AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multifunctional phase change composites based on biomass/MXene-derived hybrid scaffolds for excellent electromagnetic interference shielding and superior solar/electro-thermal energy storage

Yan Cao1Ziheng Zeng1Danyuan Huang1Ying Chen2Li Zhang1,2Xinxin Sheng1,2( )
Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangdong University of Technology, Guangzhou 510006, China
Show Author Information

Graphical Abstract

Multifunctional phase change composites (PCCs) supported by the cellulose nanocrystal (CNC)-konjac glucomannan (KGM)/MXene-derived hybrid scaffolds were developed, which exhibit admirable electromagnetic interference (EMI) shielding and excellent solar/electro-thermal energy storage performance.

Abstract

With the rapid development of new generations of miniaturized, integrated, and high-power electronic devices, it is particularly important to develop advanced composite materials with efficient thermal management capability and excellent electromagnetic interference (EMI) shielding performance. Herein, an innovative biomass/MXene-derived conductive hybrid scaffold, cellulose nanocrystal (CNC)-konjac glucomannan (KGM)/MXene (CKM), was prepared by freeze-drying and thermal annealing, and then paraffin wax (PW) was encapsulated in CKM using vacuum impregnation method to obtain CNC-KGM/MXene@PW phase change composites (CKMPCCs). The results show that the obtained CKMPCCs possess considerable reusable stabilities, excellent EMI shielding properties, and thermal energy management capacities. Among them, the CKMPCC-6 with 2.3 wt.% MXene exhibits excellent solar-thermal and electro-thermal conversion capabilities. In addition, the EMI shielding effectiveness value is as high as 45.0 dB at 8.2–12.4 GHz and the corresponding melting enthalpy value is 215.7 J/g (relative enthalpy efficiency of 99.9%). In conclusion, the synthesized multifunctional phase change composites provide great potential for integrating outstanding EMI shielding and advanced thermal energy management applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4626_MOESM1_ESM.pdf (2.6 MB)

References

1

Zhang, Y. L.; Gu, J. W. A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 2022, 14, 89.

2

Ryu, S. H.; Han, Y. K.; Kwon, S. J.; Kim, T.; Jung, B. M.; Lee, S. B.; Park, B. Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite. Chem. Eng. J. 2022, 428, 131167.

3

Qi, F. Q.; Wang, L.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Mater. Today Phys. 2021, 21, 100512.

4

Cao, M. S.; Cai, Y. Z.; He, P.; Shu, J. C.; Cao, W. Q.; Yuan, J. 2D MXenes:Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 2019, 359, 1265–1302.

5

Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

6

Lee, S. H.; Yu, S.; Shahzad, F.; Kim, W. N.; Park, C.; Hong, S. M.; Koo, C. M. Density-tunable lightweight polymer composites with dual-functional ability of efficient EMI shielding and heat dissipation. Nanoscale 2017, 9, 13432–13440.

7

Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and joule heating performances. Nano Res. 2022, 15, 4747–4755.

8

Liu, S.; Wu, H.; Du, Y.; Lu, X.; Qu, J. P. Shape-stable composite phase change materials encapsulated by bio-based balsa wood for thermal energy storage. Sol. Energy Mater. Sol. Cells 2021, 230, 111187.

9

Du, Y.; Huang, H. W.; Hu, X. P.; Liu, S.; Sheng, X. X.; Li, X. L.; Lu, X.; Qu, J. P. Melamine foam/polyethylene glycol composite phase change material synergistically modified by polydopamine/MXene with enhanced solar-to-thermal conversion. Renewable Energy 2021, 171, 1–10.

10

Dashtizadeh, Z.; Abdeali, G.; Bahramian, A. R.; Alvar, M. Z. Enhancement of thermal energy absorption/storage performance of paraffin wax (PW) phase change material by means of chemically synthesized ethylene propylene diene monomer (EPDM) rubber network. J. Energy Storage 2022, 45, 103646.

11

Wu, H.; Hu, X. P.; Li, X. L.; Sheng, M. J.; Sheng, X. X.; Lu, X.; Qu, J. P. Large-scale fabrication of flexible EPDM/MXene/PW phase change composites with excellent light-to-thermal conversion efficiency via water-assisted melt blending. Compos. Part A 2022, 152, 106713.

12

Zhang, S.; Feng, D. L.; Shi, L.; Wang, L.; Jin, Y. G.; Tian, L. M.; Li, Z. Y.; Wang, G. Y.; Zhao, L.; Yan, Y. Y. A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage. Renew. Sust. Energ. Rev. 2021, 135, 110127.

13

Tao, Z.; Chen, X.; Yang, M.; Xu, X. L.; Sun, Y.; Li, Y. Q.; Wang, J. J.; Wang, G. Three-dimensional RGO@sponge framework/paraffin wax composite shape-stabilized phase change materials for solar-thermal energy conversion and storage. Sol. Energy Mater. Sol. Cells 2020, 215, 110600.

14

Chen, G. J.; Su, Y. P.; Jiang, D. Y.; Pan, L. J.; Li, S. An experimental and numerical investigation on a paraffin wax/graphene oxide/carbon nanotubes composite material for solar thermal storage applications. Appl. Energy 2020, 264, 114786.

15

Liu, X. J.; Lin, F. K.; Zhang, X. G.; Liu, M. Y.; Sun, Z. H.; Zhang, L. P.; Min, X.; Mi, R. Y.; Huang, Z. H. Paraffin/Ti3C2Tx MXene@Gelatin aerogels composite phase-change materials with high solar-thermal conversion efficiency and enhanced thermal conductivity for thermal energy storage. Energy Fuels 2021, 35, 2805–2814.

16

Zhu, G.; Chen, Z. Y.; Wu, B. L.; Lin, N. Dual-enhancement effect of electrostatic adsorption and chemical crosslinking for nanocellulose-based aerogels. Ind. Crops Prod. 2019, 139, 111580.

17

Mariano, M.; El Kissi, N.; Dufresne, A. Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges. J. Polym. Sci. Part B:Polym. Phys. 2014, 52, 791–806.

18

Su, M. J.; Han, G. J.; Gao, J.; Feng, Y. Z.; He, C. G.; Ma, J. M.; Liu, C. T.; Shen, C. Y. Carbon welding on graphene skeleton for phase change composites with high thermal conductivity for solar-to-heat conversion. Chem. Eng. J. 2022, 427, 131665.

19

Liu, Y.; Jia, Z. R.; Zhan, Q. Q.; Dong, Y. H.; Xu, Q. M.; Wu, G. L. Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nano Res. 2022, 15, 5590–5600.

20

Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644.

21

Huang, H. W.; Dong, D. X.; Li, W. J.; Zhang, X. Y.; Zhang, L.; Chen, Y.; Sheng, X. X.; Lu, X. Synergistic effect of MXene on the flame retardancy and thermal degradation of intumescent flame retardant biodegradable poly (lactic acid) composites. Chin. J. Chem. Eng. 2020, 28, 1981–1993.

22

Song, P.; Liu, B.; Qiu, H.; Shi, X. T.; Cao, D. P.; Gu, J. W. MXenes for polymer matrix electromagnetic interference shielding composites: A review. Compos. Commun. 2021, 24, 100653.

23

Liu, H. B.; Fu, R. L.; Su, X. Q.; Wu, B. Y.; Wang, H.; Xu, Y.; Liu, X. H. MXene confined in shape-stabilized phase change material combining enhanced electromagnetic interference shielding and thermal management capability. Compos. Sci. Technol. 2021, 210, 108835.

24

Wang, D. B.; Fang, Y. X.; Yu, W.; Wang, L. L.; Xie, H. Q.; Yue, Y. N. Significant solar energy absorption of MXene Ti3C2Tx nanofluids via localized surface plasmon resonance. Sol. Energy Mater. Sol. Cells 2021, 220, 110850.

25

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

26

Sheng, X. X.; Dong, D. X.; Lu, X.; Zhang, L.; Chen, Y. MXene-wrapped bio-based pomelo peel foam/polyethylene glycol composite phase change material with enhanced light-to-thermal conversion efficiency, thermal energy storage capability and thermal conductivity. Compos. Part A 2020, 138, 106067.

27

Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431.

28

Dong, J. W.; Luo, S. L.; Ning, S. P.; Yang, G.; Pan, D.; Ji, Y. X.; Feng, Y. Z.; Su, F. M.; Liu, C. T. MXene-coated wrinkled fabrics for stretchable and multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. ACS Appl. Mater. Interfaces 2021, 13, 60478–60488.

29

Singh, A. K.; Shishkin, A.; Koppel, T.; Gupta, N. A review of porous lightweight composite materials for electromagnetic interference shielding. Compos. Part B 2018, 149, 188–197.

30

Liang, C. B.; Qiu, H.; Song, P.; Shi, X. T.; Kong, J.; Gu, J. W. Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 2020, 65, 616–622.

31

Lu, Z. Q.; Jia, F. F.; Zhuo, L. H.; Ning, D. D.; Gao, K.; Xie, F. Micro-porous MXene/aramid nanofibers hybrid aerogel with reversible compression and efficient EMI shielding performance. Compos. Part B 2021, 217, 108853.

32

Zhang, Y. L.; Yan, Y.; Qiu, H.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. A mini-review of MXene porous films: Preparation, mechanism and application. J. Mater. Sci. Technol. 2022, 103, 42–49.

33

Liang, L. Y.; Li, Q. M.; Yan, X.; Feng, Y. Z.; Wang, Y. M.; Zhang, H. B.; Zhou, X. P.; Liu, C. T.; Shen, C. Y.; Xie, X. L. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 2021, 15, 6622–6632.

34

Lu, X.; Zheng, Y. F.; Yang, J. L.; Qu, J. P. Multifunctional paraffin wax/carbon nanotube sponge composites with simultaneous high-efficient thermal management and electromagnetic interference shielding efficiencies for electronic devices. Compos. Part B 2020, 199, 108308.

35

Zhou, M.; Wang, J. W.; Zhao, Y.; Wang, G. H.; Gu, W. H.; Ji, G. B. Hierarchically porous wood-derived carbon scaffold embedded phase change materials for integrated thermal energy management, electromagnetic interference shielding and multifunctional application. Carbon 2021, 183, 515–524.

36

Lin, P. C.; Xie, J. J.; He, Y. D.; Lu, X.; Li, W. J.; Fang, J.; Yan, S. H.; Zhang, L.; Sheng, X. X.; Chen, Y. MXene aerogel-based phase change materials toward solar energy conversion. Sol. Energy Mater. Sol. Cells 2020, 206, 110229.

37
He, X. L.; Li, S. H.; Shen, R. B.; Ma, Y. Q.; Zhang, L.; Sheng, X. X.; Chen, Y.; Xie, D. L.; Huang, J. T. A high-performance waterborne polymeric composite coating with long-term anti-corrosive property based on phosphorylation of chitosan-functionalized Ti3C2Tx MXene. Adv. Compos. Hybrid Mater., in Press, https://doi.org/10.1007/s42114-021-00392-0.
38

Luo, Y.; Xie, Y. H.; Jiang, H.; Chen, Y.; Zhang, L.; Sheng, X. X.; Xie, D. L.; Wu, H.; Mei, Y. Flame-retardant and form-stable phase change composites based on MXene with high thermostability and thermal conductivity for thermal energy storage. Chem. Eng. J. 2021, 420, 130466.

39

Xiong, R.; Hu, K. S.; Grant, A. M.; Ma, R. L.; Xu, W. N.; Lu, C. H.; Zhang, X. X.; Tsukruk, V. V. Ultrarobust transparent cellulose nanocrystal-graphene membranes with high electrical conductivity. Adv. Mater. 2016, 28, 1501–1509.

40

Wang, J. L.; Wang, Q.; Wu, Y. T.; Bai, F. T.; Wang, H. Q.; Si, S. R.; Lu, Y. F.; Li, X. S.; Wang, S. F. Preparation of cellulose nanofibers from bagasse by phosphoric acid and hydrogen peroxide enables fibrillation via a swelling, hydrolysis, and oxidation cooperative mechanism. Nanomaterials 2020, 10, 2227.

41

Jayaramudu, T.; Ko, H. U.; Kim, H. C.; Kim, J. W.; Kim, J. Swelling behavior of polyacrylamide-cellulose nanocrystal hydrogels: Swelling kinetics, temperature, and pH effects. Materials 2019, 12, 2080.

42

Li, X. L.; Sheng, X. X.; Guo, Y. Q.; Lu, X.; Wu, H.; Chen, Y.; Zhang, L.; Gu, J. W. Multifunctional HDPE/CNTs/PW composite phase change materials with excellent thermal and electrical conductivities. J. Mater. Sci. Technol. 2021, 86, 171–179.

43

Li, S. H.; Huang, H. W.; Chen, F.; He, X. L.; Ma, Y. Q.; Zhang, L.; Sheng, X. X.; Chen, Y.; Shchukina, E.; Shchukin, D. Reinforced anticorrosion performance of waterborne epoxy coating with eco-friendly L-cysteine modified Ti3C2Tx MXene nanosheets. Prog. Org. Coat. 2021, 161, 106478.

44

Yang, J.; Jia, Y. L.; Bing, N. C.; Wang, L. L.; Xie, H. Q.; Yu, W. Reduced graphene oxide and zirconium carbide co-modified melamine sponge/paraffin wax composites as new form-stable phase change materials for photothermal energy conversion and storage. Appl. Therm. Eng. 2019, 163, 114412.

45

Sobolčiak, P.; Abdelrazeq, H.; Özerkan, N. G.; Ouederni, M.; Nógellová, Z.; AlMaadeed, M. A.; Karkri, M.; Krupa, I. Heat transfer performance of paraffin wax based phase change materials applicable in building industry. Appl. Therm. Eng. 2016, 107, 1313–1323.

46

Lv, P. Z.; Liu, C. Z.; Rao, Z. H. Experiment study on the thermal properties of paraffin/kaolin thermal energy storage form-stable phase change materials. Appl. Energy 2016, 182, 475–487.

47

Luo, Y.; Xiong, S. Y.; Huang, J. T.; Zhang, F.; Li, C. C.; Min, Y. G.; Peng, R. T.; Liu, Y. D. Preparation, characterization and performance of paraffin/sepiolite composites as novel shape-stabilized phase change materials for thermal energy storage. Sol. Energy Mater. Sol. Cells 2021, 231, 111300.

48

Li, L. P.; Wang, G.; Guo, C. G. Influence of intumescent flame retardant on thermal and flame retardancy of eutectic mixed paraffin/polypropylene form-stable phase change materials. Appl. Energy 2016, 162, 428–434.

49

Wang, Z. K.; Zhang, X. G.; Xu, Y. F.; Chen, G.; Lin, F. K.; Ding, H. Preparation and thermal properties of shape-stabilized composite phase change materials based on paraffin wax and carbon foam. Polymer 2021, 237, 124361.

50

Lu, Y.; Xiao, X. D.; Fu, J.; Huan, C. M.; Qi, S.; Zhan, Y. J.; Zhu, Y. Q.; Xu, G. Novel smart textile with phase change materials encapsulated core–sheath structure fabricated by coaxial electrospinning. Chem. Eng. J. 2019, 355, 532–539.

51

Zhang, Y. F.; Li, W.; Huang, J. H.; Cao, M.; Du, G. P. Expanded graphite/paraffin/silicone rubber as high temperature form-stabilized phase change materials for thermal energy storage and thermal interface materials. Materials 2020, 13, 894.

52

Zhang, Y. Z.; Zheng, S. L.; Zhu, S. Q.; Ma, J. N.; Sun, Z. M.; Farid, M. Evaluation of paraffin infiltrated in various porous silica matrices as shape-stabilized phase change materials for thermal energy storage. Energy Convers. Manage. 2018, 171, 361–370.

53

Huang, S.; Wang, L.; Li, Y. C.; Liang, C. B.; Zhang, J. L. Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J. Appl. Polym. Sci. 2021, 138, 50649.

54

Li, X. L.; Sheng, M. J.; Gong, S.; Wu, H.; Chen, X. L.; Lu, X.; Qu, J. P. Flexible and multifunctional phase change composites featuring high-efficiency electromagnetic interference shielding and thermal management for use in electronic devices. Chem. Eng. J. 2022, 430, 132928.

55

Yang, G. Y.; Wang, S. Z.; Sun, H. T.; Yao, X. M.; Li, C. B.; Li, Y. J.; Jiang, J. J. Ultralight, conductive Ti3C2Tx MXene/PEDOT: PSS hybrid aerogels for electromagnetic interference shielding dominated by the absorption mechanism. ACS Appl. Mater. Interfaces 2021, 13, 57521–57531.

56

Song, P.; Ma, Z. L.; Qiu, H.; Ru, Y. F.; Gu, J. W. High-efficiency electromagnetic interference shielding of RGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 2022, 14, 51.

57

Li, Y. L.; Zhang, D.; Zhou, B.; He, C. G.; Wang, B.; Feng, Y. Z.; Liu, C. T. Synergistically enhancing electromagnetic interference shielding performance and thermal conductivity of polyvinylidene fluoride-based lamellar film with MXene and graphene. Compos. Part A 2022, 157, 106945.

58

Liu, S.; Sheng, M. J.; Wu, H.; Shi, X. T.; Lu, X.; Qu, J. P. Biological porous carbon encapsulated polyethylene glycol-based phase change composites for integrated electromagnetic interference shielding and thermal management capabilities. J. Mater. Sci. Technol. 2022, 113, 147–157.

Nano Research
Pages 8524-8535
Cite this article:
Cao Y, Zeng Z, Huang D, et al. Multifunctional phase change composites based on biomass/MXene-derived hybrid scaffolds for excellent electromagnetic interference shielding and superior solar/electro-thermal energy storage. Nano Research, 2022, 15(9): 8524-8535. https://doi.org/10.1007/s12274-022-4626-6
Topics:

1402

Views

109

Crossref

107

Web of Science

107

Scopus

2

CSCD

Altmetrics

Received: 12 May 2022
Revised: 27 May 2022
Accepted: 30 May 2022
Published: 01 July 2022
© Tsinghua University Press 2022
Return