AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Nanosystem-mediated lactate modulation in the tumor micro environment for enhanced cancer therapy

Jingjing Gu1,§Jiuyuan Sun2,§Ying Liu1Gaowei Chong1Yongyong Li2( )Haiqing Dong1( )
Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China

§ Jingjing Gu and Jiuyuan Sun contributed equally to this work.

Show Author Information

Graphical Abstract

The glycolytic metabolite waste lactate, as a generalist, plays an important biological role in cancer progression. We systematically elaborate the design considerations of nanosystems targeting lactate modulation involved production, transport, depletion and multitarget for enhanced cancer therapy.

Abstract

Metabolic reprogramming allows tumor cells to prefer aerobic glycolysis as the main energy source, resulting in the massive accumulation of lactate in the tumor microenvironment (TME). It is found that lactate is no longer a waste product produced by glycolysis, but plays an important role in cancer progression. The modulation of lactate in the TME has become a promising target for cancer therapy. Although many small molecular inhibitors modulating the production or transport of lactate have appeared at present, their safety and efficacy have limited their further clinical application due to their non-specific targets and biodistribution. Studies have shown that nanomedicine has unique advantages, improving drug delivery efficiency and treatment efficacy while reducing damage to normal tissues, which greatly promotes the development of the research of nanosystems based on lactate modulation. In this review, we summarize the source and metabolism of lactate, the effect of lactate on the TME and recent advances in nanosystem-mediated strategies of lactate modulation for enhanced cancer therapy, hoping to provide ideas and directions for future research in related fields.

References

[1]

Warburg, O.; Wind, F.; Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 1927, 8, 519–530.

[2]

Vander Heiden, M. G.; Cantley, L. C.; Thompson, C. B. Understanding the warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033.

[3]

Holm, E.; Hagmüller, E.; Staedt, U.; Schlickeiser, G.; Günther, H. J.; Leweling, H.; Tokus, M.; Kollmar, H. B. Substrate balances across colonic carcinomas in humans. Cancer Res. 1995, 55, 1373–1378.

[4]

Pérez-Tomás, R.; Pérez-Guillen, I. Lactate in the tumor microenvironment: An essential molecule in cancer progression and treatment. Cancers 2020, 12, 3244.

[5]

Sonveaux, P.; Végran, F.; Schroeder, T.; Wergin, M. C.; Verrax, J.; Rabbani, Z. N.; De Saedeleer, C. J.; Kennedy, K. M.; Diepart, C.; Jordan, B. F. et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 2008, 118, 3930–3942.

[6]

Végran, F.; Boidot, R.; Michiels, C.; Sonveaux, P.; Feron, O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 2011, 71, 2550–2560.

[7]

Rizwan, A.; Serganova, I.; Khanin, R.; Karabeber, H.; Ni, X. H.; Thakur, S.; Zakian, K. L.; Blasberg, R.; Koutcher, J. A. Relationships between LDH-A, lactate, and metastases in 4T1 breast tumors. Clin. Cancer Res. 2013, 19, 5158–5169.

[8]

Brand, A.; Singer, K.; Koehl, G. E.; Kolitzus, M.; Schoenhammer, G.; Thiel, A.; Matos, C.; Bruss, C.; Klobuch, S.; Peter, K. et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 2019, 24, 657–671.

[9]

Doherty, J. R.; Cleveland, J. L. Targeting lactate metabolism for cancer therapeutics. J. Clin. Invest. 2013, 123, 3685–3692.

[10]

Halford, S. E. R.; Jones, P.; Wedge, S.; Hirschberg, S.; Katugampola, S.; Veal, G.; Payne, G.; Bacon, C.; Potter, S.; Griffin, M. et al. A first-in-human first-in-class (FIC) trial of the monocarboxylate transporter 1 (MCT1) inhibitor AZD3965 in patients with advanced solid tumours. J. Clin. Oncol. 2017, 35, 2516.

[11]

Hao, G. Y.; Xu, Z. P.; Li, L. Manipulating extracellular tumour pH: An effective target for cancer therapy. RSC Adv. 2018, 8, 22182–22192.

[12]

Wang, Z. H.; Peng, W. B.; Zhang, P.; Yang, X. P.; Zhou, Q. Lactate in the tumour microenvironment: From immune modulation to therapy. EBioMedicine 2021, 73, 103627.

[13]

DeBerardinis, R. J.; Mancuso, A.; Daikhin, E.; Nissim, I.; Yudkoff, M.; Wehrli, S.; Thompson, C. B. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. USA 2007, 104, 19345–19350.

[14]

Peng, Y. Y.; Yang, H.; Li, S. The role of glycometabolic plasticity in cancer. Pathol. Res. Pract. 2021, 226, 153595.

[15]

Lyssiotis, C. A.; Kimmelman, A. C. Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 2017, 27, 863–875.

[16]

Galván-Peña, S.; O'Neill, L. A. J. Metabolic reprograming in macrophage polarization. Front. Immunol. 2014, 5, 420.

[17]

Pearce, E. J.; Everts, B. Dendritic cell metabolism. Nat. Rev. Immunol. 2015, 15, 18–29.

[18]

Wang, R. N.; Green, D. R. Metabolic reprogramming and metabolic dependency in T cells. Immunol. Rev. 2012, 249, 14–26.

[19]

de la Cruz-López, K. G.; Castro-Muñoz, L. J.; Reyes-Hernández, D. O.; García-Carrancá, A.; Manzo-Merino, J. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front. Oncol. 2019, 9, 1143.

[20]

Adeva-Andany, M.; López-Ojén, M.; Funcasta-Calderón, R.; Ameneiros-Rodríguez, E.; Donapetry-García, C.; Vila-Altesor, M.; Rodríguez-Seijas, J. Comprehensive review on lactate metabolism in human health. Mitochondrion 2014, 17, 76–100.

[21]

Corbet, C.; Feron, O. Tumour acidosis: From the passenger to the driver's seat. Nat. Rev. Cancer 2017, 17, 577–593.

[22]

Zhang, X. M.; Lin, Y. X.; Gillies, R. J. Tumor pH and its measurement. J. Nucl. Med. 2010, 51, 1167–1170.

[23]

Kataoka, M.; Fukahori, M.; Ikemura, A.; Kubota, A.; Higashino, H.; Sakuma, S.; Yamashita, S. Effects of gastric pH on oral drug absorption: In vitro assessment using a dissolution/permeation system reflecting the gastric dissolution process. Eur. J. Pharm. Biopharm. 2016, 101, 103–111.

[24]

Liu, Y. J.; Zhang, T.; Chen, S. C.; Cheng, D. X.; Wu, C. J.; Wang, X. Y.; Duan, D.; Zhu, L. Y.; Lou, H. F.; Gong, Z. F. et al. The noncanonical role of the protease cathepsin D as a cofilin phosphatase. Cell Res. 2021, 31, 801–813.

[25]

Huang, C.; Sheng, S. L.; Li, R.; Sun, X. G.; Liu, J. J.; Huang, G. Lactate promotes resistance to glucose starvation via upregulation of Bcl-2 mediated by mTOR activation. Oncol. Rep. 2015, 33, 875–884.

[26]

Liang, J. Y.; Shao, S. H.; Xu, Z. X.; Hennessy, B.; Ding, Z. Y.; Larrea, M.; Kondo, S.; Dumont, D. J.; Gutterman, J. U.; Walker, C. L. et al. The energy sensing lKB1-AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nat. Cell Biol. 2007, 9, 218–224.

[27]

Chen, X.; Kang, R.; Kroemer, G.; Tang, D. L. Broadening horizons: The role of ferroptosis in cancer. Nat. Rev. Clin. Oncol. 2021, 18, 280–296.

[28]

Zhao, Y. B.; Li, M. H.; Yao, X. M.; Fei, Y.; Lin, Z. H.; Li, Z. G.; Cai, K. Y.; Zhao, Y. L.; Luo, Z. HCAR1/MCT1 regulates tumor ferroptosis through the lactate-mediated AMPK-SCD1 activity and its therapeutic implications. Cell Rep. 2020, 33, 108487.

[29]

Beckert, S.; Farrahi, F.; Aslam, R. S.; Scheuenstuhl, H.; Königsrainer, A.; Hussain, M. Z.; Hunt, T. K. Lactate stimulates endothelial cell migration. Wound Repair Regener. 2006, 14, 321–324.

[30]

Sonveaux, P.; Copetti, T.; De Saedeleer, C. J.; Végran, F.; Verrax, J.; Kennedy, K. M.; Moon, E. J.; Dhup, S.; Danhier, P.; Frérart, F. et al. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS One 2012, 7, e33418.

[31]

Walenta, S.; Mueller-Klieser, W. F. Lactate: Mirror and motor of tumor malignancy. Semin. Radiat. Oncol. 2004, 14, 267–274.

[32]

Bachmann, A.; Straube, A. Kinesins in cell migration. Biochem. Soc. Trans. 2015, 43, 79–83.

[33]

Jung, Y. D.; Cho, J. H.; Park, S.; Kang, M.; Park, S. J.; Choi, D. H.; Jeong, M.; Park, K. C.; Yeom, Y. I.; Lee, D. C. Lactate activates the E2F pathway to promote cell motility by up-regulating microtubule modulating genes. Cancers 2019, 11, 274.

[34]

Baumann, F.; Leukel, P.; Doerfelt, A.; Beier, C. P.; Dettmer, K.; Oefner, P. J.; Kastenberger, M.; Kreutz, M.; Nickl-Jockschat, T.; Bogdahn, U. et al. Lactate promotes glioma migration by TGF-β2-dependent regulation of matrix metalloproteinase-2. Neuro Oncol. 2009, 11, 368–380.

[35]

Chen, P. W.; Zuo, H.; Xiong, H.; Kolar, M. J.; Chu, Q.; Saghatelian, A.; Siegwart, D. J.; Wan, Y. H. Gpr132 sensing of lactate mediates tumor-macrophage interplay to promote breast cancer metastasis. Proc. Natl. Acad. Sci. USA 2017, 114, 580–585.

[36]

Boniakowski, A. E.; Kimball, A. S.; Jacobs, B. N.; Kunkel, S. L.; Gallagher, K. A. Macrophage-mediated inflammation in normal and diabetic wound healing. J. Immunol. 2017, 199, 17–24.

[37]

Colegio, O. R.; Chu, N. Q.; Szabo, A. L.; Chu, T.; Rhebergen, A. M.; Jairam, V.; Cyrus, N.; Brokowski, C. E.; Eisenbarth, S. C.; Phillips, G. M. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014, 513, 559–563.

[38]

Mu, X. M.; Shi, W.; Xu, Y.; Xu, C.; Zhao, T.; Geng, B.; Yang, J.; Pan, J. S.; Hu, S.; Zhang, C. et al. Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer. Cell Cycle 2018, 17, 428–438.

[39]

Gottfried, E.; Kunz-Schughart, L. A.; Ebner, S.; Mueller-Klieser, W.; Hoves, S.; Andreesen, R.; Mackensen, A.; Kreutz, M. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 2006, 107, 2013–2021.

[40]

Brown, T. P.; Bhattacharjee, P.; Ramachandran, S.; Sivaprakasam, S.; Ristic, B.; Sikder, M. O. F.; Ganapathy, V. The lactate receptor Gpr81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment. Oncogene 2020, 39, 3292–3304.

[41]

Fischer, K.; Hoffmann, P.; Voelkl, S.; Meidenbauer, N.; Ammer, J.; Edinger, M.; Gottfried, E.; Schwarz, S.; Rothe, G.; Hoves, S. et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 2007, 109, 3812–3819.

[42]

Fischbeck, A. J.; Ruehland, S.; Ettinger, A.; Paetzold, K.; Masouris, I.; Noessner, E.; Mendler, A. N. Tumor lactic acidosis: Protecting tumor by inhibiting cytotoxic activity through motility arrest and bioenergetic silencing. Front. Oncol. 2020, 10, 589434.

[43]

Husain, Z.; Huang, Y. N.; Seth, P.; Sukhatme, V. P. Tumor-derived lactate modifies antitumor immune response: Effect on myeloid-derived suppressor cells and NK cells. J. Immunol. 2013, 191, 1486–1495.

[44]

Watson, M. J.; Vignali, P. D. A.; Mullett, S. J.; Overacre-Delgoffe, A. E.; Peralta, R. M.; Grebinoski, S.; Menk, A. V.; Rittenhouse, N. L.; DePeaux, K.; Whetstone, R. D. et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 2021, 591, 645–651.

[45]

Topalian, S. L.; Drake, C. G.; Pardoll, D. M. Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell 2015, 27, 450–461.

[46]

Feng, J.; Yang, H.; Zhang, Y.; Wei, H.; Zhu, Z.; Zhu, B.; Yang, M.; Cao, W.; Wang, L.; Wu, Z. Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through Gpr81 in human lung cancer cells. Oncogene 2017, 36, 5829–5839.

[47]

Valvona, C. J.; Fillmore, H. L.; Nunn, P. B.; Pilkington, G. J. The regulation and function of lactate dehydrogenase A: Therapeutic potential in brain tumor. Brain Pathol. 2016, 26, 3–17.

[48]

Zhang, Y. X.; Zhao, Y. Y.; Shen, J. Z.; Sun, X.; Liu, Y.; Liu, H.; Wang, Y. C.; Wang, J. Nanoenabled modulation of acidic tumor microenvironment reverses anergy of infiltrating T cells and potentiates anti-PD-1 therapy. Nano Lett. 2019, 19, 2774–2783.

[49]
Dayton, T. L. ; Jacks, T. ; Vander Heiden, M. G. PKM2, cancer metabolism, and the road ahead. EMBO Rep. 2016, 17, 1721–1730.
[50]

Zhu, S. S.; Guo, Y. Y.; Zhang, X.; Liu, H.; Yin, M. Z.; Chen, X.; Peng, C. Pyruvate kinase M2 (PKM2) in cancer and cancer therapeutics. Cancer Lett. 2021, 503, 240–248.

[51]

Wang, G.; Wang, Y. Z.; Yu, Y.; Wang, J. J.; Yin, P. H.; Xu, K. Triterpenoids extracted from Rhus chinensis mill act against colorectal cancer by inhibiting enzymes in glycolysis and glutaminolysis: Network analysis and experimental validation. Nutr. Cancer 2020, 72, 293–319.

[52]

Zhao, X. Y.; Zhu, Y. N.; Hu, J. H.; Jiang, L. W.; Li, L. M.; Jia, S. C.; Zen, K. Shikonin inhibits tumor growth in mice by suppressing pyruvate kinase M2-mediated aerobic glycolysis. Sci. Rep. 2018, 8, 14517.

[53]

Li, J.; Zhao, M.; Sun, M.; Wu, S. W.; Zhang, H. Y.; Dai, Y. H.; Wang, D. K. Multifunctional nanoparticles boost cancer immunotherapy based on modulating the immunosuppressive tumor microenvironment. ACS Appl. Mater. Interfaces 2020, 12, 50734–50747.

[54]

Wang, H. R.; Tang, Y. S.; Fang, Y. F.; Zhang, M.; Wang, H. Y.; He, Z. D.; Wang, B.; Xu, Q.; Huang, Y. Z. Reprogramming tumor immune microenvironment (TIME) and metabolism via biomimetic targeting codelivery of shikonin/JQ1. Nano Lett. 2019, 19, 2935–2944.

[55]

Murakami, K.; Yoshino, M. Zinc inhibition of pyruvate kinase of M-type isozyme. Biometals 2017, 30, 335–340.

[56]

Ren, X. L.; Huang, X. Y.; Wu, Q.; Tan, L. F.; Fu, C. H.; Chen, Y.; Meng, X. W. Nanoscale metal organic frameworks inhibition of pyruvate kinase of M2. Chin. Chem. Lett. 2021, 32, 3087–3089.

[57]

Sutendra, G.; Michelakis, E. D. Pyruvate dehydrogenase kinase as a novel therapeutic target in oncology. Front. Oncol. 2013, 3, 38.

[58]

Fang, A. P.; Luo, H. Q.; Liu, L. P.; Fan, H. B.; Zhou, Y. Y.; Yao, Y. Q.; Zhang, Y. Identification of pyruvate dehydrogenase kinase 1 inhibitors with anti-osteosarcoma activity. Bioorg. Med. Chem. Lett. 2017, 27, 5450–5453.

[59]

Kolb, D.; Kolishetti, N.; Surnar, B.; Sarkar, S.; Guin, S.; Shah, A. S.; Dhar, S. Metabolic modulation of the tumor microenvironment leads to multiple checkpoint inhibition and immune cell infiltration. ACS Nano 2020, 14, 11055–11066.

[60]

Payen, V. L.; Hsu, M. Y.; Rädecke, K. S.; Wyart, E.; Vazeille, T.; Bouzin, C.; Porporato, P. E.; Sonveaux, P. Monocarboxylate transporter MCT1 promotes tumor metastasis independently of its activity as a lactate transporter. Cancer Res. 2017, 77, 5591–5601.

[61]

Eilertsen, M.; Andersen, S.; Al-Saad, S.; Kiselev, Y.; Donnem, T.; Stenvold, H.; Pettersen, I.; Al-Shibli, K.; Richardsen, E.; Busund, L. T. et al. Monocarboxylate transporters 1-4 in NSCLC: MCT1 is an independent prognostic marker for survival. PLoS One 2014, 9, e105038.

[62]

Halestrap, A. P. The monocarboxylate transporter family-structure and functional characterization. IUBMB Life 2012, 64, 1–9.

[63]

Jiang, Z. J.; Xiong, H.; Yang, S.; Lu, Y.; Deng, Y. D.; Yao, J. X.; Yao, J. Jet-lagged nanoparticles enhanced immunotherapy efficiency through synergistic reconstruction of tumor microenvironment and normalized tumor vasculature. Adv. Healthc. Mater. 2020, 9, 2000075.

[64]

Kanwal, R.; Gupta, S. Epigenetic modifications in cancer. Clin. Genet. 2012, 81, 303–311.

[65]

Greenberg, M. V. C.; Bourc'his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 2019, 20, 590–607.

[66]

Fisel, P.; Kruck, S.; Winter, S.; Bedke, J.; Hennenlotter, J.; Nies, A. T.; Scharpf, M.; Fend, F.; Stenzl, A.; Schwab, M. et al. DNA methylation of the SLC16A3 promoter regulates expression of the human lactate transporter MCT4 in renal cancer with consequences for clinical outcome. Clin. Cancer Res. 2013, 19, 5170–5181.

[67]

Kaikkonen, M. U.; Lam, M. T. Y.; Glass, C. K. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc. Res. 2011, 90, 430–440.

[68]

Li, K.; Lin, C. C.; He, Y.; Lu, L.; Xu, K.; Tao, B.; Xia, Z. Z. L.; Zeng, R.; Mao, Y. L.; Luo, Z. et al. Engineering of cascade-responsive nanoplatform to inhibit lactate efflux for enhanced tumor chemo-immunotherapy. ACS Nano 2020, 14, 14164–14180.

[69]

Liu, Y. L.; Ji, X. Y.; Tong, W. W. L.; Askhatova, D.; Yang, T. Y.; Cheng, H. W.; Wang, Y. Z.; Shi, J. J. Engineering multifunctional RNAi nanomedicine to concurrently target cancer hallmarks for combinatorial therapy. Angew. Chem., Int. Ed. 2018, 57, 1510–1513.

[70]

Wang, X.; Zhao, Y. B.; Shi, L.; Hu, Y.; Song, G. B.; Cai, K. Y.; Li, M. H.; Luo, Z. Tumor-targeted disruption of lactate transport with reactivity-reversible nanocatalysts to amplify oxidative damage. Small 2021, 17, e2100130.

[71]

Doll, S.; Freitas, F. P.; Shah, R.; Aldrovandi, M.; da Silva, M. C.; Ingold, I.; Goya Grocin, A.; Xavier da Silva, T. N.; Panzilius, E.; Scheel, C. H. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 2019, 575, 693–698.

[72]

Wang, X.; Zhao, Y. Y.; Hu, Y.; Fei, Y.; Zhao, Y. B.; Xue, C. C.; Cai, K. Y.; Li, M. H.; Luo, Z. Activatable biomineralized nanoplatform remodels the intracellular environment of multidrug-resistant tumors for enhanced ferroptosis/apoptosis therapy. Small 2021, 17, e2102269.

[73]

Zhang, Y. C.; Li, L. Q.; Li, Y. N.; Fei, Y.; Xue, C. C.; Yao, X. M.; Zhao, Y. B.; Wang, X.; Li, M. H.; Luo, Z. An ROS-activatable nanoassembly remodulates tumor cell metabolism for enhanced ferroptosis therapy. Adv. Healthc. Mater. 2022, 11, e2101702.

[74]

Vander Linden, C.; Corbet, C.; Bastien, E.; Martherus, R.; Guilbaud, C.; Petit, L.; Wauthier, L.; Loriot, A.; De Smet, C.; Feron, O. Therapy-induced DNA methylation inactivates MCT1 and renders tumor cells vulnerable to MCT4 inhibition. Cell Rep. 2021, 35, 109202.

[75]

Qin, X. H.; Zhang, M. Z.; Hu, X.; Du, Q.; Zhao, Z. P.; Jiang, Y.; Luan, Y. X. Nanoengineering of a newly designed chlorin e6 derivative for amplified photodynamic therapy via regulating lactate metabolism. Nanoscale 2021, 13, 11953–11962.

[76]

Chen, Z. X.; Liu, M. D.; Zhang, M. K.; Wang, S. B.; Xu, L.; Li, C. X.; Gao, F.; Xie, B. R.; Zhong, Z. L.; Zhang, X. Z. Interfering with lactate-fueled respiration for enhanced photodynamic tumor therapy by a porphyrinic mof nanoplatform. Adv. Funct. Mater. 2018, 28, 1803498.

[77]

Yu, J. T.; Wei, Z. X.; Li, Q.; Wan, F. Y.; Chao, Z. C.; Zhang, X. D.; Lin, L.; Meng, H.; Tian, L. L. Advanced cancer starvation therapy by simultaneous deprivation of lactate and glucose using a MOF nanoplatform. Adv. Sci. (Weinh. ) 2021, 8, e2101467.

[78]

Murray, C. M.; Hutchinson, R.; Bantick, J. R.; Belfield, G. P.; Benjamin, A. D.; Brazma, D.; Bundick, R. V.; Cook, I. D.; Craggs, R. I.; Edwards, S. et al. Monocarboxylate transporter MCT1 is a target for immunosuppression. Nat. Chem. Biol. 2005, 1, 371–376.

[79]

Kwon, I. K.; Lee, S. C.; Han, B.; Park, K. Analysis on the current status of targeted drug delivery to tumors. J. Control. Release 2012, 164, 108–114.

[80]

Chaubey, A.; Pande, K. K.; Singh, V. S.; Malhotra, B. D. Co-immobilization of lactate oxidase and lactate dehydrogenase on conducting polyaniline films. Anal. Chim. Acta 2000, 407, 97–103.

[81]

Rathee, K.; Dhull, V.; Dhull, R.; Singh, S. Biosensors based on electrochemical lactate detection: A comprehensive review. Biochem. Biophys. Rep. 2016, 5, 35–54.

[82]

Zhang, Z.; Li, B.; Xie, L. S.; Sang, W.; Tian, H.; Li, J.; Wang, G. H.; Dai, Y. L. Metal-phenolic network-enabled lactic acid consumption reverses immunosuppressive tumor microenvironment for sonodynamic therapy. ACS Nano 2021, 15, 16934–16945.

[83]

Zheng, X.; Liu, Y.; Liu, Y. Q.; Zhang, T. T.; Zhao, Y. G.; Zang, J.; Yang, Y.; He, R. Q.; Chong, G. W.; Ruan, S. R. et al. Dual closed-loop of catalyzed lactate depletion and immune response to potentiate photothermal immunotherapy. ACS Appl. Mater. Interface 2022, 14, 23260–23276.

[84]

Tseng, S. J.; Kempson, I. M.; Huang, K. Y.; Li, H. J.; Fa, Y. C.; Ho, Y. C.; Liao, Z. X.; Yang, P. C. Targeting tumor microenvironment by bioreduction-activated nanoparticles for light-triggered virotherapy. ACS Nano 2018, 12, 9894–9902.

[85]

Tang, J.; Meka, A. K.; Theivendran, S.; Wang, Y.; Yang, Y. N.; Song, H.; Fu, J. Y.; Ban, W. H.; Gu, Z. Y.; Lei, C. et al. Openwork@dendritic mesoporous silica nanoparticles for lactate depletion and tumor microenvironment regulation. Angew. Chem., Int. Ed. 2020, 59, 22054–22062.

[86]

Wang, Y. H.; Yin, W.; Ke, W. D.; Chen, W. J.; He, C. X.; Ge, Z. S. Multifunctional polymeric micelles with amplified fenton reaction for tumor ablation. Biomacromolecules 2018, 19, 1990–1998.

[87]

Zhou, X.; Zhao, W.; Wang, M. X.; Zhang, S.; Li, Y. H.; Hu, W. X.; Ren, L.; Luo, S. L.; Chen, Z. W. Dual-modal therapeutic role of the lactate oxidase-embedded hierarchical porous zeolitic imidazolate framework as a nanocatalyst for effective tumor suppression. ACS Appl. Mater. Interfaces 2020, 12, 32278–32288.

[88]

Tian, Z. M.; Yang, K. L.; Yao, T. Z.; Li, X. H.; Ma, Y. Y.; Qu, C. Y.; Qu, X. L.; Xu, Y. J.; Guo, Y. H.; Qu, Y. Q. Catalytically selective chemotherapy from tumor-metabolic generated lactic acid. Small 2019, 15, e1903746.

[89]

Tian, F.; Wang, S. Y.; Shi, K. D.; Zhong, X. J.; Gu, Y. T.; Fan, Y. D.; Zhang, Y.; Yang, M. Dual-depletion of intratumoral lactate and ATP with radicals generation for cascade metabolic-chemodynamic therapy. Adv. Sci. (Weinh. ) 2021, 8, e2102595.

[90]

Wang, H. H.; Cheng, L.; Ma, S.; Ding, L. M.; Zhang, W.; Xu, Z. B.; Li, D. D.; Gao, L. Z. Self-assembled multiple-enzyme composites for enhanced synergistic cancer starving-catalytic therapy. ACS Appl. Mater. Interfaces 2020, 12, 20191–20201.

[91]

Shi, L.; Dong, H. L.; Reguera, G.; Beyenal, H.; Lu, A. H.; Liu, J.; Yu, H. Q.; Fredrickson, J. K. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 2016, 14, 651–662.

[92]

Li, F.; Li, Y. X.; Cao, Y. X.; Wang, L.; Liu, C. G.; Shi, L.; Song, H. Modular engineering to increase intracellular NAD(H/+) promotes rate of extracellular electron transfer of Shewanella oneidensis. Nat. Commun. 2018, 9, 3637.

[93]

Chen, Q. W.; Wang, J. W.; Wang, X. N.; Fan, J. X.; Liu, X. H.; Li, B.; Han, Z. Y.; Cheng, S. X.; Zhang, X. Z. Inhibition of tumor progression through the coupling of bacterial respiration with tumor metabolism. Angew. Chem., Int. Ed. 2020, 59, 21562–21570.

[94]

Wang, J. W.; Chen, Q. W.; Luo, G. F.; Han, Z. Y.; Song, W. F.; Yang, J.; Chen, W. H.; Zhang, X. Z. A self-driven bioreactor based on bacterium-metal-organic framework biohybrids for boosting chemotherapy via cyclic lactate catabolism. ACS Nano 2021, 15, 17870–17884.

[95]

Desch, A. N.; Gibbings, S. L.; Clambey, E. T.; Janssen, W. J.; Slansky, J. E.; Kedl, R. M.; Henson, P. M.; Jakubzick, C. Dendritic cell subsets require cis-activation for cytotoxic CD8 T-cell induction. Nat. Commun. 2014, 5, 4674.

[96]

An, J. Y.; Zhang, K. X.; Wang, B. H.; Wu, S. X.; Wang, Y. F.; Zhang, H. L.; Zhang, Z. Z.; Liu, J. J.; Shi, J. J. Nanoenabled disruption of multiple barriers in antigen cross-presentation of dendritic cells via calcium interference for enhanced chemo-immunotherapy. ACS Nano 2020, 14, 7639–7650.

[97]

Park, H. J.; Lee, S. H.; Chung, H.; Rhee, Y. H.; Lim, B. U.; Ha, S. W.; Griffin, R. J.; Lee, H. S.; Song, C. W.; Choi, E. K. Influence of environmental pH on G2-phase arrest caused by ionizing radiation. Radiat Res. 2003, 159, 86–93.

[98]

Wang, C. J.; Dong, Z. L.; Hao, Y.; Zhu, Y. J.; Ni, J.; Li, Q. G.; Liu, B.; Han, Y. K.; Yang, Z. J.; Wan, J. M. et al. Coordination polymer-coated CaCO3 reinforces radiotherapy by reprogramming the immunosuppressive metabolic microenvironment. Adv. Mater. 2021, 34, e2106520.

[99]

Chen, Z. X.; Liu, M. D.; Guo, D. K.; Zou, M. Z.; Wang, S. B.; Cheng, H.; Zhong, Z. L.; Zhang, X. Z. A MSN-based tumor-targeted nanoplatform to interfere with lactate metabolism to induce tumor cell acidosis for tumor suppression and anti-metastasis. Nanoscale 2020, 12, 2966–2972.

[100]

Janzer, A.; German, N. J.; Gonzalez-Herrera, K. N.; Asara, J. M.; Haigis, M. C.; Struhl, K. Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells. Proc. Natl. Acad. Sci. USA 2014, 111, 10574–10579.

[101]

Wan, M. M.; Liu, Z. Y.; Li, T.; Chen, H.; Wang, Q.; Chen, T. T.; Tao, Y. F.; Mao, C. Zwitterion-based hydrogen sulfide nanomotors induce multiple acidosis in tumor cells by destroying tumor metabolic symbiosis. Angew. Chem., Int. Ed. 2021, 60, 16139–16148.

[102]

Gao, F.; Tang, Y.; Liu, W. L.; Zou, M. Z.; Huang, C.; Liu, C. J.; Zhang, X. Z. Intra/extracellular lactic acid exhaustion for synergistic metabolic therapy and immunotherapy of tumors. Adv. Mater. 2019, 31, e1904639.

[103]

Counihan, J. L.; Grossman, E. A.; Nomura, D. K. Cancer metabolism: Current understanding and therapies. Chem. Rev. 2018, 118, 6893–6923.

[104]

Stine, Z. E.; Schug, Z. T.; Salvino, J. M.; Dang, C. V. Targeting cancer metabolism in the era of precision oncology. Nat. Rev. Drug Discov. 2022, 21, 141–162.

[105]

Yang, B. W.; Shi, J. L. Chemistry of advanced nanomedicines in cancer cell metabolism regulation. Adv. Sci. (Weinh. ) 2020, 7, 2001388.

[106]

Zheng, M. Z.; Wu, C. R.; Yang, K. Y.; Yang, Y. Y.; Liu, Y.; Gao, S. Y.; Wang, Q. Q.; Li, C.; Chen, L. X.; Li, H. Novel selective hexokinase 2 inhibitor benitrobenrazide blocks cancer cells growth by targeting glycolysis. Pharmacol. Res. 2021, 164, 105367.

[107]

Schcolnik-Cabrera, A.; Dominguez-Gómez, G.; Chávez-Blanco, A.; Ramírez-Yautentzi, M.; Morales-Bárcenas, R.; Díaz-Chávez, J.; Taja-Chayeb, L.; Dueáas-González, A. A combination of inhibitors of glycolysis, glutaminolysis and de novo fatty acid synthesis decrease the expression of chemokines in human colon cancer cells. Oncol. Lett. 2019, 18, 6909–6916.

[108]

Tang, J. C.; Zhao, J.; Long, F.; Chen, J. Y.; Mu, B.; Jiang, Z.; Ren, Y. G.; Yang, J. Efficacy of shikonin against esophageal cancer cells and its possible mechanisms in vitro and in vivo. J. Cancer 2018, 9, 32–40.

[109]

Liu, T.; Li, S. N.; Wu, L. W.; Yu, Q.; Li, J. J.; Feng, J.; Zhang, J.; Chen, J. J.; Zhou, Y. T.; Ji, J. et al. Experimental study of hepatocellular carcinoma treatment by shikonin through regulating PKM2. J. Hepatocell. Carcinoma 2020, 7, 19–31.

[110]

Chao, T. K.; Huang, T. S.; Liao, Y. P.; Huang, R. L.; Su, P. H.; Shen, H. Y.; Lai, H. C.; Wang, Y. C. Pyruvate kinase M2 is a poor prognostic marker of and a therapeutic target in ovarian cancer. PLoS One 2017, 12, e0182166.

[111]

Garon, E. B.; Christofk, H. R.; Hosmer, W.; Britten, C. D.; Bahng, A.; Crabtree, M. J.; Hong, C. S.; Kamranpour, N.; Pitts, S.; Kabbinavar, F. et al. Dichloroacetate should be considered with platinum-based chemotherapy in hypoxic tumors rather than as a single agent in advanced non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 2014, 140, 443–452.

[112]

Powell, S. F.; Mazurczak, M.; Dib, E. G.; Bleeker, J. S.; Geeraerts, L. H.; Tinguely, M.; Lohr, M. M.; McGraw, S. C.; Jensen, A. W.; Ellison, C. A. et al. Phase II study of dichloroacetate, an inhibitor of pyruvate dehydrogenase, in combination with chemoradiotherapy for unresected, locally advanced head and neck squamous cell carcinoma. Invest. New Drugs 2022, 40, 622–633.

[113]

Zhang, W.; Hu, X. H.; Zhou, W.; Tam, K. Y. Liquid chromatography-tandem mass spectrometry method revealed that lung cancer cells exhibited distinct metabolite profiles upon the treatment with different pyruvate dehydrogenase kinase inhibitors. J. Proteome Res. 2018, 17, 3012–3021.

[114]
Sasano, T. ; Kushima, S. ; Yutaka, M. ; Matsuoka, M. ; Hata, H. ; Kawano, Y. JX06, a novel PDK1 inhibitor, induces myeloma cell apoptosis by metabolic reprogramming and works synergistically with bortezomib. Blood 2019, 134, 1814.
[115]

Yang, Y.; Su, D.; Zhao, L.; Zhang, D.; Xu, J. Y.; Wan, J. M.; Fan, S. J.; Chen, M. Different effects of LDH-A inhibition by oxamate in non-small cell lung cancer cells. Oncotarget 2014, 5, 11886–11896.

[116]

Le, A. N.; Cooper, C. R.; Gouw, A. M.; Dinavahi, R.; Maitra, A.; Deck, L. M.; Royer, R. E.; Vander Jagt, D. L.; Semenza, G. L.; Dang, C. V. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl. Acad. Sci. USA 2010, 107, 2037–2042.

[117]

Manerba, M.; Vettraino, M.; Fiume, L.; Di Stefano, G.; Sartini, A.; Giacomini, E.; Buonfiglio, R.; Roberti, M.; Recanatini, M. Galloflavin (CAS 568-80-9): A novel inhibitor of lactate dehydrogenase. ChemMedChem 2012, 7, 311–317.

[118]

Noble, R. A.; Bell, N.; Blair, H.; Sikka, A.; Thomas, H.; Phillips, N.; Nakjang, S.; Miwa, S.; Crossland, R.; Rand, V. et al. Inhibition of monocarboxyate transporter 1 by AZD3965 as a novel therapeutic approach for diffuse large B-cell lymphoma and Burkitt lymphoma. Haematologica 2017, 102, 1247–1257.

[119]

Guan, X. W.; Rodriguez-Cruz, V.; Morris, M. E. Cellular uptake of MCT1 inhibitors AR-C155858 and AZD3965 and their effects on MCT-mediated transport of l-lactate in murine 4T1 breast tumor cancer cells. AAPS J. 2019, 21, 13.

[120]

Polański, R.; Hodgkinson, C. L.; Fusi, A.; Nonaka, D.; Priest, L.; Kelly, P.; Trapani, F.; Bishop, P. W.; White, A.; Critchlow, S. E. et al. Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer. Clin. Cancer Res. 2014, 20, 926–937.

[121]
Guan, X. W. ; Bryniarski, M. A. ; Morris, M. E. In vitro and in vivo efficacy of the monocarboxylate transporter 1 inhibitor AR-C155858 in the murine 4T1 breast cancer tumor model. AAPS J. 2019, 21, 3.
[122]

Quanz, M.; Bender, E.; Kopitz, C.; Grünewald, S.; Schlicker, A.; Schwede, W.; Eheim, A.; Toschi, L.; Neuhaus, R.; Richter, C. et al. Preclinical efficacy of the novel monocarboxylate transporter 1 inhibitor BAY-8002 and associated markers of resistance. Mol. Cancer Ther. 2018, 17, 2285–2296.

[123]

Wang, H.; Yang, C. Y.; Doherty, J. R.; Roush, W. R.; Cleveland, J. L.; Bannister, T. D. Synthesis and structure-activity relationships of pteridine dione and trione monocarboxylate transporter 1 inhibitors. J. Med. Chem. 2014, 57, 7317–7324.

[124]

Critchlow, S. E.; Hughes, G.; Staniszewska, A.; King, M.; Michopoulos, F.; Hopcroft, L.; Brown, M. R.; Bradley, J.; Hammond, B.; MorentinGutierrez, P. et al. Abstract 1207: Reversing lactate-driven immunosuppression using the novel, potent and selective MCT4 inhibitor AZD0095. Cancer Res. 2019, 79, 1207.

[125]

Benjamin, D.; Robay, D.; Hindupur, S. K.; Pohlmann, J.; Colombi, M.; El-Shemerly, M. Y.; Maira, S. M.; Moroni, C.; Lane, H. A.; Hall, M. N. Dual inhibition of the lactate transporters MCT1 and MCT4 is synthetic lethal with metformin due to NAD+ depletion in cancer cells. Cell Rep. 2018, 25, 3047–3058.e4.

[126]

Nancolas, B.; Guo, L. L.; Zhou, R.; Nath, K.; Nelson, D. S.; Leeper, D. B.; Blair, I. A.; Glickson, J. D.; Halestrap, A. P. The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters. Biochem. J. 2016, 473, 929–936.

[127]

Coss, R. A.; Storck, C. W.; Daskalakis, C.; Berd, D.; Wahl, M. L. Intracellular acidification abrogates the heat shock response and compromises survival of human melanoma cells. Mol. Cancer Ther. 2003, 2, 383–388.

Nano Research
Pages 654-671
Cite this article:
Gu J, Sun J, Liu Y, et al. Nanosystem-mediated lactate modulation in the tumor micro environment for enhanced cancer therapy. Nano Research, 2023, 16(1): 654-671. https://doi.org/10.1007/s12274-022-4620-z
Topics:

867

Views

11

Crossref

19

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 14 April 2022
Revised: 31 May 2022
Accepted: 03 June 2022
Published: 07 July 2022
© Tsinghua University Press 2022
Return