AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Crystalline–amorphous interfaces of NiO-CrOx electrocatalysts for boosting the urea oxidation reaction

Xuejie Cao1Tongzhou Wang1Hongye Qin1Guangliang Lin1Lihua Zhao3( )Lifang Jiao1,2( )
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
Tianjin Renai College, Tianjin 301636, China
Show Author Information

Graphical Abstract

NiO-CrOx heterojunction electrocatalyst with novel crystalline−amorphous interfaces shows the superior catalytic performance for urea oxidation reaction (UOR), with a low working potential of 1.32 V to drive 10 mA·cm−2 and long-term stability for over 110 h even at 100 mA·cm−2.

Abstract

The overall energy efficiency of electrochemical systems is severely hindered by the traditional anodic oxygen evolution reaction (OER). Utilizing urea oxidation reaction (UOR) with lower thermodynamic potential to replace OER provides a promising strategy to enhance the energy efficiency. Amorphous and heterojunctions electrocatalysts have been aroused extensive studies owing to their unique physicochemical properties and outperformed activity. Herein, we report a simple method to construct a novel crystalline–amorphous NiO-CrOx heterojunction grown on Ni foam for UOR electrocatalyst. The NiO-CrOx electrocatalyst displays excellent UOR performance with an ultralow working potential of 1.32 V at 10 mA·cm−2 and ultra-long stability about 5 days even at 100 mA·cm−2. In-situ Raman analysis and temperature-programmed desorption (TPD) measurement verify that the presence of the amorphous CrOx phase can boost the reconstruction from NiO to active NiOOH species and enhance adsorption ability of urea molecule. Besides, the unique crystalline–amorphous interfaces are also benefit to improving the UOR performance.

Electronic Supplementary Material

Download File(s)
12274_2022_4635_MOESM1_ESM.pdf (2.4 MB)

References

[1]

Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.; MacFarlane, D. R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296.

[2]

Navarro-Jaén, S.; Virginie, M.; Bonin, J.; Robert, M.; Wojcieszak, R.; Khodakov, A. Y. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat. Rev. Chem. 2021, 5, 564–579.

[3]

Lin, F.; Dong, Z. H.; Yao, Y. H.; Yang, L.; Fang, F.; Jiao, L. F. Electrocatalytic hydrogen evolution of ultrathin Co-Mo5N6 heterojunction with interfacial electron redistribution. Adv. Energy Mater. 2020, 10, 2002176.

[4]

Wang, T. Z.; Cao, X. J.; Qin, H. Y.; Chen, X. C.; Li, J. H.; Jiao, L. F. Integrating energy-saving hydrogen production with methanol electrooxidation over Mo modified Co4N nanoarrays. J. Mater. Chem. A 2021, 9, 21094–21100.

[5]

Su, H.; Soldatov, M. A.; Roldugin, V.; Liu, Q. H. Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation. eScience 2022, 2, 102–109.

[6]

Yang, G. C.; Jiao, Y. Q.; Yan, H. J.; Tian, C. G.; Fu, H. G. Electronic structure modulation of non-noble-metal-based catalysts for biomass electrooxidation reactions. Small Structures 2021, 2, 2100095.

[7]

Meng, F. X.; Dai, C. C.; Liu, Z.; Luo, S. Z.; Ge, J. J.; Duan, Y.; Chen, G.; Wei, C.; Chen, R. R.; Wang, J. R. et al. Methanol electro-oxidation to formate on iron-substituted lanthanum cobaltite perovskite oxides. eScience 2022, 2, 87–94.

[8]

Wang, C.; Lu, H. L.; Mao, Z. Y.; Yan, C. L.; Shen, G. Z.; Wang, X. F. Bimetal Schottky heterojunction boosting energy-saving hydrogen production from alkaline water via urea electrocatalysis. Adv. Funct. Mater. 2020, 30, 2000556.

[9]

Zhu, B. J.; Liang, Z. B.; Zou, R. Q. Designing advanced catalysts for energy conversion based on urea oxidation reaction. Small 2020, 16, 1906133.

[10]

Wang, T. Z.; Cao, X. J.; Jiao, L. F. Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production. eScience 2021, 1, 69–74.

[11]

Zhu, X. J.; Dou, X. Y.; Dai, J.; An, X. D.; Guo, Y. Q.; Zhang, L. D.; Tao, S.; Zhao, J. Y.; Chu, W. S.; Zeng, X. C. et al. Metallic nickel hydroxide nanosheets give superior electrocatalytic oxidation of urea for fuel cells. Angew. Chem., Int. Ed. 2016, 55, 12465–12469.

[12]

Sun, H. C.; Zhang, W.; Li, J. G.; Li, Z. S.; Ao, X.; Xue, K. H.; Ostrikov, K. K.; Tang, J.; Wang, C. D. Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis. Appl. Catal. B Environ. 2021, 284, 119740.

[13]

Chen, W.; Xu, L. T.; Zhu, X. R.; Huang, Y. C.; Zhou, W.; Wang, D. D.; Zhou, Y. Y.; Du, S. Q.; Li, Q. L.; Xie, C. et al. Unveiling the electrooxidation of urea: Intramolecular coupling of the N–N bond. Angew. Chem., Int. Ed. 2021, 60, 7297–7307.

[14]

Liu, X.; Meng, J. S.; Zhu, J. X.; Huang, M.; Wen, B.; Guo, R. T.; Mai, L. Q. Comprehensive understandings into complete reconstruction of precatalysts: Synthesis, applications, and characterizations. Adv. Mater. 2021, 33, 2007344.

[15]

Lu, Y. X.; Dong, C. L.; Huang, Y. C.; Zou, Y. Q.; Liu, Z. J.; Liu, Y. B.; Li, Y. Y.; He, N. H.; Shi, J. Q.; Wang, S. Y. Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew. Chem., Int. Ed. 2020, 59, 19215–19221.

[16]

Tong, Y.; Chen, P. Z.; Zhang, M. X.; Zhou, T. P.; Zhang, L. D.; Chu, W. S.; Wu, C. Z.; Xie, Y. Oxygen vacancies confined in nickel molybdenum oxide porous nanosheets for promoted electrocatalytic urea oxidation. ACS Catal. 2018, 8, 1–7.

[17]

Guo, C. Y.; Shi, Y. M.; Lu, S. Y.; Yu, Y. F.; Zhang, B. Amorphous nanomaterials in electrocatalytic water splitting. Chin. J. Catal. 2021, 42, 1287–1296.

[18]
Guan, D. Q.; Zhou, W.; Shao, Z. P. Rational design of superior electrocatalysts for water oxidation: Crystalline or amorphous structure? Small Sci. 2021, 1, 2100030.
[19]

Chen, Y.; Lai, Z. C.; Zhang, X.; Fan, Z. X.; He, Q. Y.; Tan, C. L.; Zhang, H. Phase engineering of nanomaterials. Nat. Rev. Chem. 2020, 4, 243–256.

[20]

Shen, S. J.; Wang, Z. P.; Lin, Z. P.; Song, K.; Zhang, Q. H.; Meng, F. Q.; Gu, L.; Zhong, W. W. Crystalline-amorphous interfaces coupling of CoSe2/CoP with optimized d-band center and boosted electrocatalytic hydrogen evolution. Adv. Mater. 2022, 34, 2110631.

[21]

Liu, D. C.; Cao, L. M.; Luo, Z. M.; Zhong, D. C.; Tan, J. B.; Lu, T. B. An in situ generated amorphous CoFePi and crystalline Ni(PO3)2 heterojunction as an efficient electrocatalyst for oxygen evolution. J. Mater. Chem. A 2018, 6, 24920–24927.

[22]

Yang, M. Y.; Zhao, M. X.; Yuan, J.; Luo, J. X.; Zhang, J. J.; Lu, Z. G.; Chen, D. Z.; Fu, X. Z.; Wang, L.; Liu, C. Oxygen vacancies and interface engineering on amorphous/crystalline CrOx-Ni3N heterostructures toward high-durability and kinetically accelerated water splitting. Small 2022, 18, 2106554.

[23]

Yang, L.; Huang, L. T.; Yao, Y. H.; Jiao, L. F. In-situ construction of lattice-matching NiP2/NiSe2 heterointerfaces with electron redistribution for boosting overall water splitting. Appl. Catal. B Environ. 2021, 282, 119584.

[24]

Zhang, S. L.; Guan, B. Y.; Lu, X. F.; Xi, S. B.; Du, Y. H.; Lou, X. W. D. Metal atom-doped Co3O4 hierarchical nanoplates for electrocatalytic oxygen evolution. Adv. Mater. 2020, 32, 2002235.

[25]

Wang, A. Y.; Lin, B.; Zhang, H. L.; Engelhard, M. H.; Guo, Y. L.; Lu, G. Z.; Peden, C. H. F.; Gao, F. Ambient temperature NO oxidation over Cr-based amorphous mixed oxide catalysts: Effects from the second oxide components. Catal. Sci. Technol. 2017, 7, 2362–2370.

[26]

Maslar, J. E.; Hurst, W. S.; Bowers, W. J.; Hendricks, J. H.; Aquino, M. I.; Levin, I. In situ Raman spectroscopic investigation of chromium surfaces under hydrothermal conditions. Appl. Surf. Sci. 2001, 180, 102–118.

[27]

Han, H.; Choi, H.; Mhin, S.; Hong, Y. R.; Kim, K. M.; Kwon, J.; Ali, G.; Chung, K. Y.; Je, M.; Umh, H. N. et al. Advantageous crystalline-amorphous phase boundary for enhanced electrochemical water oxidation. Energy Environ. Sci. 2019, 12, 2443–2454.

[28]

Jiang, J.; Hu, Y. L.; He, X. R.; Li, Z. P.; Li, F.; Chen, X.; Niu, Y.; Song, J.; Huang, P.; Tian, G. et al. An amorphous-crystalline nanosheet arrays structure for ultrahigh electrochemical performance supercapattery. Small 2021, 17, 2102565.

[29]

Yang, F. N.; Luo, Y. T.; Yu, Q. M.; Zhang, Z. Y.; Zhang, S.; Liu, Z. B.; Ren, W. C.; Cheng, H. M.; Li, J.; Liu, B. L. A durable and efficient electrocatalyst for saline water splitting with current density exceeding 2, 000 mA·cm−2. Adv. Funct. Mater. 2021, 31, 2010367.

[30]

Zhang, L. J.; Jang, H.; Liu, H. H.; Kim, M. G.; Yang, D. J.; Liu, S. G.; Liu, X. E.; Cho, J. Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: A robust pH-universal oxygen evolution electrocatalyst. Angew. Chem., Int. Ed. 2021, 60, 18821–18829.

[31]

Lin, C.; Gao, Z. F.; Zhang, F.; Yang, J. H.; Liu, B.; Jin, J. In situ growth of single-layered α-Ni(OH)2 nanosheets on a carbon cloth for highly efficient electrocatalytic oxidation of urea. J. Mater. Chem. A 2018, 6, 13867–13873.

[32]

Wang, L. P.; Zhu, Y. J.; Wen, Y. Z.; Li, S. Y.; Cui, C. Y.; Ni, F. L.; Liu, Y. X.; Lin, H. P.; Li, Y. Y.; Peng, H. S. et al. Regulating the local charge distribution of Ni active sites for the urea oxidation reaction. Angew. Chem., Int. Ed. 2021, 60, 10577–10582.

[33]

Luo, J. M.; Tian, X. L.; Zeng, J. H.; Li, Y. W.; Song, H. Y.; Liao, S. J. Limitations and improvement strategies for early-transition-metal nitrides as competitive catalysts toward the oxygen reduction reaction. ACS Catal. 2016, 6, 6165–6174.

[34]

Zhang, S. H.; Wu, M. F.; Tang, T. T.; Xing, Q. J.; Peng, C. Q.; Li, F.; Liu, H.; Luo, X. B.; Zou, J. P.; Min, X. B. et al. Mechanism investigation of anoxic Cr(VI) removal by Nano zero-valent iron based on XPS analysis in time scale. Chem. Eng. J. 2018, 335, 945–953.

[35]

Liu, X. H.; Wu, J. Coupling interface constructions of NiO-Cr2O3 heterostructures for efficient electrocatalytic oxygen evolution. Electrochim. Acta 2019, 320, 134577.

[36]

Yang, H. Y.; Dai, G. L.; Chen, Z. L.; Wu, J.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. Pseudo-periodically coupling Ni-O lattice with Ce-O lattice in ultrathin heteronanowire arrays for efficient water oxidation. Small 2021, 17, 2101727.

[37]

Chen, G.; Hu, Z. W.; Zhu, Y. P.; Gu, B. B.; Zhong, Y. J.; Lin, H. J.; Chen, C. T.; Zhou, W.; Shao, Z. P. A universal strategy to design superior water-splitting electrocatalysts based on fast in situ reconstruction of amorphous nanofilm precursors. Adv. Mater. 2018, 30, 1804333.

Nano Research
Pages 3665-3671
Cite this article:
Cao X, Wang T, Qin H, et al. Crystalline–amorphous interfaces of NiO-CrOx electrocatalysts for boosting the urea oxidation reaction. Nano Research, 2023, 16(3): 3665-3671. https://doi.org/10.1007/s12274-022-4635-5
Topics:
Part of a topical collection:

1000

Views

48

Crossref

51

Web of Science

50

Scopus

2

CSCD

Altmetrics

Received: 26 April 2022
Revised: 05 June 2022
Accepted: 06 June 2022
Published: 11 July 2022
© Tsinghua University Press 2022
Return