Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Reverse electrodialysis (RED), based on ion-selective membranes, is one of the most promising technologies for capturing osmotic energy. As key elements of the RED system, ion-selective membranes must meet the crucial demands of mechanical stability, anti-fouling characteristics, easy fabrication, and high power density; however, this still remains a challenge. In this study, we demonstrated a large-scale, mechanically stable, and high-porosity membrane obtained by combining carbon nanomaterials and hyperbranched polyethyleneimine (h-PEI), thereby achieving a high power density of 5.0 W·m−2 with seawater and river water. Carbon nanofibers (CNFs) were subsequently bridged with graphene and h-PEI to strengthen the interaction between the CNFs, reduce the channel size and increase the space charge density, mechanical strength, and toughness. The large-scale and mechanically stable membrane fabricated using the modified CNFs exhibited anion selectivity and high ionic conductivity, thereby achieving a high-performance osmotic energy conversion. Furthermore, the anti-fouling property of the membrane was confirmed by the stability of the osmotic energy conversion in a solution with algae, which can be attributed to the high porosity of carbon nanomaterials. This economic and convenient method for the ion-selective membrane preparation is believed to be promising for large-scale osmotic energy harvesting.
Armaroli, N.; Balzani, V. The future of energy supply: Challenges and opportunities. Angew. Chem., Int. Ed. 2007, 46, 52–66.
Griggs, D.; Stafford-Smith, M.; Gaffney, O.; Rockström, J.; Öhman, M. C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kanie, N.; Noble, I. Sustainable development goals for people and planet. Nature 2013, 495, 305–307.
Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.
Crittenden, J. C.; White, H. S. Harnessing energy for a sustainable world. J. Am. Chem. Soc. 2010, 132, 4503–4505.
Siria, A.; Bocquet, M. L.; Bocquet, L. New avenues for the large-scale harvesting of blue energy. Nat. Rev. Chem. 2017, 1, 0091.
Yip, N. Y.; Brogioli, D.; Hamelers, H. V. M.; Nijmeijer, K. Salinity gradients for sustainable energy: Primer, progress, and prospects. Environ. Sci. Technol. 2016, 50, 12072–12094.
Wang, Z. L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23.
La Mantia, F.; Pasta, M.; Deshazer, H. D.; Logan, B. E.; Cui, Y. Batteries for efficient energy extraction from a water salinity difference. Nano Lett. 2011, 11, 1810–1813.
Tian, H. L.; Wang, Y.; Pei, Y. S.; Crittenden, J. C. Unique applications and improvements of reverse electrodialysis: A review and outlook. Appl. Energy 2020, 262, 114482.
Tristán, C.; Rumayor, M.; Dominguez-Ramos, A.; Fallanza, M.; Ibáñez, R.; Ortiz, I. Life cycle assessment of salinity gradient energy recovery by reverse electrodialysis in a seawater reverse osmosis desalination plant. Sustainable Energy Fuels 2020, 4, 4273–4284.
Logan, B. E.; Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 2012, 488, 313–319.
Long, R.; Li, M. L.; Chen, X.; Liu, Z. C.; Liu, W. Synergy analysis for ion selectivity in nanofluidic salinity gradient energy harvesting. Int. J. Heat Mass Transf. 2021, 171, 121126.
Pakulski, D.; Czepa, W.; Del Buffa, S.; Ciesielski, A.; Samorì, P. Atom-thick membranes for water purification and blue energy harvesting. Adv. Funct. Mater. 2020, 30, 1902394.
Zhou, Y. H.; Jiang, L. Bioinspired nanoporous membrane for salinity gradient energy harvesting. Joule 2020, 4, 2244–2248.
Vermaas, D. A.; Saakes, M.; Nijmeijer, K. Doubled power density from salinity gradients at reduced intermembrane distance. Environ. Sci. Technol. 2011, 45, 7089–7095.
Tufa, R. A.; Pawlowski, S.; Veerman, J.; Bouzek, K.; Fontananova, E.; di Profio, G.; Velizarov, S.; Goulão Crespo, J.; Nijmeijer, K.; Curcio, E. Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage. Appl. Energy 2018, 225, 290–331.
Liu, Y. Q.; Ping, J. F.; Ying, Y. B. Anion-selective layered double hydroxide composites-based osmotic energy conversion for real-time nutrient solution detection. Adv. Sci. 2022, 9, 2103696.
Hao, J. L.; Yang, T.; He, X. L.; Tang, H. Y.; Sui, X. Hierarchical nanochannels based on rod-coil block copolymer for ion transport and energy conversion. Giant 2021, 5, 100049.
Hao, J. L.; Wang, W. J.; Zhao, J. W.; Che, H. L.; Chen, L.; Sui, X. Construction and application of bioinspired nanochannels based on two-dimensional materials. Chin. Chem. Lett. 2022, 33, 2291–2300.
Xin, W. W.; Jiang, L.; Wen, L. P. Two-dimensional nanofluidic membranes toward harvesting salinity gradient power. Acc. Chem. Res. 2021, 54, 4154–4165.
Sui, X.; Zhang, Z.; Zhang, Z. Y.; Wang, Z. W.; Li, C.; Yuan, H.; Gao, L. C.; Wen, L. P.; Fan, X.; Yang, L. J. et al. Biomimetic nanofluidic diode composed of dual amphoteric channels maintains rectification direction over a wide pH range. Angew. Chem., Int. Ed. 2016, 55, 13056–13060.
Ma, H.; Wang, S.; Yu, B.; Sui, X.; Shen, Y. Q.; Cong, H. L. Bioinspired nanochannels based on polymeric membranes. Sci. China Mater. 2021, 64, 1320–1342.
Zhang, Z.; Yang, S.; Zhang, P. P.; Zhang, J.; Chen, G. B.; Feng, X. L. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 2019, 10, 2920.
Sun, J.; Li, Q.; Zhu, H.; Liu, Z. N.; Lin, K.; Wang, N.; Zhang, Q. H.; Gu, L.; Deng, J. X.; Chen, J. et al. Negative-pressure-induced large polarization in nanosized PbTiO3. Adv. Mater. 2020, 32, 2002968.
Güler, E.; Elizen, R.; Vermaas, D. A.; Saakes, M.; Nijmeijer, K. Performance-determining membrane properties in reverse electrodialysis. J. Membr. Sci. 2013, 446, 266–276.
Xie, L.; Zhou, S.; Liu, J. R.; Qiu, B. L.; Liu, T. Y.; Liang, Q. R.; Zheng, X. Z.; Li, B.; Zeng, J.; Yan, M. et al. Sequential superassembly of nanofiber arrays to carbonaceous ordered mesoporous nanowires and their heterostructure membranes for osmotic energy conversion. J. Am. Chem. Soc. 2021, 143, 6922–6932.
Zhou, S.; Xie, L.; Li, X. F.; Huang, Y. N.; Zhang, L. P.; Liang, Q. R.; Yan, M.; Zeng, J.; Qiu, B. L.; Liu, T. Y. et al. Interfacial super-assembly of ordered mesoporous carbon-silica/AAO hybrid membrane with enhanced permselectivity for temperature- and pH-sensitive smart ion transport. Angew. Chem., Int. Ed. 2021, 60, 26167–26176.
Fu, L.; Merabia, S.; Joly, L. Understanding fast and robust thermo-osmotic flows through carbon nanotube membranes: Thermodynamics meets hydrodynamics. J. Phys. Chem. Lett. 2018, 9, 2086–2092.
Sun, T. Y.; Yang, L. P.; Tang, J. B.; Li, N. B.; Chen, J. L.; Shen, A. Q.; Shao, Y.; Zhang, Y. F.; Liu, H.; Xue, G. B. Flocculating-filtration-processed mesoporous structure in laminar ion-selective membrane for osmosis energy conversion and desalination. Chem. Eng. J. 2022, 437, 135484.
Zhang, Z. K.; Shen, W. H.; Lin, L. X.; Wang, M.; Li, N.; Zheng, Z. F.; Liu, F.; Cao, L. X. Vertically transported graphene oxide for high-performance osmotic energy conversion. Adv. Sci. 2020, 7, 2000286.
Joly, L.; Meißner, R. H.; Iannuzzi, M.; Tocci, G. Osmotic transport at the aqueous graphene and hBN interfaces: Scaling laws from a unified, first-principles description. ACS Nano 2021, 15, 15249–15258.
Ji, J. Z.; Kang, Q.; Zhou, Y.; Feng, Y. P.; Chen, X.; Yuan, J. Y.; Guo, W.; Wei, Y.; Jiang, L. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs. Adv. Funct. Mater. 2017, 27, 1603623.
Hong, S.; Constans, C.; Surmani Martins, M. V.; Seow, Y. C.; Guevara Carrió, J. A.; Garaj, S. Scalable graphene-based membranes for ionic sieving with ultrahigh charge selectivity. Nano Lett. 2017, 17, 728–732.
Raidongia, K.; Huang, J. X. Nanofluidic ion transport through reconstructed layered materials. J. Am. Chem. Soc. 2012, 134, 16528–16531.
Liu, W. H.; Lin, Y. X.; Song, L. X.; Xiong, J. Research progress of flexible carbon based nanofibers films. Silk 2020, 57, 1–8.
Yu, Q. Q.; Chen, G.; Wang, Q. F.; Chong, L.; Wang, Z. Y.; Wu, Z. Q.; Wang, Z.; Huang, C. X. Research progress on properties and applications of PAN-based carbon nanofiber films based on electrospinning technology. Eng. Plast. Appl. 2021, 49, 166–174.
Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T. Principles and applications of nanofluidic transport. Nat. Nanotechnol. 2009, 4, 713–720.
Luo, Q. X.; Liu, P.; Fu, L.; Hu, Y. H.; Yang, L. S.; Wu, W. W.; Kong, X. Y.; Jiang, L.; Wen, L. P. Engineered cellulose nanofiber membranes with ultrathin low-dimensional carbon material layers for photothermal-enhanced osmotic energy conversion. ACS Appl. Mater. Interfaces 2022, 14, 13223–13230.
Zeng, J.; Ji, X. X.; Ma, Y. H.; Zhang, Z. X.; Wang, S. G.; Ren, Z. H.; Zhi, C. Y.; Yu, J. 3D graphene fibers grown by thermal chemical vapor deposition. Adv. Mater. 2018, 30, 1705380.
Zhang, Z.; Sui, X.; Li, P.; Xie, G. H.; Kong, X. Y.; Xiao, K.; Gao, L. C.; Wen, L. P.; Jiang, L. Ultrathin and ion-selective Janus membranes for high-performance osmotic energy conversion. J. Am. Chem. Soc. 2017, 139, 8905–8914.
Cheng, P.; Chen, S.; Li, X.; Xu, Y. L.; Xu, F.; Ragauskas, A. J. Tree-inspired lignin microrods-based composite heterogeneous nanochannels for ion transport and osmotic energy harvesting. Energy Convers. Manag. 2022, 255, 115321.
Bian, G. S.; Pan, N.; Luan, Z. H.; Sui, X.; Fan, W. X.; Xia, Y. Z.; Sui, K. Y.; Jiang, L. Anti-swelling gradient polyelectrolyte hydrogel membranes as high-performance osmotic energy generators. Angew. Chem., Int. Ed. 2021, 60, 20294–20300.
Ulbricht, M.; Belfort, G. Surface modification of ultrafiltration membranes by low temperature plasma II. Graft polymerization onto polyacrylonitrile and polysulfone. J. Membr. Sci. 1996, 111, 193–215.
Harada, R.; Kojima, T. A porphyrin nanochannel: Formation of cationic channels by a protonated saddle-distorted porphyrin and its inclusion behavior. Chem. Commun. 2005, 716–718.
Liu, Q.; Wen, L. P.; Xiao, K.; Lu, H.; Zhang, Z.; Xie, G. H.; Kong, X. Y.; Bo, Z. S.; Jiang, L. A biomimetic voltage-gated chloride nanochannel. Adv. Mater. 2016, 28, 3181–3186.
Freger, V.; Bason, S. Characterization of ion transport in thin films using electrochemical impedance spectroscopy: I. Principles and theory. J. Membr. Sci. 2007, 302, 1–9.
Zhang, Z.; He, L.; Zhu, C. C.; Qian, Y. C.; Wen, L. P.; Jiang, L. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Nat. Commun. 2020, 11, 875.
Schoch, R. B.; Han, J.; Renaud, P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 2008, 80, 839–883.
Constantin, D.; Siwy, Z. S. Poisson-Nernst-Planck model of ion current rectification through a nanofluidic diode. Phys. Rev. E 2007, 76, 041202.