Graphical Abstract

As a stretchable seamless device, electronic skin (E-skin) has drawn enormous interest due to its skin-like sensing capability. Besides the basic perception of force and temperature, multiple perception that is beyond existing functions of human skin is becoming an important direction for E-skin developments. However, the present E-skins for multiple perceptions mainly rely on different sensing materials and heterogeneous integration, resulting in a complex device structure. Additionally, their stretchability is usually achieved by the complicated microstructure design of rigid materials. Here, we report an intrinsically stretchable polymer semiconductor based E-skin with a simple structure for multiple perceptions of force, temperature, and visible light. The E-skin is on the basis of poly(3-hexylthiophene) (P3HT) nanofibers percolated polydimethylsiloxane (PDMS) composite polymer semiconductor, which is fabricated by a facile solution method. The E-skin shows reliable sensing capabilities when it is used to perceive strain, pressure, temperature, and visible light. Based on the E-skin, an intelligent robotic hand sensing and controlling system is further demonstrated. Compared with conventional E-skins for multiple perceptions, this E-skin only has a simple monolayer sensing membrane without the need of combining different sensing materials, heterogeneous integration, and complicated microstructure design. Such a strategy of utilizing intrinsically stretchable polymer semiconductor to create simple structured E-skin for multiple perceptions will promote the development of E-skins in a broad application scenario, such as artificial robotic skins, virtual reality, intelligent gloves, and biointegrated electronics.
Luo, Y. Y.; Li, Y. Z.; Sharma, P.; Shou, W.; Wu, K.; Foshey, M.; Li, B. C.; Palacios, T.; Torralba, A.; Matusik, W. Learning human–environment interactions using conformal tactile textiles. Nat. Electron. 2021, 4, 193–201.
Li, X.; Zhu, P. C.; Zhang, S. C.; Wang, X. C.; Luo, X. P.; Leng, Z. W.; Zhou, H.; Pan, Z. F.; Mao, Y. C. A self-supporting, conductor-exposing, stretchable, ultrathin, and recyclable kirigami-structured liquid metal paper for multifunctional E-skin. ACS Nano 2022, 16, 5909–5919.
Ouyang, Z. F.; Cui, S. B.; Yu, H. Y.; Xu, D. W.; Wang, C.; Tang, D. P.; Tam, K. C. Versatile sensing devices for self-driven designated therapy based on robust breathable composite films. Nano Res. 2022, 15, 1027–1038.
Zhang, T. T.; Wen, Z.; Lei, H.; Gao, Z. Q.; Chen, Y. F.; Zhang, Y.; Liu, J. Y.; Xie, Y. L.; Sun, X. H. Surface-microengineering for high-performance triboelectric tactile sensor via dynamically assembled ferrofluid template. Nano Energy 2021, 87, 106215.
Chen, Y. F.; Gao, Z. Q.; Zhang, F. J.; Wen, Z.; Sun, X. H. Recent progress in self-powered multifunctional e-skin for advanced applications. Exploration 2022, 2, 20210112.
Yang, M.; Cheng, Y. F.; Yue, Y.; Chen, Y.; Gao, H.; Li, L.; Cai, B.; Liu, W. J.; Wang, Z. Y.; Guo, H. Z.; et, al. High-performance flexible pressure sensor with a self-healing function for tactile feedback. Adv. Sci. 2022, 2200507.
Shim, H.; Jang, S.; Jang, J. G.; Rao, Z.; Hong, J. I.; Sim, K.; Yu, C. J. Fully rubbery synaptic transistors made out of all-organic materials for elastic neurological electronic skin. Nano Res. 2022, 15, 758–764.
Liu, J. Y.; Wen, Z.; Lei, H.; Gao, Z. Q.; Sun, X. H. A liquid–solid interface-based triboelectric tactile sensor with ultrahigh sensitivity of 21.48 kPa−1. Nano-Micro Lett. 2022, 14, 88.
Liang, B. H.; Huang, B. F.; He, J. K.; Yang, R. L.; Zhao, C. C.; Yang, B. R.; Cao, A. Y.; Tang, Z. K.; Gui, X. C. Direct stamping multifunctional tactile sensor for pressure and temperature sensing. Nano Res. 2022, 15, 3614–3620.
Chen, Y. F.; Lei, H.; Gao, Z. Q.; Liu, J. Y.; Zhang, F. J.; Wen, Z.; Sun, X. H. Energy autonomous electronic skin with direct temperature–pressure perception. Nano Energy 2022, 98, 107273.
Kim, H. J.; Sim, K.; Thukral, A.; Yu, C. J. Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors. Sci. Adv. 2017, 3, e1701114.
Zhao, X.; Chen, G. R.; Zhou, Y. H.; Nashalian, A.; Xu, J.; Tat, T.; Song, Y.; Libanori, A.; Xu, S. L.; Li, S. et al. Giant magnetoelastic effect enabled stretchable sensor for self-powered biomonitoring. ACS Nano 2022, 16, 6013–6022.
Ramirez, M. D.; Oakley, T. H. Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides. J. Exp. Biol. 2015, 218, 1513–1520.
Ji, X. J.; Zhong, Y.; Li, C. Y.; Chu, J. J.; Wang, H. Q.; Xing, Z.; Niu, T. T.; Zhang, Z. H.; Du, A. Nanoporous carbon aerogels for laser-printed wearable sensors. ACS Appl. Nano Mater. 2021, 4, 6796–6804.
Lu, Y.; Qu, X. Y.; Wang, S. Y.; Zhao, Y.; Ren, Y. F.; Zhao, W. L.; Wang, Q.; Sun, C. C.; Wang, W. J.; Dong, X. C. Ultradurable, freeze-resistant, and healable MXene-based ionic gels for multi-functional electronic skin. Nano Res. 2022, 15, 4421–4430.
Lee, G.; Son, J. H.; Lee, S.; Kim, S. W.; Kim, D.; Nguyen, N. N.; Lee, S. G.; Cho, K. Fingerpad-inspired multimodal electronic skin for material discrimination and texture recognition. Adv. Sci. 2021, 8, 2002606.
Yue, O. Y.; Wang, X. C.; Liu, X. H.; Hou, M. D.; Zheng, M. H.; Wang, Y. Y.; Cui, B. Q. Spider-web and ant-tentacle doubly bio-inspired multifunctional self-powered electronic skin with hierarchical nanostructure. Adv. Sci. 2021, 8, e2004377.
Wang, Y. P.; Cao, X. F.; Cheng, J.; Yao, B. W.; Zhao, Y. S.; Wu, S. L.; Ju, B. Z.; Zhang, S. F.; He, X. M.; Niu, W. B. Cephalopod-inspired chromotropic ionic skin with rapid visual sensing capabilities to multiple stimuli. ACS Nano 2021, 15, 3509–3521.
Wang, B. H.; Thukral, A.; Xie, Z. Q.; Liu, L. M.; Zhang, X. N.; Huang, W.; Yu, X. G.; Yu, C. J.; Marks, T. J.; Facchetti, A. Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat. Commun. 2020, 11, 2405.
Chen, H. R.; Lou, Z.; Shen, G. Z. An integrated flexible multifunctional sensing system for simultaneous monitoring of environment signals. Sci. China Mater. 2020, 63, 2560–2569.
Hua, Q. L.; Sun, J. L.; Liu, H. T.; Bao, R. R.; Yu, R. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244.
Sim, K.; Rao, Z.; Zou, Z. N.; Ershad, F.; Lei, J. M.; Thukral, A.; Chen, J.; Huang, Q. A.; Xiao, J. L.; Yu, C. J. Metal oxide semiconductor nanomembrane-based soft unnoticeable multifunctional electronics for wearable human–machine interfaces. Sci. Adv. 2019, 5, eaav9653.
Wang, S. H.; Xu, J.; Wang, W. C.; Wang, G. J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S. M.; Feig, V. R.; Lopez, J. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018, 555, 83–88.
Liu, J.; Wang, J. C.; Zhang, Z. T.; Molina-Lopez, F.; Wang, G. J. N.; Schroeder, B. C.; Yan, X. Z.; Zeng, Y. T.; Zhao, O.; Tran, H. et al. Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat. Commun. 2020, 11, 3362.
Xiang, S. X.; Liu, D. J.; Jiang, C. C.; Zhou, W. M.; Ling, D.; Zheng, W. T.; Sun, X. P.; Li, X.; Mao, Y. C.; Shan, C. X. Liquid–metal-based dynamic thermoregulating and self-powered electronic skin. Adv. Funct. Mater. 2021, 31, 2100940.
Zhou, Y. H.; Zhao, X.; Xu, J.; Fang, Y. S.; Chen, G. R.; Song, Y.; Li, S.; Chen, J. Giant magnetoelastic effect in soft systems for bioelectronics. Nat. Mater. 2021, 20, 1670–1676.
Zheng, Y.; Wang, G. J. N.; Kang, J.; Nikolka, M.; Wu, H. C.; Tran, H.; Zhang, S.; Yan, H. P.; Chen, H.; Yuen, P. Y. et al. An intrinsically stretchable high-performance polymer semiconductor with low crystallinity. Adv. Funct. Mater. 2019, 29, 1905340.
Matsuhisa, N.; Niu, S. M.; O’Neill, S. J. K.; Kang, J.; Ochiai, Y.; Katsumata, T.; Wu, H. C.; Ashizawa, M.; Wang, G. J. N.; Zhong, D. L. et al. High-frequency and intrinsically stretchable polymer diodes. Nature 2021, 600, 246–252.
Wang, W. C.; Wang, S. H.; Rastak, R.; Ochiai, Y.; Niu, S. M.; Jiang, Y. W.; Arunachala, P. K.; Zheng, Y.; Xu, J.; Matsuhisa, N. et al. Strain-insensitive intrinsically stretchable transistors and circuits. Nat. Electron. 2021, 4, 143–150.
Yan, Z. C.; Xu, D.; Lin, Z. Y.; Wang, P. Q.; Cao, B. C.; Ren, H. Y.; Song, F.; Wan, C. Z.; Wang, L. Y.; Zhou, J. X. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 2022, 375, 852–859.
Huang, Z. L.; Hao, Y. F.; Li, Y.; Hu, H. J.; Wang, C. H.; Nomoto, A.; Pan, T. S.; Gu, Y.; Chen, Y. M.; Zhang, T. J. et al. Three-dimensional integrated stretchable electronics. Nat. Electron. 2018, 1, 473–480.
Xu, S.; Zhang, Y. H.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J. A.; Su, Y. W.; Su, J.; Zhang, H. G. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 4, 1543.
Tang, L. X.; Shang, J.; Jiang, X. Y. Multilayered electronic transfer tattoo that can enable the crease amplification effect. Sci. Adv. 2021, 7, eabe3778.
Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwodiauer, R.; Graz, I.; Bauer-Gogonea, S. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499, 458–463.
Dai, Y. H.; Hu, H. W.; Wang, M.; Xu, J.; Wang, S. H. Stretchable transistors and functional circuits for human-integrated electronics. Nat. Electron. 2021, 4, 17–29.
Zheng, Y.; Yu, Z. A.; Zhang, S.; Kong, X.; Michaels, W.; Wang, W. C.; Chen, G.; Liu, D. Y.; Lai, J. C.; Prine, N. et al. A molecular design approach towards elastic and multifunctional polymer electronics. Nat. Commun. 2021, 12, 5701.
Sim, K.; Ershad, F.; Zhang, Y. C.; Yang, P. Y.; Shim, H.; Rao, Z.; Lu, Y. T.; Thukral, A.; Elgalad, A.; Xi, Y. T. et al. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity. Nat. Electron. 2020, 3, 775–784.
Sim, K.; Rao, Z.; Kim, H. J.; Thukral, A.; Shim, H.; Yu, C. J. Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors. Sci. Adv. 2019, 5, eaav5749.
Zhao, J. Q.; Bu, T. Z.; Zhang, X. H.; Pang, Y. K.; Li, W. J.; Zhang, Z.; Liu, G. X.; Wang, Z. L.; Zhang, C. Intrinsically stretchable organic-tribotronic-transistor for tactile sensing. Research 2020, 2020, 1398903.
Wang, H. C.; Zhou, R. C.; Li, D. H.; Zhang, L. R.; Ren, G. Z.; Wang, L.; Liu, J. H.; Wang, D. Y.; Tang, Z. H.; Lu, G. et al. High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano 2021, 15, 9690–9700.
Zhou, K. K.; Xu, W. J. H.; Yu, Y. F.; Zhai, W.; Yuan, Z. Q.; Dai, K.; Zheng, G. Q.; Mi, L. W.; Pan, C. F.; Liu, C. T. et al. Tunable and nacre-mimetic multifunctional electronic skins for highly stretchable contact–noncontact sensing. Small 2021, 17, e2100542.
Kumar, K. S.; Zhang, L.; Kalairaj, M. S.; Banerjee, H.; Xiao, X.; Jiayi, C. C.; Huang, H.; Lim, C. M.; Ouyang, J. Y.; Ren, H. L. Stretchable and sensitive silver nanowire-hydrogel strain sensors for proprioceptive actuation. ACS Appl. Mater. Interfaces 2021, 13, 37816–37829.
Xu, X. P.; Zhang, G. J.; Yu, L. Y.; Li, R. P.; Peng, Q. P3HT-based polymer solar cells with 8.25% efficiency enabled by a matched molecular acceptor and smart green-solvent processing technology. Adv. Mater. 2019, 31, 1906045.
Nagarajan, K.; George, J.; Thomas, A.; Devaux, E.; Chervy, T.; Azzini, S.; Joseph, K.; Jouaiti, A.; Hosseini, M. W.; Kumar, A. et al. Conductivity and photoconductivity of a p-type organic semiconductor under ultrastrong coupling. ACS Nano 2020, 14, 10219–10225.
Song, E.; Kang, B.; Choi, H. H.; Sin, D. H.; Lee, H.; Lee, W. H.; Cho, K. Stretchable and transparent organic semiconducting thin film with conjugated polymer nanowires embedded in an elastomeric matrix. Adv. Electron. Mater. 2016, 2, 1500250.