AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Spatial confinement of copper single atoms into covalent triazine-based frameworks for highly efficient and selective photocatalytic CO2 reduction

Guocheng Huang1Qing Niu1Yuxin He1Jinjin Tian1Mingbin Gao4( )Chaoyang Li5Ning An5Jinhong Bi1,3( )Jiangwei Zhang2,4,5( )
Department of Environmental Science and Engineering, Fuzhou University, Fuzhou 350108, China
Advanced Chemical Engineering and Energy Materials Research Center, China University of Petroleum (East China), Qingdao 266580, China
State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350108, China
National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Anhui Chuangpu Instrument Technology Co., LTD., Hefei 230088, China
Show Author Information

Graphical Abstract

Cu-N-C2 sites were constructed on covalent triazine-based frameworks for photocatalytic CO2 conversion to CH4. The as-prepared photocatalyst exhibited preeminent activity and selectivity.

Abstract

Converting CO2 into carbonaceous fuels via photocatalysis represents an appealing strategy to simultaneously alleviate the energy crisis and associated environmental problems, yet designing with high photoreduction activity catalysts remains a compelling challenge. Here, combining the merits of highly porous structure and maximum atomic efficiency, we rationally constructed covalent triazine-based frameworks (CTFs) anchoring copper single atoms (Cu-SA/CTF) photocatalysts for efficient CO2 conversion. The Cu single atoms were visualized by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images and coordination structure of Cu-N-C2 sites was revealed by extended X-ray absorption fine structure (EXAFS) analyses. The as-prepared Cu-SA/CTF photocatalysts exhibited superior photocatalytic CO2 conversion to CH4 performance associated with a high selectivity of 98.31%. Significantly, the introduction of Cu single atoms endowed the Cu-SA/CTF catalysts with increased CO2 adsorption capacity, strengthened visible light responsive ability, and improved the photogenerated carriers separation efficiency, thus enhancing the photocatalytic activity. This work provides useful guidelines for designing robust visible light responsive photoreduction CO2 catalysts on the atomic scale.

Electronic Supplementary Material

Download File(s)
12274_2022_4629_MOESM1_ESM.pdf (2.7 MB)

References

1

Kou, J. H.; Lu, C. H.; Wang, J.; Chen, Y. K.; Xu, Z. Z.; Varma, R. S. Selectivity enhancement in heterogeneous photocatalytic transformations. Chem. Rev. 2017, 117, 1445–1514.

2

Li, Q.; Wang, S. C.; Sun, Z. X.; Tang, Q. J.; Liu, Y. Q.; Wang, L. Z.; Wang, H. Q.; Wu, Z. B. Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Res. 2019, 12, 2749–2759.

3

Cheng, J. L.; Mu, Y. F.; Wu, L. Y.; Liu, Z. L.; Su, K.; Dong, G. X.; Zhang, M.; Lu, T. B. Acetate-assistant efficient cation-exchange of halide perovskite nanocrystals to boost the photocatalytic CO2 reduction. Nano Res. 2022, 15, 1845–1852.

4

Sun, Z. Y.; Talreja, N.; Tao, H. C.; Texter, J.; Muhler, M.; Strunk, J.; Chen, J. F. Catalysis of carbon dioxide photoreduction on nanosheets: Fundamentals and challenges. Angew. Chem., Int. Ed. 2018, 57, 7610–7627.

5

Wang, C.; Ren, H. A.; Wang, Z. H.; Guan, Q. X.; Liu, Y. P.; Li, W. A promising single-atom Co-N-C catalyst for efficient CO2 electroreduction and high-current solar conversion of CO2 to CO. Appl. Catal. B: Environ. 2022, 304, 120958.

6

Ye, J.; Hu, A. D.; Ren, G. P.; Chen, M.; Zhou, S. G.; He, Z. Biophotoelectrochemistry for renewable energy and environmental applications. iScience 2021, 24, 102828.

7

Zhao, G. X.; Huang, X. B.; Wang, X. X.; Wang, X. K. Progress in catalyst exploration for heterogeneous CO2 reduction and utilization: A critical review. J. Mater. Chem. A 2017, 5, 21625–21649.

8

Jiang, Z. F.; Wan, W. M.; Li, H. M.; Yuan, S. Q.; Zhao, H. J.; Wong, P. K. A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv. Mater. 2018, 30, 1706108.

9

Park, H. R.; Pawar, A. U.; Pal, U.; Zhang, T. R.; Kang, Y. S. Enhanced solar photoreduction of CO2 to liquid fuel over rGO grafted NiO-CeO2 heterostructure nanocomposite. Nano Energy 2021, 79, 105483.

10

Sabbah, A.; Shown, I.; Qorbani, M.; Fu, F. Y.; Lin, T. Y.; Wu, H. L.; Chung, P. W.; Wu, C. I.; Santiago, S. R. M.; Shen, J. L. et al. Boosting photocatalytic CO2 reduction in a ZnS/ZnIn2S4 heterostructure through strain-induced direct Z-scheme and a mechanistic study of molecular CO2 interaction thereon. Nano Energy 2022, 93, 106809.

11

Di, J.; Chen, C.; Zhu, C.; Song, P.; Duan, M. L.; Xiong, J.; Long, R.; Xu, M. Z.; Kang, L. X.; Guo, S. S. et al. Cobalt nitride as a novel cocatalyst to boost photocatalytic CO2 reduction. Nano Energy 2021, 79, 105429.

12

Tang, Q. J.; Sun, Z. X.; Deng, S.; Wang, H. Q.; Wu, Z. B. Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance. J. Colloid Interface Sci. 2020, 564, 406–417.

13

Talapaneni, S. N., Singh, G.; Kim, I. Y.; AlBahily, K.; Al-Muhtaseb, A. H.; Karakoti, A. S.; Tavakkoli, E.; Vinu, A. Nanostructured carbon nitrides for CO2 capture and conversion. Adv. Mater. 2020, 32, 1904635.

14

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

15

Zeng, L.; Xue, C. Single metal atom decorated photocatalysts: Progress and challenges. Nano Res. 2021, 14, 934–944.

16

Mao, J. J.; He, C. T.; Pei, J. J.; Chen, W. X.; He, D. S.; He, Y. Q.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Wang, D. S. et al. Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nat. Commun. 2018, 9, 4958.

17

Zhou, M.; Jiang, Y.; Wang, G.; Wu, W. J.; Chen, W. X.; Yu, P.; Lin, Y. Q.; Mao, J. J.; Mao, L. Q. Single-atom Ni-N4 provides a robust cellular NO sensor. Nat. Commun. 2020, 11, 3188.

18

Ding, S. P.; Hülsey, M. J.; Pérez-Ramírez, J.; Yan, N. Transforming energy with single-atom catalysts. Joule 2019, 3, 2897–2929.

19

Wang, B.; Cai, H. R.; Shen, S. H. Single metal atom photocatalysis. Small Methods 2019, 3, 1800447.

20

Gao, C.; Chen, S. M.; Wang, Y.; Wang, J. W.; Zheng, X. S.; Zhu, J. F.; Song, L.; Zhang, W. K.; Xiong, Y. J. Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: The role of electron transfer. Adv. Mater. 2018, 30, 1704624.

21

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

22

Li, J.; Stephanopoulos, M. F.; Xia, Y. N. Introduction: Heterogeneous single-atom catalysis. Chem. Rev. 2020, 120, 11699–11702.

23

Wang, P. L.; Fan, S. Y.; Li, X. Y.; Wang, J.; Liu, Z. Y.; Niu, Z. D.; Tadé, M. O.; Liu, S. M. Single Pd atoms synergistically manipulating charge polarization and active sites for simultaneously photocatalytic hydrogen production and oxidation of benzylamine. Nano Energy 2022, 95, 107045.

24

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

25

Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651–10657.

26

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

27

Huang, G. C.; Niu, Q.; Zhang, J. W.; Huang, H. M.; Chen, Q. S.; Bi, J. H.; Wu, L. Platinum single-atoms anchored covalent triazine framework for efficient photoreduction of CO2 to CH4. Chem. Eng. J. 2022, 427, 131018.

28

Huang, G. C.; Lin, G. Y.; Niu, Q.; Bi, J. H.; Wu, L. Covalent triazine-based frameworks confining cobalt single atoms for photocatalytic CO2 reduction and hydrogen production. J. Mater. Sci. Technol. 2022, 116, 41–49.

29

Li, Z. J.; Wang, D. H.; Wu, Y. E.; Li, Y. D. Recent advances in the precise control of isolated single-site catalysts by chemical methods. Natl. Sci. Rev. 2018, 5, 673–689.

30

Ma, M. Z.; Huang, Z. A.; Doronkin, D. E.; Fa, W. J.; Rao, Z. Q.; Zou, Y. Z.; Wang, R.; Zhong, Y. Q.; Cao, Y. H.; Zhang, R. Y. et al. Ultrahigh surface density of Co-N2C single-atom-sites for boosting photocatalytic CO2 reduction to methanol. Appl. Catal. B: Environ. 2022, 300, 120695.

31

Qi, K.; Chhowalla, M.; Voiry, D. Single atom is not alone: Metal–support interactions in single-atom catalysis. Mater. Today 2020, 40, 173–192.

32

Liang, J. L.; Song, Q. Q.; Wu, J. H.; Lei, Q.; Li, J.; Zhang, W.; Huang, Z. M.; Kang, T. X.; Xu, H.; Wang, P. et al. Anchoring copper single atoms on porous boron nitride nanofiber to boost selective reduction of nitroaromatics. ACS Nano 2022, 16, 4152–4161.

33

Zhong, W. F.; Sa, R. J.; Li, L. Y.; He, Y. J.; Li, L. Y.; Bi, J. H.; Zhuang, Z. Y.; Yu, Y.; Zou, Z. G. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 2019, 141, 7615–7621.

34

Wei, S. J.; Wang, Y.; Chen, W. X.; Li, Z.; Cheong, W. C.; Zhang, Q. H.; Gong, Y.; Gu, L.; Chen, C.; Wang, D. S. et al. Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts. Chem. Sci. 2020, 11, 786–790.

35

Kou, M. P.; Wang, Y. Y.; Xu, Y. X.; Ye, L. Q.; Huang, Y. P.; Jia, B. H.; Li, H.; Ren, J. Q.; Deng, Y.; Chen, J. H. et al. Molecularly engineered covalent organic frameworks for hydrogen peroxide photosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202200413.

36

Lu, C. B.; Yang, J.; Wei, S. C.; Bi, S.; Xia, Y.; Chen, M. X.; Hou, Y.; Qiu, M.; Yuan, C.; Su, Y. Z. et al. Atomic Ni anchored covalent triazine framework as high efficient electrocatalyst for carbon dioxide conversion. Adv. Funct. Mater. 2019, 29, 1806884.

37

Bi, J. H.; Fang, W.; Li, L. Y.; Wang, J. Y.; Liang, S. J.; He, Y. H.; Liu, M. H.; Wu, L. Covalent triazine-based frameworks as visible light photocatalysts for the splitting of water. Macromol. Rapid Commun. 2015, 36, 1799–1805.

38

Bi, J. H.; Xu, B.; Sun, L.; Huang, H. M.; Fang, S. Q.; Li, L. Y.; Wu, L. A cobalt-modified covalent triazine-based framework as an efficient cocatalyst for visible-light-driven photocatalytic CO2 reduction. ChemPlusChem 2019, 84, 1149–1154.

39

Chen, Z. Q.; Wang, T.; Liu, B.; Cheng, D. F.; Hu, C. L.; Zhang, G.; Zhu, W. J.; Wang, H. Y.; Zhao, Z. J.; Gong, J. L. Grain-boundary-rich copper for efficient solar-driven electrochemical CO2 reduction to ethylene and ethanol. J. Am. Chem. Soc. 2020, 142, 6878–6883.

40

Zheng, W. Z.; Yang, J.; Chen, H. Q.; Hou, Y.; Wang, Q.; Gu, M.; He, F.; Xia, Y.; Xia, Z.; Li, Z. J. et al. Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Adv. Funct. Mater. 2020, 30, 1907658.

41

Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 1994, 39, 1833–1839.

42

Tang, X.; Wang, L.; Yang, B.; Fei, C.; Yao, T. Y.; Liu, W.; Lou, Y.; Dai, Q. G.; Cai, Y. F.; Cao, X. M. et al. Direct oxidation of methane to oxygenates on supported single Cu atom catalyst. Appl. Catal. B: Environ. 2021, 285, 119827.

43

Choi, C.; Kwon, S.; Cheng, T.; Xu, M. J.; Tieu, P.; Lee, C.; Cai, J.; Lee, H. M.; Pan, X. Q.; Duan, X. F. et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 2020, 3, 804–812.

44

Hummers, W. S. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

45

Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

46

Zhang, J. S.; Zhang, M. W.; Sun, R. Q.; Wang, X. C. A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew. Chem., Int. Ed. 2012, 51, 10145–10149.

47

Yang, F. Q.; Jiang, C.; Ma, M. F.; Shu, F. H.; Mao, X. Y.; Yu, W. K.; Wang, J.; Zeng, Z. L.; Deng, S. G. Solid-state synthesis of Cu nanoparticles embedded in carbon substrate for efficient electrochemical reduction of carbon dioxide to formic acid. Chem. Eng. J. 2020, 400, 125879.

48

Li, L. Y.; Fang, W.; Zhang, P.; Bi, J. H.; He, Y. H.; Wang, J. Y.; Su, W. Y. Sulfur-doped covalent triazine-based frameworks for enhanced photocatalytic hydrogen evolution from water under visible light. J. Mater. Chem. A 2016, 4, 12402–12406.

49

Schwinghammer, K.; Hug, S.; Mesch, M. B.; Senker, J.; Lotsch, B. V. Phenyl-triazine oligomers for light-driven hydrogen evolution. Energy Environ. Sci. 2015, 8, 3345–3353.

50

Cheng, Z.; Fang, W.; Zhao, T. S.; Fang, S. Q.; Bi, J. H.; Liang, S. J.; Li, L. Y.; Yu, Y.; Wu, L. Efficient visible-light-driven photocatalytic hydrogen evolution on phosphorus-doped covalent triazine-based frameworks. ACS Appl. Mater. Interfaces 2018, 10, 41415–41421.

51

Zhang, G. G.; Zhang, J. S.; Zhang, M. W.; Wang, X. C. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J. Mater. Chem. 2012, 22, 8083–8091.

52

Luo, Z. Q.; Lim, S.; Tian, Z. Q.; Shang, J. Z.; Lai, L. F.; MacDonald, B.; Fu, C.; Shen, Z. X.; Yu, T.; Lin, J. Y. Pyridinic N doped graphene: Synthesis, electronic structure, and electrocatalytic property. J. Mater. Chem. 2011, 21, 8038–8044.

53

Artyushkova, K.; Kiefer, B.; Halevi, B.; Knop-Gericke, A.; Schlogl, R.; Atanassov, P. Density functional theory calculations of XPS binding energy shift for nitrogen-containing graphene-like structures. Chem. Commun. 2013, 49, 2539–2541.

54

Wu, C. K.; Yin, M.; O’Brien, S.; Koberstein, J. T. Quantitative analysis of copper oxide nanoparticle composition and structure by X-ray photoelectron spectroscopy. Chem. Mater. 2006, 18, 6054–6058.

55

Duan, Y. X.; Meng, F. L.; Liu, K. H.; Yi, S. S.; Li, S. J.; Yan, J. M.; Jiang, Q. Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high faradaic efficiencies. Adv. Mater. 2018, 30, 1706194.

56

Wang, G.; He, C. T.; Huang, R.; Mao, J. J.; Wang, D. S.; Li, Y. D. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. J. Am. Chem. Soc. 2020, 142, 19339–19345.

57

Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Cuenya, B. R.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 2017, 8, 944.

58

Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 119, 1806–1854.

59

Li, X. N.; Huang, X.; Xi, S. B.; Miao, S.; Ding, J.; Cai, W. Z.; Liu, S.; Yang, X. L.; Yang, H. B.; Gao, J. J. et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis. J. Am. Chem. Soc. 2018, 140, 12469–12475.

60

Wang, G.; Huang, R.; Zhang, J. W.; Mao, J. J.; Wang, D. S.; Li, Y. D. Synergistic modulation of the separation of photo-generated carriers via engineering of dual atomic sites for promoting photocatalytic performance. Adv. Mater. 2021, 33, 2105904.

61

Liu, Y. X.; Wang, H. H.; Zhao, T. J.; Zhang, B.; Su, H.; Xue, Z. H.; Li, X. H.; Chen, J. S. Schottky barrier induced coupled interface of electron-rich N-doped carbon and electron-deficient Cu: In-built Lewis acid-base pairs for highly efficient CO2 fixation. J. Am. Chem. Soc. 2019, 141, 38–41.

62

Zhao, J. Q.; Yang, Q.; Shi, R.; Waterhouse, G. I. N.; Zhang, X.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. FeO-CeO2 nanocomposites: An efficient and highly selective catalyst system for photothermal CO2 reduction to CO. NPG Asia Mater. 2020, 12, 5.

63

Khan, M. U.; Wang, L. B.; Liu, Z.; Gao, Z. H.; Wang, S. P.; Li, H. L.; Zhang, W. B.; Wang, M. L.; Wang, Z. F.; Ma, C. et al. Pt3Co octapods as superior catalysts of CO2 hydrogenation. Angew. Chem., Int. Ed. 2016, 55, 9548–9552.

64

Yang, P. J.; Wang, R. R.; Tao, H. L.; Zhang, Y. F.; Titirici, M. M.; Wang, X. C. Cobalt nitride anchored on nitrogen-rich carbons for efficient carbon dioxide reduction with visible light. Appl. Catal. B: Environ. 2021, 280, 119454.

65

Hakim, A.; Marliza, T. S.; Tahari, N. M. A.; Isahak, R. W. N. W.; Yusop, R. M.; Hisham, W. M. M.; Yarmo, A. M. Studies on CO2 adsorption and desorption properties from various types of iron oxides (FeO, Fe2O3, and Fe3O4). Ind. Eng. Chem. Res. 2016, 55, 7888–7897.

Nano Research
Pages 8001-8009
Cite this article:
Huang G, Niu Q, He Y, et al. Spatial confinement of copper single atoms into covalent triazine-based frameworks for highly efficient and selective photocatalytic CO2 reduction. Nano Research, 2022, 15(9): 8001-8009. https://doi.org/10.1007/s12274-022-4629-3
Topics:

1281

Views

36

Crossref

36

Web of Science

34

Scopus

2

CSCD

Altmetrics

Received: 02 May 2022
Revised: 03 June 2022
Accepted: 05 June 2022
Published: 23 June 2022
© Tsinghua University Press 2022
Return