Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Intrinsically stretchable polymer semiconductor based electronic skin for multiple perceptions of force, temperature, and visible light

Dongjuan Liu§Pengcheng Zhu§Fukang ZhangPeishuo LiWenhao HuangChang LiNingning HanShuairong MuHao ZhouYanchao Mao()
Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China

§ Dongjuan Liu and Pengcheng Zhu contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
An intrinsically stretchable polymer semiconductor based E-skin with a simple structure was developed for multiple perceptions of force, temperature, and visible light. Based on the E-skin, an intelligent robotic hand sensing and controlling system is further demonstrated. Such a strategy of utilizing intrinsically stretchable polymer semiconductor to create simple structured E-skin for multiple perceptions will advance the development of intelligent artificial robotic skins.

Abstract

As a stretchable seamless device, electronic skin (E-skin) has drawn enormous interest due to its skin-like sensing capability. Besides the basic perception of force and temperature, multiple perception that is beyond existing functions of human skin is becoming an important direction for E-skin developments. However, the present E-skins for multiple perceptions mainly rely on different sensing materials and heterogeneous integration, resulting in a complex device structure. Additionally, their stretchability is usually achieved by the complicated microstructure design of rigid materials. Here, we report an intrinsically stretchable polymer semiconductor based E-skin with a simple structure for multiple perceptions of force, temperature, and visible light. The E-skin is on the basis of poly(3-hexylthiophene) (P3HT) nanofibers percolated polydimethylsiloxane (PDMS) composite polymer semiconductor, which is fabricated by a facile solution method. The E-skin shows reliable sensing capabilities when it is used to perceive strain, pressure, temperature, and visible light. Based on the E-skin, an intelligent robotic hand sensing and controlling system is further demonstrated. Compared with conventional E-skins for multiple perceptions, this E-skin only has a simple monolayer sensing membrane without the need of combining different sensing materials, heterogeneous integration, and complicated microstructure design. Such a strategy of utilizing intrinsically stretchable polymer semiconductor to create simple structured E-skin for multiple perceptions will promote the development of E-skins in a broad application scenario, such as artificial robotic skins, virtual reality, intelligent gloves, and biointegrated electronics.

Electronic Supplementary Material

Download File(s)
12274_2022_4622_MOESM1_ESM.pdf (2.3 MB)

References

[1]

Luo, Y. Y.; Li, Y. Z.; Sharma, P.; Shou, W.; Wu, K.; Foshey, M.; Li, B. C.; Palacios, T.; Torralba, A.; Matusik, W. Learning human–environment interactions using conformal tactile textiles. Nat. Electron. 2021, 4, 193–201.

[2]

Li, X.; Zhu, P. C.; Zhang, S. C.; Wang, X. C.; Luo, X. P.; Leng, Z. W.; Zhou, H.; Pan, Z. F.; Mao, Y. C. A self-supporting, conductor-exposing, stretchable, ultrathin, and recyclable kirigami-structured liquid metal paper for multifunctional E-skin. ACS Nano 2022, 16, 5909–5919.

[3]

Ouyang, Z. F.; Cui, S. B.; Yu, H. Y.; Xu, D. W.; Wang, C.; Tang, D. P.; Tam, K. C. Versatile sensing devices for self-driven designated therapy based on robust breathable composite films. Nano Res. 2022, 15, 1027–1038.

[4]

Zhang, T. T.; Wen, Z.; Lei, H.; Gao, Z. Q.; Chen, Y. F.; Zhang, Y.; Liu, J. Y.; Xie, Y. L.; Sun, X. H. Surface-microengineering for high-performance triboelectric tactile sensor via dynamically assembled ferrofluid template. Nano Energy 2021, 87, 106215.

[5]

Chen, Y. F.; Gao, Z. Q.; Zhang, F. J.; Wen, Z.; Sun, X. H. Recent progress in self-powered multifunctional e-skin for advanced applications. Exploration 2022, 2, 20210112.

[6]

Yang, M.; Cheng, Y. F.; Yue, Y.; Chen, Y.; Gao, H.; Li, L.; Cai, B.; Liu, W. J.; Wang, Z. Y.; Guo, H. Z.; et, al. High-performance flexible pressure sensor with a self-healing function for tactile feedback. Adv. Sci. 2022, 2200507.

[7]

Shim, H.; Jang, S.; Jang, J. G.; Rao, Z.; Hong, J. I.; Sim, K.; Yu, C. J. Fully rubbery synaptic transistors made out of all-organic materials for elastic neurological electronic skin. Nano Res. 2022, 15, 758–764.

[8]

Liu, J. Y.; Wen, Z.; Lei, H.; Gao, Z. Q.; Sun, X. H. A liquid–solid interface-based triboelectric tactile sensor with ultrahigh sensitivity of 21.48 kPa−1. Nano-Micro Lett. 2022, 14, 88.

[9]

Liang, B. H.; Huang, B. F.; He, J. K.; Yang, R. L.; Zhao, C. C.; Yang, B. R.; Cao, A. Y.; Tang, Z. K.; Gui, X. C. Direct stamping multifunctional tactile sensor for pressure and temperature sensing. Nano Res. 2022, 15, 3614–3620.

[10]

Chen, Y. F.; Lei, H.; Gao, Z. Q.; Liu, J. Y.; Zhang, F. J.; Wen, Z.; Sun, X. H. Energy autonomous electronic skin with direct temperature–pressure perception. Nano Energy 2022, 98, 107273.

[11]

Kim, H. J.; Sim, K.; Thukral, A.; Yu, C. J. Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors. Sci. Adv. 2017, 3, e1701114.

[12]

Zhao, X.; Chen, G. R.; Zhou, Y. H.; Nashalian, A.; Xu, J.; Tat, T.; Song, Y.; Libanori, A.; Xu, S. L.; Li, S. et al. Giant magnetoelastic effect enabled stretchable sensor for self-powered biomonitoring. ACS Nano 2022, 16, 6013–6022.

[13]

Ramirez, M. D.; Oakley, T. H. Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides. J. Exp. Biol. 2015, 218, 1513–1520.

[14]

Ji, X. J.; Zhong, Y.; Li, C. Y.; Chu, J. J.; Wang, H. Q.; Xing, Z.; Niu, T. T.; Zhang, Z. H.; Du, A. Nanoporous carbon aerogels for laser-printed wearable sensors. ACS Appl. Nano Mater. 2021, 4, 6796–6804.

[15]

Lu, Y.; Qu, X. Y.; Wang, S. Y.; Zhao, Y.; Ren, Y. F.; Zhao, W. L.; Wang, Q.; Sun, C. C.; Wang, W. J.; Dong, X. C. Ultradurable, freeze-resistant, and healable MXene-based ionic gels for multi-functional electronic skin. Nano Res. 2022, 15, 4421–4430.

[16]

Lee, G.; Son, J. H.; Lee, S.; Kim, S. W.; Kim, D.; Nguyen, N. N.; Lee, S. G.; Cho, K. Fingerpad-inspired multimodal electronic skin for material discrimination and texture recognition. Adv. Sci. 2021, 8, 2002606.

[17]

Yue, O. Y.; Wang, X. C.; Liu, X. H.; Hou, M. D.; Zheng, M. H.; Wang, Y. Y.; Cui, B. Q. Spider-web and ant-tentacle doubly bio-inspired multifunctional self-powered electronic skin with hierarchical nanostructure. Adv. Sci. 2021, 8, e2004377.

[18]

Wang, Y. P.; Cao, X. F.; Cheng, J.; Yao, B. W.; Zhao, Y. S.; Wu, S. L.; Ju, B. Z.; Zhang, S. F.; He, X. M.; Niu, W. B. Cephalopod-inspired chromotropic ionic skin with rapid visual sensing capabilities to multiple stimuli. ACS Nano 2021, 15, 3509–3521.

[19]

Wang, B. H.; Thukral, A.; Xie, Z. Q.; Liu, L. M.; Zhang, X. N.; Huang, W.; Yu, X. G.; Yu, C. J.; Marks, T. J.; Facchetti, A. Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat. Commun. 2020, 11, 2405.

[20]

Chen, H. R.; Lou, Z.; Shen, G. Z. An integrated flexible multifunctional sensing system for simultaneous monitoring of environment signals. Sci. China Mater. 2020, 63, 2560–2569.

[21]

Hua, Q. L.; Sun, J. L.; Liu, H. T.; Bao, R. R.; Yu, R. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244.

[22]

Sim, K.; Rao, Z.; Zou, Z. N.; Ershad, F.; Lei, J. M.; Thukral, A.; Chen, J.; Huang, Q. A.; Xiao, J. L.; Yu, C. J. Metal oxide semiconductor nanomembrane-based soft unnoticeable multifunctional electronics for wearable human–machine interfaces. Sci. Adv. 2019, 5, eaav9653.

[23]

Wang, S. H.; Xu, J.; Wang, W. C.; Wang, G. J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S. M.; Feig, V. R.; Lopez, J. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018, 555, 83–88.

[24]

Liu, J.; Wang, J. C.; Zhang, Z. T.; Molina-Lopez, F.; Wang, G. J. N.; Schroeder, B. C.; Yan, X. Z.; Zeng, Y. T.; Zhao, O.; Tran, H. et al. Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat. Commun. 2020, 11, 3362.

[25]

Xiang, S. X.; Liu, D. J.; Jiang, C. C.; Zhou, W. M.; Ling, D.; Zheng, W. T.; Sun, X. P.; Li, X.; Mao, Y. C.; Shan, C. X. Liquid–metal-based dynamic thermoregulating and self-powered electronic skin. Adv. Funct. Mater. 2021, 31, 2100940.

[26]

Zhou, Y. H.; Zhao, X.; Xu, J.; Fang, Y. S.; Chen, G. R.; Song, Y.; Li, S.; Chen, J. Giant magnetoelastic effect in soft systems for bioelectronics. Nat. Mater. 2021, 20, 1670–1676.

[27]

Zheng, Y.; Wang, G. J. N.; Kang, J.; Nikolka, M.; Wu, H. C.; Tran, H.; Zhang, S.; Yan, H. P.; Chen, H.; Yuen, P. Y. et al. An intrinsically stretchable high-performance polymer semiconductor with low crystallinity. Adv. Funct. Mater. 2019, 29, 1905340.

[28]

Matsuhisa, N.; Niu, S. M.; O’Neill, S. J. K.; Kang, J.; Ochiai, Y.; Katsumata, T.; Wu, H. C.; Ashizawa, M.; Wang, G. J. N.; Zhong, D. L. et al. High-frequency and intrinsically stretchable polymer diodes. Nature 2021, 600, 246–252.

[29]

Wang, W. C.; Wang, S. H.; Rastak, R.; Ochiai, Y.; Niu, S. M.; Jiang, Y. W.; Arunachala, P. K.; Zheng, Y.; Xu, J.; Matsuhisa, N. et al. Strain-insensitive intrinsically stretchable transistors and circuits. Nat. Electron. 2021, 4, 143–150.

[30]

Yan, Z. C.; Xu, D.; Lin, Z. Y.; Wang, P. Q.; Cao, B. C.; Ren, H. Y.; Song, F.; Wan, C. Z.; Wang, L. Y.; Zhou, J. X. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 2022, 375, 852–859.

[31]

Huang, Z. L.; Hao, Y. F.; Li, Y.; Hu, H. J.; Wang, C. H.; Nomoto, A.; Pan, T. S.; Gu, Y.; Chen, Y. M.; Zhang, T. J. et al. Three-dimensional integrated stretchable electronics. Nat. Electron. 2018, 1, 473–480.

[32]

Xu, S.; Zhang, Y. H.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J. A.; Su, Y. W.; Su, J.; Zhang, H. G. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 4, 1543.

[33]

Tang, L. X.; Shang, J.; Jiang, X. Y. Multilayered electronic transfer tattoo that can enable the crease amplification effect. Sci. Adv. 2021, 7, eabe3778.

[34]

Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwodiauer, R.; Graz, I.; Bauer-Gogonea, S. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499, 458–463.

[35]

Dai, Y. H.; Hu, H. W.; Wang, M.; Xu, J.; Wang, S. H. Stretchable transistors and functional circuits for human-integrated electronics. Nat. Electron. 2021, 4, 17–29.

[36]

Zheng, Y.; Yu, Z. A.; Zhang, S.; Kong, X.; Michaels, W.; Wang, W. C.; Chen, G.; Liu, D. Y.; Lai, J. C.; Prine, N. et al. A molecular design approach towards elastic and multifunctional polymer electronics. Nat. Commun. 2021, 12, 5701.

[37]

Sim, K.; Ershad, F.; Zhang, Y. C.; Yang, P. Y.; Shim, H.; Rao, Z.; Lu, Y. T.; Thukral, A.; Elgalad, A.; Xi, Y. T. et al. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity. Nat. Electron. 2020, 3, 775–784.

[38]

Sim, K.; Rao, Z.; Kim, H. J.; Thukral, A.; Shim, H.; Yu, C. J. Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors. Sci. Adv. 2019, 5, eaav5749.

[39]

Zhao, J. Q.; Bu, T. Z.; Zhang, X. H.; Pang, Y. K.; Li, W. J.; Zhang, Z.; Liu, G. X.; Wang, Z. L.; Zhang, C. Intrinsically stretchable organic-tribotronic-transistor for tactile sensing. Research 2020, 2020, 1398903.

[40]

Wang, H. C.; Zhou, R. C.; Li, D. H.; Zhang, L. R.; Ren, G. Z.; Wang, L.; Liu, J. H.; Wang, D. Y.; Tang, Z. H.; Lu, G. et al. High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano 2021, 15, 9690–9700.

[41]

Zhou, K. K.; Xu, W. J. H.; Yu, Y. F.; Zhai, W.; Yuan, Z. Q.; Dai, K.; Zheng, G. Q.; Mi, L. W.; Pan, C. F.; Liu, C. T. et al. Tunable and nacre-mimetic multifunctional electronic skins for highly stretchable contact–noncontact sensing. Small 2021, 17, e2100542.

[42]

Kumar, K. S.; Zhang, L.; Kalairaj, M. S.; Banerjee, H.; Xiao, X.; Jiayi, C. C.; Huang, H.; Lim, C. M.; Ouyang, J. Y.; Ren, H. L. Stretchable and sensitive silver nanowire-hydrogel strain sensors for proprioceptive actuation. ACS Appl. Mater. Interfaces 2021, 13, 37816–37829.

[43]

Xu, X. P.; Zhang, G. J.; Yu, L. Y.; Li, R. P.; Peng, Q. P3HT-based polymer solar cells with 8.25% efficiency enabled by a matched molecular acceptor and smart green-solvent processing technology. Adv. Mater. 2019, 31, 1906045.

[44]

Nagarajan, K.; George, J.; Thomas, A.; Devaux, E.; Chervy, T.; Azzini, S.; Joseph, K.; Jouaiti, A.; Hosseini, M. W.; Kumar, A. et al. Conductivity and photoconductivity of a p-type organic semiconductor under ultrastrong coupling. ACS Nano 2020, 14, 10219–10225.

[45]

Song, E.; Kang, B.; Choi, H. H.; Sin, D. H.; Lee, H.; Lee, W. H.; Cho, K. Stretchable and transparent organic semiconducting thin film with conjugated polymer nanowires embedded in an elastomeric matrix. Adv. Electron. Mater. 2016, 2, 1500250.

Nano Research
Pages 1196-1204
Cite this article:
Liu D, Zhu P, Zhang F, et al. Intrinsically stretchable polymer semiconductor based electronic skin for multiple perceptions of force, temperature, and visible light. Nano Research, 2023, 16(1): 1196-1204. https://doi.org/10.1007/s12274-022-4622-x
Topics:
Metrics & Citations  
Article History
Copyright
Return