9381.
Hu, J. L.; Tian, J.; Li, C. L. Nanostructured carbon nitride polymer-reinforced electrolyte to enable dendrite-suppressed lithium metal batteries. ACS Appl. Mater. Interfaces 2017, 9, 11615–11625.
Yang, Q. F.; Cui, M. N.; Hu, J. L.; Chu, F. L.; Zheng, Y. J.; Liu, J. J.; Li, C. L. Ultrathin defective C-N coating to enable nanostructured Li plating for Li metal batteries. ACS Nano 2020, 14, 1866–1878.
Hu, J. L.; Chen, K. Y.; Yao, Z. G.; Li, C. L. Unlocking solid-state conversion batteries reinforced by hierarchical microsphere stacked polymer electrolyte. Sci. Bull. 2021, 66, 694–707.
Liu, S. L.; Mao, J. F.; Pang, W. K.; Vongsvivut, J.; Zeng, X. H.; Thomsen, L.; Wang, Y. Y.; Liu, J. W.; Li, D.; Guo, Z. P. Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries. Adv. Funct. Mater. 2021, 31, 2104281.
Zeng, X. H.; Mao, J. F.; Hao, J. N.; Liu, J. T.; Liu, S. L.; Wang, Z. J.; Wang, Y. Y.; Zhang, S. L.; Zheng, T.; Liu, J. W. et al. Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 2021, 33, 2007416.
Zeng, X. H.; Xie, K. X.; Liu, S. L.; Zhang, S. L.; Hao, J. N.; Liu, J. T.; Pang, W. K.; Liu, J. W.; Rao, P. H.; Wang, Q. H. et al. Bio-inspired design of an in situ multifunctional polymeric solid-electrolyte interphase for Zn metal anode cycling at 30 mA·cm–2 and 30 mAh·cm–2. Energy Environ. Sci. 2021, 14, 5947–5957.
Zuo, Y.; Wang, K.; Pei, P.; Wei, M.; Liu, X.; Xiao, Y.; Zhang, P. Zinc dendrite growth and inhibition strategies. Mater. Today Energy 2021, 20, 100692.
Song, Q. Q.; Fang, Y.; Liu, Z. Y.; Li, L. L.; Wang, Y. R.; Liang, J. L.; Huang, Y.; Lin, J.; Hu, L.; Zhang, J. et al. The performance of porous hexagonal BN in high adsorption capacity towards antibiotics pollutants from aqueous solution. Chem. Eng. J. 2017, 325, 71–79.
Liang, J. L.; Song, Q. Q.; Wu, J. H.; Lei, Q.; Li, J.; Zhang, W.; Huang, Z. M.; Kang, T. X.; Xu, H.; Wang, P. et al. Anchoring copper single atoms on porous boron nitride nanofiber to boost selective reduction of nitroaromatics. ACS Nano 2022, 16, 4152–4161.
Zhang, Q.; Luan, J. Y.; Fu, L.; Wu, S. G.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. , Int. Ed. 2019, 58, 15841–15847.
Pei, A.; Zheng, G. Y.; Shi, F. F.; Li, Y. Z.; Cui, Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 2017, 17, 1132–1139.
Wang, N.; Dong, X. L.; Wang, B. L.; Guo, Z. W.; Wang, Z.; Wang, R. H.; Qiu, X.; Wang, Y. G. Zinc-organic battery with a wide operation-temperature window from –70 to 150 °C. Angew. Chem. 2020, 132, 14685–14691.
Li, B.; Zhang, X. T.; Wang, T. T.; He, Z. X.; Lu, B. G.; Liang, S. Q.; Zhou, J. Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 2022, 14, 6.
Zhao, P.; Yang, B. J.; Chen, J. T.; Lang, J. W.; Zhang, T. Y.; Yan, X. B. A safe, high-performance, and long-cycle life zinc-ion hybrid capacitor based on three-dimensional porous activated carbon. Acta Phys. - Chim. Sin. 2020, 36, 1904050.