AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

mRNA-based modalities for infectious disease management

Mengjie Zhang1Abid Hussain1( )Haiyin Yang1Jinchao Zhang3Xing-Jie Liang4Yuanyu Huang1,2( )
School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
School of Materials and the Environment, Beijing Institute of Technology, Zhuhai 519085, China
Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
Show Author Information

Graphical Abstract

mRNA vaccine constitutes a novel and promising modality in the prevention and control of SARS-CoV-2 and other viruses. This review thoroughly elaborates the sequence characteristics of mRNA vaccines, delivery technologies, and latest preclinical and clinical activities in the development of mRNA vaccines for COVID-19 and other infectious disease.

Abstract

The novel coronavirus disease 2019 (COVID-19) is still rampant all over the world, causing incalculable losses to the world. Major pharmaceutical organizations around the globe are focusing on vaccine research and drug development to prevent further damage caused by the pandemic. The messenger RNA (mRNA) technology has got ample of attention after the success of the two very effective mRNA vaccines during the recent pandemic of COVID-19. mRNA vaccine has been promoted to the core stage of pharmaceutical industry, and the rapid development of mRNA technology has exceeded expectations. Beyond COVID-19, the mRNA vaccine has been tested for various infectious diseases and undergoing clinical trials. Due to the ability of constant mutation, the viral infections demand abrupt responses and immediate production, and therefore mRNA-based technology offers best answers to sudden outbreaks. The need for mRNA-based vaccine became more obvious due to the recent emergence of new Omicron variant. In this review, we summarized the unique properties of mRNA-based vaccines for infectious diseases, delivery technologies, discussed current challenges, and highlighted the prospects of this promising technology in the future. We also discussed various clinical studies as well preclinical studies conducted on mRNA therapeutics for diverse infectious diseases.

References

[1]

Richner, J. M.; Himansu, S.; Dowd, K. A.; Butler, S. L.; Salazar, V.; Fox, J. M.; Julander, J. G.; Tang, W. W.; Shresta, S.; Pierson, T. C. et al. Modified mRNA vaccines protect against Zika virus infection. Cell 2017, 168, 1114–1125.e10.

[2]

Wolff, J. A.; Malone, R. W.; Williams, P.; Chong, W.; Acsadi, G.; Jani, A.; Felgner, P. L. Direct gene transfer into mouse muscle in vivo. Science 1990, 247, 1465–1468.

[3]

Pardi, N.; Hogan, M. J.; Porter, F. W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279.

[4]

Weng, Y. H.; Li, C. H.; Yang, T. R.; Hu, B.; Zhang, M. J.; Guo, S.; Xiao, H. H.; Liang, X. J.; Huang, Y. Y. The challenge and prospect of mRNA therapeutics landscape. Biotechnol. Adv. 2020, 40, 107534.

[5]

Wykes, M.; Pombo, A.; Jenkins, C.; MacPherson, G. G. Dendritic cells interact directly with naive B lymphocytes to transfer antigen and initiate class switching in a primary T-dependent response. J. Immunol. 1998, 161, 1313–1319.

[6]

Rybakova, Y.; Kowalski, P. S.; Huang, Y. X.; Gonzalez, J. T.; Heartlein, M. W.; DeRosa, F.; Delcassian, D.; Anderson, D. G. mRNA delivery for therapeutic anti-HER2 antibody expression in vivo. Mol. Ther. 2019, 27, 1415–1423.

[7]

Sahin, U.; Muik, A.; Derhovanessian, E.; Vogler, I.; Kranz, L. M.; Vormehr, M.; Baum, A.; Pascal, K.; Quandt, J.; Maurus, D. et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 2020, 586, 594–599.

[8]

Corbett, K. S.; Edwards, D. K.; Leist, S. R.; Abiona, O. M.; Boyoglu-Barnum, S.; Gillespie, R. A.; Himansu, S.; Schäfer, A.; Ziwawo, C. T.; DiPiazza, A. T. et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 2020, 586, 567–571.

[9]

Shin, M. D.; Shukla, S.; Chung, Y. H.; Beiss, V.; Chan, S. K.; Ortega-Rivera, O. A.; Wirth, D. M.; Chen, A.; Sack, M.; Pokorski, J. K. et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol. 2020, 15, 646–655.

[10]

Ding, J. X.; Xiao, H. H.; Chen, X. S. Advanced biosafety materials for prevention and theranostics of biosafety issues. Biosaf. Health 2022, 4, 59–60.

[11]

Sahin, U.; Karikó, K.; Türeci, Ö. mRNA-based therapeutics—Developing a new class of drugs. Nat. Rev. Drug Discov. 2014, 13, 759–780.

[12]

Miao, L.; Zhang, Y.; Huang, L. mRNA vaccine for cancer immunotherapy. Mol. Cancer 2021, 20, 41.

[13]

Schlake, T.; Thess, A.; Fotin-Mleczek, M.; Kallen, K. J. Developing mRNA-vaccine technologies. RNA Biol. 2012, 9, 1319–1330.

[14]

Karikó, K. In vitro-transcribed mRNA therapeutics: Out of the shadows and into the spotlight. Mol. Ther. 2019, 27, 691–692.

[15]

Kristie, B.; Fiona, V. D. B.; Patrick, A, et al. Self-amplifying RNA vaccines for infectious diseases. Nature Gene Therapy 2021, 28, 117–129.

[16]

Anna, K. B.; Shell, I.; Andrew, J. G. An update on self-amplifying mRNA vaccine development. Vaccines (Basel) 2021, 9, 97.

[17]

Vogel, A. B.; Lambert, L.; Kinnear, E.; Busse, D.; Erbar, S.; Reuter, K. C.; Wicke, L.; Perkovic, M.; Beissert, T.; Haas, H. et al. Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol. Ther. 2018, 26, 446–455.

[18]

Richner, J. M.; Jagger, B. W.; Shan, C.; Fontes, C. R.; Dowd, K. A.; Cao, B.; Himansu, S.; Caine, E. A.; Nunes, B. T. D.; Medeiros, D. B. A. et al. Vaccine mediated protection against Zika virus-induced congenital disease. Cell 2017, 170, 273–283.e12.

[19]

Arunachalam, P. S.; Scott, M. K. D.; Hagan, T.; Li, C. F.; Feng, Y. P.; Wimmers, F.; Grigoryan, L.; Trisal, M.; Edara, V. V.; Lai, L. et al. Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature 2021, 596, 410–416.

[20]

Wadman, M. The overlooked superpower of mRNA vaccines. Science 2021, 373, 479.

[21]

Huang, X.; Xu, W. G.; Li, M. Q.; Zhang, P.; Zhang, Y. S.; Ding, J. X.; Chen, X. S. Antiviral biomaterials. Matter 2021, 4, 1892–1918.

[22]

Selmi, A.; Vascotto, F.; Kautz-Neu, K.; Türeci, Ö.; Sahin, U.; von Stebut, E.; Diken, M.; Kreiter, S. Uptake of synthetic naked RNA by skin-resident dendritic cells via macropinocytosis allows antigen expression and induction of T-cell responses in mice. Cancer Immunol. Immunother. 2016, 65, 1075–1083.

[23]

Granstein, R. D.; Ding, W. H.; Ozawa, H. Induction of anti-tumor immunity with epidermal cells pulsed with tumor-derived RNA or intradermal administration of RNA. J. Invest. Dermatol. 2000, 114, 632–636.

[24]

Sahin, U.; Derhovanessian, E.; Miller, M.; Kloke, B. P.; Simon, P.; Löwer, M.; Bukur, V.; Tadmor, A. D.; Luxemburger, U.; Schrörs, B. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 2017, 547, 222–226.

[25]

Kreiter, S.; Selmi, A.; Diken, M.; Koslowski, M.; Britten, C. M.; Huber, C.; Türeci, Ö.; Sahin, U. Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res. 2010, 70, 9031–9040.

[26]

Kowalski, P. S.; Rudra, A.; Miao, L.; Anderson, D. G. Delivering the messenger: Advances in technologies for therapeutic mRNA delivery. Mol. Ther. 2019, 27, 710–728.

[27]

Kaczmarek, J. C.; Patel, A. K.; Kauffman, K. J.; Fenton, O. S.; Webber, M. J.; Heartlein, M. W.; DeRosa, F.; Anderson, D. G. Polymer-lipid nanoparticles for systemic delivery of mRNA to the lungs. Angew. Chem., Int. Ed. 2016, 55, 13808–13812.

[28]

Guimaraes, P. P. G.; Zhang, R.; Spektor, R.; Tan, M.; Chung, A.; Billingsley, M. M.; El-Mayta, R.; Riley, R. S.; Wang, L. L.; Wilson, J. M. et al. Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. J. Control. Release 2019, 316, 404–417.

[29]

Yan, H. M.; Hu, Y.; Akk, A.; Rai, M. F.; Pan, H.; Wickline, S. A.; Pham, C. T. N. Induction of WNT16 via peptide-mRNA nanoparticle-based delivery maintains cartilage homeostasis. Pharmaceutics 2020, 12, 73.

[30]

Jiang, Y. H.; Lu, Q.; Wang, Y. H.; Xu, E.; Ho, A.; Singh, P.; Wang, Y. F.; Jiang, Z. Z.; Yang, F.; Tietjen, G. T. et al. Quantitating endosomal escape of a library of polymers for mRNA delivery. Nano Lett. 2020, 20, 1117–1123.

[31]

Sharifnia, Z.; Bandehpour, M.; Hamishehkar, H.; Mosaffa, N.; Kazemi, B.; Zarghami, N. In-vitro transcribed mRNA delivery using PLGA/PEI nanoparticles into human monocyte-derived dendritic cells. Iran. J. Pharm. Res. 2019, 18, 1659–1675.

[32]

Vaidyanathan, S.; Azizian, K. T.; Haque, A. K. M. A.; Henderson, J. M.; Hendel, A.; Shore, S.; Antony, J. S.; Hogrefe, R. I.; Kormann, M. S. D.; Porteus, M. H. et al. Uridine depletion and chemical modification increase Cas9 mRNA activity and reduce immunogenicity without HPLC purification. Mol. Ther. Nucleic Acids 2018, 12, 530–542.

[33]

Lee, A. S. Y.; Kranzusch, P. J.; Doudna, J. A.; Cate, J. H. D. eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation. Nature 2016, 536, 96–99.

[34]

Martin, S. A.; Paoletti, E.; Moss, B. Purification of mRNA guanylyltransferase and mRNA (guanine-7-) methyltransferase from vaccinia virions. J. Biol. Chem. 1975, 250, 9322–9329.

[35]

Stepinski, J.; Waddell, C.; Stolarski, R.; Darzynkiewicz, E.; Rhoads, R. E. Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogs 7-methyl(3′-O-methyl)GpppG and 7-methyl (3′-deoxy)GpppG. RNA 2001, 7, 1486–1495.

[36]

von Niessen, A. G. O.; Poleganov, M. A.; Rechner, C.; Plaschke, A.; Kranz, L. M.; Fesser, S.; Diken, M.; Löwer, M.; Vallazza, B.; Beissert, T. et al. Improving mRNA-based therapeutic gene delivery by expression-augmenting 3′ UTRs identified by cellular library screening. Mol. Ther. 2019, 27, 824–836.

[37]

Stefanovic, B.; Hellerbrand, C.; Brenner, D. A. Regulatory role of the conserved stem-loop structure at the 5′ end of collagen α1(I) mRNA. Mol. Cell. Biol. 1999, 19, 4334–4342.

[38]

Wu, X. Y.; Brewer, G. The regulation of mRNA stability in mammalian cells: 2. 0. Gene 2012, 500, 10–21.

[39]

Choi, Y. H.; Hagedorn, C. H. Purifying mRNAs with a high-affinity eIF4E mutant identifies the short 3′ poly(A) end phenotype. Proc. Natl. Acad. Sci. USA 2003, 100, 7033–7038.

[40]

Jalkanen, A. L.; Coleman, S. J.; Wilusz, J. Determinants and implications of mRNA poly(A) tail size-does this protein make my tail look big? Semin. Cell Dev. Biol. 2014, 34, 24–32.

[41]

Zhong, Z. F.; Portela Catani, J. P.; Mc Cafferty, S.; Couck, L.; Van Den Broeck, W.; Gorlé, N.; Vandenbroucke, R. E.; Devriendt, B.; Ulbert, S.; Cnops, L. et al. Immunogenicity and protection efficacy of a naked self-replicating mRNA-based Zika virus vaccine. Vaccines 2019, 7, 96.

[42]

Li, W.; Meng, J. L.; Ma, X. H.; Lin, J. Q.; Lu, X. G. Advanced materials for the delivery of vaccines for infectious diseases. Biosaf. Health 2022, 4, 95–104.

[43]

Qiu, P.; Ziegelhoffer, P.; Sun, J.; Yang, N. S. Gene gun delivery of mRNA in situ results in efficient transgene expression and genetic immunization. Gene Ther. 1996, 3, 262–268.

[44]

De Ravin, S. S.; Reik, A.; Liu, P. Q.; Li, L. H.; Wu, X. L.; Su, L.; Raley, C.; Theobald, N.; Choi, U.; Song, A. H. et al. Targeted gene addition in human CD34+ hematopoietic cells for correction of X-linked chronic granulomatous disease. Nat. Biotechnol. 2016, 34, 424–429.

[45]

Hu, B.; Li, B.; Li, K.; Liu, Y. Y.; Li, C. H.; Zheng, L. L.; Zhang, M. J.; Yang, T. R.; Guo, S.; Dong, X. Y. et al. Thermostable ionizable lipid-like nanoparticle (iLAND) for RNAi treatment of hyperlipidemia. Sci. Adv. 2022, 8, eabm1418.

[46]

Li, C. H.; Yang, T. R.; Weng, Y. H.; Zhang, M. J.; Zhao, D. Y.; Guo, S.; Hu, B.; Shao, W. X.; Wang, X. X.; Hussain, A. et al. Ionizable lipid-assisted efficient hepatic delivery of gene editing elements for oncotherapy. Bioact. Mater. 2022, 9, 590–601.

[47]

Li, C. H.; Zhou, J. H.; Wu, Y. D.; Dong, Y. L.; Du, L. L.; Yang, T. R.; Wang, Y. H.; Guo, S.; Zhang, M. J.; Hussain, A. et al. Core role of hydrophobic core of polymeric nanomicelle in endosomal escape of siRNA. Nano Lett. 2021, 21, 3680–3689.

[48]

Yang, T. R.; Li, C. H.; Wang, X. X.; Zhao, D. Y.; Zhang, M. J.; Cao, H. Q.; Liang, Z. C.; Xiao, H. H.; Liang, X. J.; Weng, Y. H. et al. Efficient hepatic delivery and protein expression enabled by optimized mRNA and ionizable lipid nanoparticle. Bioact. Mater. 2020, 5, 1053–1061.

[49]

Zhang, Y. Q.; Li, Z. Y.; Essola, J. M.; Ge, K.; Dai, X. Y.; He, H. N.; Xiao, H. H.; Weng, Y. H.; Huang, Y. Y. Biosafety materials: Ushering in a new era of infectious disease diagnosis and treatment with the CRISPR/Cas system. Biosaf. Health 2022, 4, 70–78.

[50]

Ullah, A.; Chen, G.; Yibang, Z.; Hussain, A.; Shafiq, M.; Raza, F.; Liu, D. J.; Wang, K. K.; Cao, J.; Qi, X. Y. A new approach based on CXCR4-targeted combination liposomes for the treatment of liver fibrosis. Biomater. Sci. 2022, 10, 2650–2664.

[51]

Guo, S.; Li, K.; Hu, B.; Li, C. H.; Zhang, M. J.; Hussain, A.; Wang, X. X.; Cheng, Q.; Yang, F.; Ge, K. et al. Membrane-destabilizing ionizable lipid empowered imaging-guided siRNA delivery and cancer treatment. Exploration 2021, 1, 35–49.

[52]
Huang, C. G.; Zhang, H. L.; Hussain, A. Liposome formulation of fluticasone furoate and method of preparation. U. S. Patent 11304901, April 19, 2022.
[53]

Semple, S. C.; Akinc, A.; Chen, J. X.; Sandhu, A. P.; Mui, B. L.; Cho, C. K.; Sah, D. W. Y.; Stebbing, D.; Crosley, E. J.; Yaworski, E. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 2010, 28, 172–176.

[54]

Maier, M. A.; Jayaraman, M.; Matsuda, S.; Liu, J.; Barros, S.; Querbes, W.; Tam, Y. K.; Ansell, S. M.; Kumar, V.; Qin, J. et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther. 2013, 21, 1570–1578.

[55]

Kauffman, K. J.; Dorkin, J. R.; Yang, J. H.; Heartlein, M. W.; DeRosa, F.; Mir, F. F.; Fenton, O. S.; Anderson, D. G. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 2015, 15, 7300–7306.

[56]

Cheng, Q.; Wei, T.; Jia, Y. M.; Farbiak, L.; Zhou, K. J.; Zhang, S. Y.; Wei, Y. L.; Zhu, H.; Siegwart, D. J. Dendrimer-based lipid nanoparticles deliver therapeutic FAH mRNA to normalize liver function and extend survival in a mouse model of hepatorenal tyrosinemia type I. Adv. Mater. 2018, 30, e1805308.

[57]

Pardi, N.; Hogan, M. J.; Pelc, R. S.; Muramatsu, H.; Andersen, H.; DeMaso, C. R.; Dowd, K. A.; Sutherland, L. L.; Scearce, R. M.; Parks, R. et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 2017, 543, 248–251.

[58]

Jayaraman, M.; Ansell, S. M.; Mui, B. L.; Tam, Y. K.; Chen, J. X.; Du, X. Y.; Butler, D.; Eltepu, L.; Matsuda, S.; Narayanannair, J. K. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem., Int. Ed. 2012, 51, 8529–8533.

[59]

Yanez Arteta, M.; Kjellman, T.; Bartesaghi, S.; Wallin, S.; Wu, X. Q.; Kvist, A. J.; Dabkowska, A.; Székely, N.; Radulescu, A.; Bergenholtz, J. et al. Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles. Proc. Natl. Acad. Sci. USA 2018, 115, E3351–E3360.

[60]

Robinson, E.; MacDonald, K. D.; Slaughter, K.; McKinney, M.; Patel, S.; Sun, C.; Sahay, G. Lipid nanoparticle-delivered chemically modified mrna restores chloride secretion in cystic fibrosis. Mol. Ther. 2018, 26, 2034–2046.

[61]

DeRosa, F.; Guild, B.; Karve, S.; Smith, L.; Love, K.; Dorkin, J. R.; Kauffman, K. J.; Zhang, J.; Yahalom, B.; Anderson, D. G. et al. Therapeutic efficacy in a hemophilia B model using a biosynthetic mRNA liver depot system. Gene Ther. 2016, 23, 699–707.

[62]

Yin, H.; Song, C. Q.; Dorkin, J. R.; Zhu, L. J.; Li, Y. X.; Wu, Q. Q.; Park, A.; Yang, J.; Suresh, S.; Bizhanova, A. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 2016, 34, 328–333.

[63]

Cebecauer, M.; Amaro, M.; Jurkiewicz, P.; Sarmento, M. J.; Šachl, R.; Cwiklik, L.; Hof, M. Membrane lipid nanodomains. Chem. Rev. 2018, 118, 11259–11297.

[64]

Xuexiang, H.; Hanwen, Zhang.; Kamila, B.; Kelsey, L. S.; Mohamad, G. A.; Drew, W.; Michael, J. M. An ionizable lipid toolbox for RNA delivery. Nature Communications 2021, 12, 7233.

[65]

Buschmann, M. D.; Carrasco, M. J.; Alishetty, S.; Paige, M.; Alameh, M. G.; Weissman, D. Nanomaterial delivery systems for mRNA vaccines. Vaccines 2021, 9, 65.

[66]

Li, M.; Zhao, M. N.; Fu, Y.; Li, Y.; Gong, T.; Zhang, Z. R.; Sun, X. Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra- and paracellular pathways. J. Control. Release 2016, 228, 9–19.

[67]

Miyazaki, T.; Uchida, S.; Nagatoishi, S.; Koji, K.; Hong, T.; Fukushima, S.; Tsumoto, K.; Ishihara, K.; Kataoka, K.; Cabral, H. Polymeric nanocarriers with controlled chain flexibility boost mRNA delivery in vivo through enhanced structural fastening. Adv. Healthc. Mater. 2020, 9, e2000538.

[68]

Li, M.; Li, Y.; Peng, K.; Wang, Y.; Gong, T.; Zhang, Z. R.; He, Q.; Sun, X. Engineering intranasal mRNA vaccines to enhance lymph node trafficking and immune responses. Acta Biomater. 2017, 64, 237–248.

[69]

Zhang, M. J.; Weng, Y. H.; Cao, Z. Y.; Guo, S.; Hu, B.; Lu, M.; Guo, W. S.; Yang, T. R.; Li, C. H.; Yang, X. Z.; Huang, Y. Y. ROS-activatable siRNA-engineered polyplex for NIR-triggered synergistic cancer treatment. ACS Appl. Mater. Interfaces 2020, 12, 32289–32300.

[70]

Démoulins, T.; Milona, P.; Englezou, P. C.; Ebensen, T.; Schulze, K.; Suter, R.; Pichon, C.; Midoux, P.; Guzmán, C. A.; Ruggli, N. et al. Polyethylenimine-based polyplex delivery of self-replicating RNA vaccines. Nanomedicine 2016, 12, 711–722.

[71]

Kaczmarek, J. C.; Kauffman, K. J.; Fenton, O. S.; Sadtler, K.; Patel, A. K.; Heartlein, M. W.; DeRosa, F.; Anderson, D. G. Optimization of a degradable polymer-lipid nanoparticle for potent systemic delivery of mRNA to the lung endothelium and immune cells. Nano Lett. 2018, 18, 6449–6454.

[72]

Fenton, O. S.; Kauffman, K. J.; McClellan, R. L.; Kaczmarek, J. C.; Zeng, M. D.; Andresen, J. L.; Rhym, L. H.; Heartlein, M. W.; DeRosa, F.; Anderson, D. G. Customizable lipid nanoparticle materials for the delivery of siRNAs and mRNAs. Angew. Chem., Int. Ed. 2018, 57, 13582–13586.

[73]

Ullah, A.; Chen, G.; Hussain, A.; Khan, H.; Abbas, A.; Zhou, Z. W.; Shafiq, M.; Ahmad, S.; Ali, U.; Usman, M. et al. Cyclam-modified polyethyleneimine for simultaneous TGFβ siRNA delivery and CXCR4 inhibition for the treatment of CCl4-induced liver fibrosis. Int. J. Nanomedicine 2021, 16, 4451–4470.

[74]

Akinc, A.; Maier, M. A.; Manoharan, M.; Fitzgerald, K.; Jayaraman, M.; Barros, S.; Ansell, S.; Du, X. Y.; Hope, M. J.; Madden, T. D. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 2019, 14, 1084–1087.

[75]

Sedic, M.; Senn, J. J.; Lynn, A.; Laska, M.; Smith, M.; Platz, S. J.; Bolen, J.; Hoge, S.; Bulychev, A.; Jacquinet, E. et al. Safety evaluation of lipid nanoparticle-formulated modified mRNA in the Sprague–Dawley rat and cynomolgus monkey. Vet. Pathol. 2018, 55, 341–354.

[76]

Nabhan, J. F.; Wood, K. M.; Rao, V. P.; Morin, J.; Bhamidipaty, S.; LaBranche, T. P.; Gooch, R. L.; Bozal, F.; Bulawa, C. E.; Guild, B. C. Intrathecal delivery of frataxin mRNA encapsulated in lipid nanoparticles to dorsal root ganglia as a potential therapeutic for Friedreich’s ataxia. Sci. Rep. 2016, 6, 20019.

[77]

Ramaswamy, S.; Tonnu, N.; Tachikawa, K.; Limphong, P.; Vega, J. B.; Karmali, P. P.; Chivukula, P.; Verma, I. M. Systemic delivery of factor IX messenger RNA for protein replacement therapy. Proc. Natl. Acad. Sci. USA 2017, 114, e1941–e1950.

[78]

Kauffman, K. J.; Mir, F. F.; Jhunjhunwala, S.; Kaczmarek, J. C.; Hurtado, J. E.; Yang, J. H.; Webber, M. J.; Kowalski, P. S.; Heartlein, M. W.; DeRosa, F. et al. Efficacy and immunogenicity of unmodified and pseudouridine-modified mRNA delivered systemically with lipid nanoparticles in vivo. Biomaterials 2016, 109, 78–87.

[79]

Oberli, M. A.; Reichmuth, A. M.; Dorkin, J. R.; Mitchell, M. J.; Fenton, O. S.; Jaklenec, A.; Anderson, D. G.; Langer, R.; Blankschtein, D. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 2017, 17, 1326–1335.

[80]

Sago, C. D.; Lokugamage, M. P.; Paunovska, K.; Vanover, D. A.; Monaco, C. M.; Shah, N. N.; Gamboa Castro, M.; Anderson, S. E.; Rudoltz, T. G.; Lando, G. N. et al. High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. Proc. Natl. Acad. Sci. USA 2018, 115, E9944–E9952.

[81]

Li, B.; Luo, X.; Deng, B. B.; Giancola, J. B.; McComb, D. W.; Schmittgen, T. D.; Dong, Y. Z. Effects of local structural transformation of lipid-like compounds on delivery of messenger RNA. Sci. Rep. 2016, 6, 22137.

[82]

Jain, R.; Frederick, J. P.; Huang, E. Y.; Burke, K. E.; Mauger, D. M.; Andrianova, E. A.; Farlow, S. J.; Siddiqui, S.; Pimentel, J.; Cheung-Ong, K. et al. MicroRNAs enable mRNA therapeutics to selectively program cancer cells to self-destruct. Nucleic Acid Ther. 2018, 28, 285–296.

[83]

Fenton, O. S.; Kauffman, K. J.; McClellan, R. L.; Appel, E. A.; Dorkin, J. R.; Tibbitt, M. W.; Heartlein, M. W.; DeRosa, F.; Langer, R.; Anderson, D. G. Bioinspired alkenyl amino alcohol ionizable lipid materials for highly potent in vivo mRNA delivery. Adv. Mater. 2016, 28, 2939–2943.

[84]

Fenton, O. S.; Kauffman, K. J.; Kaczmarek, J. C.; McClellan, R. L.; Jhunjhunwala, S.; Tibbitt, M. W.; Zeng, M. D.; Appel, E. A.; Dorkin, J. R.; Mir, F. F. et al. Synthesis and biological evaluation of ionizable lipid materials for the in vivo delivery of messenger RNA to B lymphocytes. Adv. Mater. 2017, 29, 1606944.

[85]

Kowalski, P. S.; Capasso Palmiero, U.; Huang, Y. X.; Rudra, A.; Langer, R.; Anderson, D. G. Ionizable amino-polyesters synthesized via ring opening polymerization of tertiary amino-alcohols for tissue selective mRNA delivery. Adv. Mater. 2018, 30, e1801151.

[86]

Jiang, L.; Berraondo, P.; Jericó, D.; Guey, L. T.; Sampedro, A.; Frassetto, A.; Benenato, K. E.; Burke, K.; Santamaría, E.; Alegre, M. et al. Systemic messenger RNA as an etiological treatment for acute intermittent porphyria. Nat. Med. 2018, 24, 1899–1909.

[87]

An, D.; Schneller, J. L.; Frassetto, A.; Liang, S.; Zhu, X. L.; Park, J. S.; Theisen, M.; Hong, S. J.; Zhou, J.; Rajendran, R. et al. Systemic messenger RNA therapy as a treatment for methylmalonic acidemia. Cell Rep. 2017, 21, 3548–3558.

[88]

Li, B.; Luo, X.; Deng, B. B.; Wang, J. F.; McComb, D. W.; Shi, Y. M.; Gaensler, K. M. L.; Tan, X.; Dunn, A. L.; Kerlin, B. A. et al. An orthogonal array optimization of lipid-like nanoparticles for mRNA delivery in vivo. Nano Lett. 2015, 15, 8099–8107.

[89]

Turnbull, I. C.; Eltoukhy, A. A.; Fish, K. M.; Nonnenmacher, M.; Ishikawa, K.; Chen, J. Q.; Hajjar, R. J.; Anderson, D. G.; Costa, K. D. Myocardial delivery of lipidoid nanoparticle carrying modRNA induces rapid and transient expression. Mol. Ther. 2016, 24, 66–75.

[90]

Miller, J. B.; Zhang, S. Y.; Kos, P.; Xiong, H.; Zhou, K. J.; Perelman, S. S.; Zhu, H.; Siegwart, D. J. Non-viral CRISPR/cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew. Chem., Int. Ed. 2017, 56, 1059–1063.

[91]

Jarzębińska, A.; Pasewald, T.; Lambrecht, J.; Mykhaylyk, O.; Kümmerling, L.; Beck, P.; Hasenpusch, G.; Rudolph, C.; Plank, C.; Dohmen, C. A single methylene group in oligoalkylamine-based cationic polymers and lipids promotes enhanced mRNA delivery. Angew. Chem., Int. Ed. 2016, 55, 9591–9595.

[92]

Schrom, E.; Huber, M.; Aneja, M.; Dohmen, C.; Emrich, D.; Geiger, J.; Hasenpusch, G.; Herrmann-Janson, A.; Kretzschmann, V.; Mykhailyk, O. et al. Translation of angiotensin-converting enzyme 2 upon liver- and lung-targeted delivery of optimized chemically modified mRNA. Mol. Ther. Nucleic Acids 2017, 7, 350–365.

[93]

Ball, R. L.; Hajj, K. A.; Vizelman, J.; Bajaj, P.; Whitehead, K. A. Lipid nanoparticle formulations for enhanced co-delivery of siRNA and mRNA. Nano Lett. 2018, 18, 3814–3822.

[94]

Tanaka, H.; Nakatani, T.; Furihata, T.; Tange, K.; Nakai, Y.; Yoshioka, H.; Harashima, H.; Akita, H. In vivo introduction of mRNA encapsulated in lipid nanoparticles to brain neuronal cells and astrocytes via intracerebroventricular administration. Mol. Pharm. 2018, 15, 2060–2067.

[95]

Sabnis, S.; Kumarasinghe, E. S.; Salerno, T.; Mihai, C.; Ketova, T.; Senn, J. J.; Lynn, A.; Bulychev, A.; McFadyen, I.; Chan, J. et al. A novel amino lipid series for mRNA delivery: Improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther. 2018, 26, 1509–1519.

[96]

Hassett, K. J.; Benenato, K. E.; Jacquinet, E.; Lee, A.; Woods, A.; Yuzhakov, O.; Himansu, S.; Deterling, J.; Geilich, B. M.; Ketova, T. et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol. Ther. Nucleic Acids 2019, 15, 1–11.

[97]

Luo, X.; Li, B.; Zhang, X.; Zhao, W.; Bratasz, A.; Deng, B.; McComb, D. W.; Dong, Y. Dual-functional lipid-like nanoparticles for delivery of mRNA and MRI contrast agents. Nanoscale 2017, 9, 1575–1579.

[98]

Jiang, C.; Mei, M.; Li, B.; Zhu, X. R.; Zu, W. H.; Tian, Y. J.; Wang, Q. N.; Guo, Y.; Dong, Y. Z.; Tan, X. A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res. 2017, 27, 440–443.

[99]

Badieyan, Z. S.; Berezhanskyy, T.; Utzinger, M.; Aneja, M. K.; Emrich, D.; Erben, R.; Schüler, C.; Altpeter, P.; Ferizi, M.; Hasenpusch, G. et al. Transcript-activated collagen matrix as sustained mRNA delivery system for bone regeneration. J. Control. Release 2016, 239, 137–148.

[100]

Hajj, K. A.; Ball, R. L.; Deluty, S. B.; Singh, S. R.; Strelkova, D.; Knapp, C. M.; Whitehead, K. A. Branched-tail lipid nanoparticles potently deliver mRNA in vivo due to enhanced ionization at endosomal pH. Small 2019, 15, e1805097.

[101]

Tanaka, H.; Watanabe, A.; Konishi, M.; Nakai, Y.; Yoshioka, H.; Ohkawara, T.; Takeda, H.; Harashima, H.; Akita, H. The delivery of mRNA to colon inflammatory lesions by lipid-nano-particles containing environmentally-sensitive lipid-like materials with oleic acid scaffolds. Heliyon 2018, 4, e00959.

[102]

McKinlay, C. J.; Vargas, J. R.; Blake, T. R.; Hardy, J. W.; Kanada, M.; Contag, C. H.; Wender, P. A.; Waymouth, R. M. Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proc. Natl. Acad. Sci. USA 2017, 114, e448–e456.

[103]

Patel, A. K.; Kaczmarek, J. C.; Bose, S.; Kauffman, K. J.; Mir, F.; Heartlein, M. W.; DeRosa, F.; Langer, R.; Anderson, D. G. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv. Mater. 2019, 31, e1805116.

[104]

Van der Jeught, K.; De Koker, S.; Bialkowski, L.; Heirman, C.; Tjok Joe, P.; Perche, F.; Maenhout, S.; Bevers, S.; Broos, K.; Deswarte, K. et al. Dendritic cell targeting mRNA lipopolyplexes combine strong antitumor T-cell immunity with improved inflammatory safety. ACS Nano 2018, 12, 9815–9829.

[105]

Weide, B.; Pascolo, S.; Scheel, B.; Derhovanessian, E.; Pflugfelder, A.; Eigentler, T. K.; Pawelec, G.; Hoerr, I.; Rammensee, H. G.; Garbe, C. Direct injection of protamine-protected mRNA: Results of a phase 1/2 vaccination trial in metastatic melanoma patients. J. Immunother. 2009, 32, 498–507.

[106]

Armbruster, N.; Jasny, E.; Petsch, B. Advances in RNA vaccines for preventive indications: A case study of a vaccine against rabies. Vaccines 2019, 7, 132.

[107]

Jarzebska, N. T.; Lauchli, S.; Iselin, C.; French, L. E.; Johansen, P.; Guenova, E.; Kündig, T. M.; Pascolo, S. Functional differences between protamine preparations for the transfection of mRNA. Drug Deliv. 2020, 27, 1231–1235.

[108]

Li, M. C.; Wang, H.; Tian, L. L.; Pang, Z. H.; Yang, Q. K.; Huang, T. Q.; Fan, J. F.; Song, L. H.; Tong, Y. G.; Fan, H. H. COVID-19 vaccine development: Milestones, lessons and prospects. Signal Transduct. Target. Ther. 2022, 7, 146.

[109]

Hussain, A.; Yang, H. Y.; Zhang, M. J.; Liu, Q.; Alotaibi, G.; Irfan, M.; He, H. N.; Chang, J.; Liang, X. J.; Weng, Y. H. et al. mRNA vaccines for COVID-19 and diverse diseases. J. Control. Release 2022, 345, 314–333.

[110]

Luk, A.; Clarke, B.; Dahdah, N.; Ducharme, A.; Krahn, A.; McCrindle, B.; Mizzi, T.; Naus, M.; Udell, J. A.; Virani, S. et al. Myocarditis and pericarditis after COVID-19 mRNA vaccination: Practical considerations for care providers. Can. J. Cardiol. 2021, 37, 1629–1634.

[111]

Garcia-Beltran, W. F.; St. Denis, K. J.; Hoelzemer, A.; Lam, E. C.; Nitido, A. D.; Sheehan, M. L.; Berrios, C.; Ofoman, O.; Chang, C. C.; Hauser, B. M. et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell 2022, 185, 457–466. e4.

[112]

Dong, Y. Z.; Dorkin, J. R.; Wang, W. H.; Chang, P. H.; Webber, M. J.; Tang, B. C.; Yang, J.; Abutbul-Ionita, I.; Danino, D.; DeRosa, F. et al. Poly(glycoamidoamine) brushes formulated nanomaterials for systemic siRNA and mRNA delivery in vivo. Nano Lett. 2016, 16, 842–848.

[113]

Palmiero, U. C.; Kaczmarek, J. C.; Fenton, O. S.; Anderson, D. G. Poly(β-amino ester)-co-poly(caprolactone) terpolymers as nonviral vectors for mRNA delivery in vitro and in vivo. Adv. Healthc. Mater. 2018, 7, e1800249.

[114]

Li, J. H.; Wang, W. D.; He, Y. P.; Li, Y. Z.; Yan, E. Z.; Zhang, K. T.; Irvine, D. J.; Hammond, P. T. Structurally programmed assembly of translation initiation nanoplex for superior mRNA delivery. ACS Nano 2017, 11, 2531–2544.

[115]

Li, J. H.; He, Y. P.; Wang, W. D.; Wu, C.; Hong, C.; Hammond, P. T. Polyamine-mediated stoichiometric assembly of ribonucleoproteins for enhanced mRNA delivery. Angew. Chem., Int. Ed. 2017, 56, 13709–13712.

[116]

Haabeth, O. A. W.; Blake, T. R.; McKinlay, C. J.; Waymouth, R. M.; Wender, P. A.; Levy, R. mRNA vaccination with charge-altering releasable transporters elicits human T cell responses and cures established tumors in mice. Proc. Natl. Acad. Sci. USA 2018, 115, e9153–e9161.

[117]

McKinlay, C. J.; Benner, N. L.; Haabeth, O. A.; Waymouth, R. M.; Wender, P. A. Enhanced mRNA delivery into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters. Proc. Natl. Acad. Sci. USA 2018, 115, e5859–e5866.

[118]

Le Moignic, A.; Malard, V.; Benvegnu, T.; Lemiègre, L.; Berchel, M.; Jaffrès, P. A.; Baillou, C.; Delost, M.; Macedo, R.; Rochefort, J. et al. Preclinical evaluation of mRNA trimannosylated lipopolyplexes as therapeutic cancer vaccines targeting dendritic cells. J. Control. Release 2018, 278, 110–121.

[119]

Yan, Y. F.; Xiong, H.; Zhang, X. Y.; Cheng, Q.; Siegwart, D. J. Systemic mRNA delivery to the lungs by functional polyester-based carriers. Biomacromolecules 2017, 18, 4307–4315.

[120]

Dunn, A. W.; Kalinichenko, V. V.; Shi, D. L. Highly efficient in vivo targeting of the pulmonary endothelium using novel modifications of polyethylenimine: An importance of charge. Adv. Healthc. Mater. 2018, 7, e1800876.

[121]

Uchida, S.; Kinoh, H.; Ishii, T.; Matsui, A.; Tockary, T. A.; Takeda, K. M.; Uchida, H.; Osada, K.; Itaka, K.; Kataoka, K. Systemic delivery of messenger RNA for the treatment of pancreatic cancer using polyplex nanomicelles with a cholesterol moiety. Biomaterials 2016, 82, 221–228.

[122]

Chen, Q. X.; Qi, R. G.; Chen, X. Y.; Yang, X.; Wu, S. D.; Xiao, H. H.; Dong, W. F. A targeted and stable polymeric nanoformulation enhances systemic delivery of mRNA to tumors. Mol. Ther. 2017, 25, 92–101.

[123]

Schumann, C.; Nguyen, D. X.; Norgard, M.; Bortnyak, Y.; Korzun, T.; Chan, S.; Lorenz, A. S.; Moses, A. S.; Albarqi, H. A.; Wong, L. et al. Increasing lean muscle mass in mice via nanoparticle-mediated hepatic delivery of follistatin mRNA. Theranostics 2018, 8, 5276–5288.

[124]

Jiang, Y. H.; Gaudin, A.; Zhang, J. W.; Agarwal, T.; Song, E.; Kauffman, A. C.; Tietjen, G. T.; Wang, Y. H.; Jiang, Z. Z.; Cheng, C. J. et al. A “top-down” approach to actuate poly(amine-co-ester) terpolymers for potent and safe mRNA delivery. Biomaterials 2018, 176, 122–130.

[125]

Fornaguera, C.; Guerra-Rebollo, M.; Ángel Lázaro, M.; Castells-Sala, C.; Meca-Cortés, O.; Ramos-Pérez, V.; Cascante, A.; Rubio, N.; Blanco, J.; Borrós, S. mRNA delivery system for targeting antigen-presenting cells in vivo. Adv. Healthc. Mater. 2018, 7, e1800335.

[126]

Song, Y.; Wang, M. M.; Li, S. Q.; Jin, H. B.; Cai, X. L.; Du, D.; Li, H.; Chen, C. L.; Lin, Y. H. Efficient cytosolic delivery using crystalline nanoflowers assembled from fluorinated peptoids. Small 2018, 14, e1803544.

[127]

Chen, G. J.; Ma, B.; Wang, Y. Y.; Gong, S. Q. A universal GSH-responsive nanoplatform for the delivery of DNA, mRNA, and Cas9/sgRNA ribonucleoprotein. ACS Appl. Mater. Interfaces 2018, 10, 18515–18523.

[128]

Thomas, S. J.; Moreira, E. D. Jr.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J. L.; Marc, G. P.; Polack, F. P.; Zerbini, C. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months. N. Engl. J. Med. 2021, 385, 1761–1773.

[129]

El Sahly, H. M.; Baden, L. R.; Essink, B.; Doblecki-Lewis, S.; Martin, J. M.; Anderson, E. J.; Campbell, T. B.; Clark, J.; Jackson, L. A.; Fichtenbaum, C. J. et al. Efficacy of the mRNA-1273 SARS-CoV-2 vaccine at completion of blinded phase. N. Engl. J. Med. 2021, 385, 1774–1785.

[130]
Xu, Z. P.; Liu, K. F.; Gao, G. F. Omicron variant of SARS-CoV-2 imposes a new challenge for the global public health. Biosaf. Health, in press, https://doi.org/10.1016/j.bsheal.2022.01.002.
[131]
Zhang, B.; Huo, J.; Huang, Y.; Teo, S. Y.; Li, Y. F.; Toh, L. K.; Lam, K. P.; Xu, S. mRNA booster vaccination enhances antibody responses against SARS-CoV2 Omicron variant in individuals primed with mRNA or inactivated virus vaccines. 2022.
[132]

Wu, K.; Choi, A.; Koch, M.; Elbashir, S.; Ma, L. Z.; Lee, D.; Woods, A.; Henry, C.; Palandjian, C.; Hill, A. et al. Variant SARS-CoV-2 mRNA vaccines confer broad neutralization as primary or booster series in mice. Vaccine 2021, 39, 7394–7400.

[133]

Dolgin, E. CureVac COVID vaccine let-down spotlights mRNA design challenges. Nature 2021, 594, 483.

[134]

Chen, G. L.; Li, X. F.; Dai, X. H.; Li, N.; Cheng, M. L.; Huang, Z.; Shen, J.; Ge, Y. H.; Shen, Z. W.; Deng, Y. Q. et al. Safety and immunogenicity of the SARS-CoV-2 ARCoV mRNA vaccine in Chinese adults: A randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Microbe 2022, 3, e193–e202.

[135]

Chaudhary, N.; Weissman, D.; Whitehead, K. A. mRNA vaccines for infectious diseases:Principles, delivery and clinical translation. Nat. Rev. Drug Discov. 2021, 20, 817–838.

[136]

Hekele, A.; Bertholet, S.; Archer, J.; Gibson, D. G.; Palladino, G.; Brito, L. A.; Otten, G. R.; Brazzoli, M.; Buccato, S.; Bonci, A. et al. Rapidly produced SAM® vaccine against H7N9 influenza is immunogenic in mice. Emerg. Microbes Infect. 2013, 2, e52.

[137]

Bahl, K.; Senn, J. J.; Yuzhakov, O.; Bulychev, A.; Brito, L. A.; Hassett, K. J.; Laska, M. E.; Smith, M.; Almarsson, Ö; Thompson, J. et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol. Ther. 2017, 25, 1316–1327.

[138]

Bian, J. W.; Li, Z. J. Angiotensin-converting enzyme 2 (ACE2): SARS-CoV-2 receptor and RAS modulator. Acta Pharm. Sin. B 2021, 11, 1–12.

[139]

Zhang, P.; Narayanan, E.; Liu, Q. B.; Tsybovsky, Y.; Boswell, K.; Ding, S. L.; Hu, Z. H.; Follmann, D.; Lin, Y.; Miao, H. Y. et al. A multiclade env-gag VLP mRNA vaccine elicits tier-2 HIV-1-neutralizing antibodies and reduces the risk of heterologous SHIV infection in macaques. Nat. Med. 2021, 27, 2234–2245.

[140]

Loomis, R. J.; DiPiazza, A. T.; Falcone, S.; Ruckwardt, T. J.; Morabito, K. M.; Abiona, O. M.; Chang, L. A.; Caringal, R. T.; Presnyak, V.; Narayanan, E. et al. Chimeric fusion (F) and attachment (G) glycoprotein antigen delivery by mRNA as a candidate nipah vaccine. Front. Immunol. 2021, 12, 772864.

[141]
Lamb, R. A. Paramyxoviridae: The viruses and their replication. Fields Virology 2001.
[142]

Fugl, A.; Andersen, C. L. Epstein–Barr virus and its association with disease—A review of relevance to general practice. BMC Fam. Pract. 2019, 20, 62.

[143]

Kozlov, M. Monkeypox goes global: Why scientists are on alert. Nature 2022, 606, 15–16.

[144]

Oladoye, M. J. Monkeypox: A neglected viral zoonotic disease. Eur. J. Med. Educat. Technol. 2021, 14, em2108.

[145]

Nowak, D.; Jakubczyk, E. The freeze-drying of foods—The characteristic of the process course and the effect of its parameters on the physical properties of food materials. Foods 2020, 9, 1488.

[146]

Huang, Y. Y.; Zheng, S. Q.; Guo, Z. D.; de Mollerat du Jeu, X.; Liang, X. J.; Yang, Z. W.; Zhang, H. Y.; Gao, S.; Liang, Z. C. Ionizable liposomal siRNA therapeutics enables potent and persistent treatment of Hepatitis B. Signal Transduct. Target. Ther. 2022, 7, 38.

[147]
Ai, L. X.; Li, Y. F.; Zhou, L.; Zhang, H.; Yao, W. R.; Han, J. Y.; Wu, J. M.; Wang, R. Y.; Wang, W. J.; Xu, P. et al. Lyophilized mRNA-lipid nanoparticle vaccines with long-term stability and high antigenicity against SARS-CoV-2. 2022, bioRxiv 2022.02. 10.479867.
[148]

Muramatsu, H.; Lam, K.; Bajusz, C.; Laczkó, D.; Karikó, K.; Schreiner, P.; Martin, A.; Lutwyche, P.; Heyes, J.; Pardi, N. Lyophilization provides long-term stability for a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine. Mol. Ther. 2022, 30, 1941–1951.

Nano Research
Pages 672-691
Cite this article:
Zhang M, Hussain A, Yang H, et al. mRNA-based modalities for infectious disease management. Nano Research, 2023, 16(1): 672-691. https://doi.org/10.1007/s12274-022-4627-5
Topics:

977

Views

15

Crossref

14

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 13 May 2022
Revised: 01 June 2022
Accepted: 03 June 2022
Published: 06 July 2022
© Tsinghua University Press 2022
Return