AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nonradical-dominated peroxymonosulfate activation through bimetallic Fe/Mn-loaded hydroxyl-rich biochar for efficient degradation of tetracycline

Yihui Li1,2Deying Lin2Yongfu Li1,2Peikun Jiang1,2Xiaobo Fang2( )Bing Yu1,2( )
State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
Show Author Information

Graphical Abstract

A new bimetallic Fe/Mn-loaded hydroxyl-rich biochar is synthesized in this work, which activates peroxymonosulfate (PMS) for tetracycline degradation mainly through nonradical pathway. FeMn-OH sites in the prepared catalyst are dominant active sites for PMS activation, which have a high adsorption energy and strong oxidative activity towards PMS.

Abstract

Biochar-based transition metal catalysts have been identified as excellent peroxymonosulfate (PMS) activators for producing radicals used to degrade organic pollutants. However, the radical-dominated pathways for PMS activation severely limit their practical applications in the degradation of organic pollutants from wastewater due to side reactions between radicals and the coexisting anions. Herein, bimetallic Fe/Mn-loaded hydroxyl-rich biochar (FeMn-OH-BC) is synthesized to activate PMS through nonradical-dominated pathways. The as-prepared FeMn-OH-BC exhibits excellent catalytic activity for degrading tetracycline at broad pH conditions ranging from 5 to 9, and about 85.0% of tetracycline is removed in 40 min. Experiments on studying the influences of various anions (HCO3, NO3, and H2PO4) show that the inhibiting effect is negligible, suggesting that the FeMn-OH-BC based PMS activation is dominated by nonradical pathways. Electron paramagnetic resonance measurements and quenching tests provide direct evidence to confirm that 1O2 is the major reactive oxygen species generated from FeMn-OH-BC based PMS activation. Theoretical calculations further reveal that the FeMn-OH sites in FeMn-OH-BC are dominant active sites for PMS activation, which have higher adsorption energy and stronger oxidative activity towards PMS than OH-BC sites. This work provides a new route for driving PMS activation by biochar-based transition metal catalysts through nonradical pathways.

Electronic Supplementary Material

Download File(s)
12274_2022_4640_MOESM1_ESM.pdf (461.2 KB)

References

[1]

Liu, S. Q.; Zhang, Z. C.; Huang, F.; Liu, Y. Z.; Feng, L.; Jiang, J.; Zhang, L. Q.; Qi, F.; Liu, C. Carbonized polyaniline activated peroxymonosulfate (PMS) for phenol degradation: Role of PMS adsorption and singlet oxygen generation. Appl. Catal. B:Environ. 2021, 286, 119921.

[2]

Zhou, Y.; Wang, X. L.; Zhu, C. Y.; Dionysiou, D. D.; Zhao, G. C.; Fang, G. D.; Zhou, D. M. New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: Role of sulfur conversion in sulfate radical generation. Water Res. 2018, 142, 208–216.

[3]

Xiong, Y.; Li, H. C.; Liu, C. W.; Zheng, L. R.; Liu, C.; Wang, J. O.; Liu, S. J.; Han, Y. H.; Gu, L.; Qian, J. S. et al. Single-atom Fe catalysts for Fenton-like reactions: Roles of different N species. Adv. Mater. 2022, 34, 2110653.

[4]

Wang, J. L.; Wang, S. Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517.

[5]

Kong, L. S.; Fang, G. D.; Xi, X. J.; Wen, Y.; Chen, Y. F.; Xie, M.; Zhu, F.; Zhou, D. M.; Zhan, J. H. A novel peroxymonosulfate activation process by periclase for efficient singlet oxygen-mediated degradation of organic pollutants. Chem. Eng. J. 2021, 403, 126445.

[6]

Kong, L. S.; Fang, G. D.; Chen, Y. F.; Xie, M.; Zhu, F.; Ma, L.; Zhou, D. M.; Zhan, J. H. Efficient activation of persulfate decomposition by Cu2FeSnS4 nanomaterial for bisphenol A degradation: Kinetics, performance and mechanism studies. Appl. Catal. B: Environ. 2019, 253, 278–285.

[7]

Miao, J.; Geng, W.; Alvarez, P. J. J.; Long, M. C. 2D N-doped porous carbon derived from polydopamine-coated graphitic carbon nitride for efficient nonradical activation of peroxymonosulfate. Environ. Sci. Technol. 2020, 54, 8473–8481.

[8]

Lim, J.; Yang, Y.; Hoffmann, M. R. Activation of peroxymonosulfate by oxygen vacancies-enriched cobalt-doped black TiO2 nanotubes for the removal of organic pollutants. Environ. Sci. Technol. 2019, 53, 6972–6980.

[9]

Luo, R.; Li, M. Q.; Wang, C. H.; Zhang, M.; Khan, M. A. N.; Sun, X. Y.; Shen, J. Y.; Han, W. Q.; Wang, L. J.; Li, J. S. Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition. Water Res. 2019, 148, 416–424.

[10]

Xiao, T.; Wang, Y.; Wan, J. Q.; Ma, Y. W.; Yan, Z. C.; Huang, S. H.; Zeng, C. Fe-N-C catalyst with Fe-Nx sites anchored nano carboncubes derived from Fe-Zn-MOFs activate peroxymonosulfate for high-effective degradation of ciprofloxacin: Thermal activation and catalytic mechanism. J. Hazard. Mater. 2022, 424, 127380.

[11]

Peng, L. J.; Shang, Y. N.; Gao, B. Y.; Xu, X. Co3O4 anchored in N, S heteroatom co-doped porous carbons for degradation of organic contaminant: Role of pyridinic N–Co binding and high tolerance of chloride. Appl. Catal. B: Environ. 2021, 282, 119484.

[12]

Li, H. C.; Qian, J. S.; Pan, B. C. N-coordinated Co containing porous carbon as catalyst with improved dispersity and stability to activate peroxymonosulfate for degradation of organic pollutants. Chem. Eng. J. 2021, 403, 126395.

[13]

Zhang, J. L.; Zhao, W.; Wu, S. S.; Yin, R. L.; Zhu, M. S. Surface dual redox cycles of Mn(III)/Mn(IV) and Cu(I)/Cu(II) for heterogeneous peroxymonosulfate activation to degrade diclofenac: Performance, mechanism and toxicity assessment. J. Hazard. Mater. 2021, 410, 124623.

[14]

Gao, Y.; Zhou, Y.; Pang, S. Y.; Jiang, J.; Shen, Y. M.; Song, Y.; Duan, J. B.; Guo, Q. Enhanced peroxymonosulfate activation via complexed Mn(II): A novel non-radical oxidation mechanism involving manganese intermediates. Water Res. 2021, 193, 116856.

[15]

Mi, X. Y.; Wang, P. F.; Xu, S. Z.; Su, L. N.; Zhong, H.; Wang, H. T.; Li, Y.; Zhan, S. H. Almost 100% peroxymonosulfate conversion to singlet oxygen on single-atom CoN2+2 sites. Angew. Chem. 2021, 133, 4638–4643.

[16]

Shahzad, A.; Ali, J.; Ifthikar, J.; Aregay, G. G.; Zhu, J. Y.; Chen, Z. L.; Chen, Z. Q. Non-radical PMS activation by the nanohybrid material with periodic confinement of reduced graphene oxide (rGO) and Cu hydroxides. J. Hazard. Mater. 2020, 392, 122316.

[17]

Huang, G. X.; Wang, C. Y.; Yang, C. W.; Guo, P. C.; Yu, H. Q. Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn18Fe1. 2O4 nanospheres:Synergism between Mn and Fe. Environ. Sci. Technol. 2017, 51, 12611–12618.

[18]

Chen, F.; Liu, L. L.; Chen, J. J.; Li, W. W.; Chen, Y. P.; Zhang, Y. J.; Wu, J. H.; Mei, S. C.; Yang, Q.; Yu, H. Q. Efficient decontamination of organic pollutants under high salinity conditions by a nonradical peroxymonosulfate activation system. Water Res. 2021, 191, 116799.

[19]

Liang, S.; Niu, H. Y.; Guo, H.; Niu, C. G.; Liang, C.; Li, J. S.; Tang, N.; Lin, L. S.; Zheng, C. W. Incorporating Fe3C into B, N co-doped CNTs: Non-radical-dominated peroxymonosulfate catalytic activation mechanism. Chem. Eng. J. 2021, 405, 126686.

[20]

Wang, C.; Zhao, J. Y.; Chen, C. M.; Na, P. Catalytic activation of PS/PMS over Fe-Co bimetallic oxides for phenol oxidation under alkaline conditions. Appl. Surf. Sci. 2021, 562, 150134.

[21]

Dong, C. C.; Bao, Y.; Sheng, T.; Yi, Q. Y.; Zhu, Q. H.; Shen, B.; Xing, M. Y.; Lo, I. M. C.; Zhang, J. L. Singlet oxygen triggered by robust bimetallic MoFe/TiO2 nanospheres of highly efficacy in solar-light-driven peroxymonosulfate activation for organic pollutants removal. Appl. Catal. B: Environ. 2021, 286, 119930.

[22]

Guo, Z. Y.; Li, C. X.; Gao, M.; Han, X.; Zhang, Y. J.; Zhang, W. J.; Li, W. W. Mn–O covalency governs the intrinsic activity of Co-Mn spinel oxides for boosted peroxymonosulfate activation. Angew. Chem., Int. Ed. 2021, 60, 274–280.

[23]

Sun, X. W.; Xu, D. Y.; Dai, P.; Liu, X. E.; Tan, F.; Guo, Q. J. Efficient degradation of methyl orange in water via both radical and non-radical pathways using Fe-Co bimetal-doped MCM-41 as peroxymonosulfate activator. Chem. Eng. J. 2020, 402, 125881.

[24]

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

[25]

Cui, T. T.; Li, L. X.; Ye, C. L.; Li, X. Y.; Liu, C. X.; Zhu, S. H.; Chen, W.; Wang, D. S. Heterogeneous single atom environmental catalysis: Fundamentals, applications, and opportunities. Adv. Funct. Mater. 2022, 32, 2108381.

[26]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[27]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[28]
ZhuangZ. C.LiY.HuangJ. Z.LiZ. L.ZhaoK. N.ZhaoY. L.XuL.ZhouL.MoskalevaL. V.MaiL. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edgeSci. Bull.20196461762410.1016/j.scib.2019.04.005

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

[29]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[30]

Xie, X. W.; Xie, R. J.; Suo, Z. Y.; Huang, H. B.; Xing, M. Y.; Lei, D. X. A highly dispersed Co-Fe bimetallic catalyst to activate peroxymonosulfate for VOC degradation in a wet scrubber. Environ. Sci.: Nano 2021, 8, 2976–2987.

[31]

Chen, W.; Gong, M.; Li, K. X.; Xia, M. W.; Chen, Z. Q.; Xiao, H. Y.; Fang, Y.; Chen, Y. Q.; Yang, H. P.; Chen, H. P. Insight into KOH activation mechanism during biomass pyrolysis: Chemical reactions between O-containing groups and KOH. Appl. Energy 2020, 278, 115730.

[32]

Xue, Y. T.; Chen, Z. Y.; Wu, Z. S.; Tian, F.; Yu, B. Hierarchical construction of a new Z-scheme Bi/BiVO4-CdS heterojunction for enhanced visible-light photocatalytic degradation of tetracycline hydrochloride. Sep. Purif. Technol. 2021, 275, 119152.

[33]

Li, N.; Zhou, L.; Jin, X. Y.; Owens, G.; Chen, Z. L. Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework. J. Hazard. Mater. 2019, 366, 563–572.

[34]

Li, H. C.; Yuan, N.; Qian, J. S.; Pan, B. C. Mn2O3 as an electron shuttle between peroxymonosulfate and organic pollutants: The dominant role of surface reactive Mn (IV) species. Environ. Sci. Technol. 2022, 56, 4498–4506.

[35]

Wu, Z. S.; He, X. F.; Xue, Y. T.; Yang, X.; Li, Y. F.; Li, Q. B.; Yu, B. Cyclodextrins grafted MoS2/g-C3N4 as high-performance photocatalysts for the removal of glyphosate and Cr(VI) from simulated agricultural runoff. Chem. Eng. J. 2020, 399, 125747.

[36]

Zhang, Y. W.; Liu, F.; Yang, Z. C.; Qian, J. S.; Pan, B. C. Weakly hydrophobic nanoconfinement by graphene aerogels greatly enhances the reactivity and ambient stability of reactivity of MIL-101-Fe in Fenton-like reaction. Nano Res. 2021, 14, 2383–2389.

[37]

Xiang, S. J.; Fan, Z. X.; Ye, Z. C.; Zhu, T. B.; Shi, D.; Ye, S. F.; Hou, Z. Q.; Chen, X. L. Endogenous Fe2+-activated ROS nanoamplifier for esterase-responsive and photoacoustic imaging-monitored therapeutic improvement. Nano Res. 2022, 15, 907–918.

[38]

An, X. F.; Chen, Y.; Ao, M. H.; Jin, Y. H.; Zhan, L. W.; Yu, B.; Wu, Z. S.; Jiang, P. K. Sequential photocatalytic degradation of organophosphorus pesticides and recovery of orthophosphate by biochar/α-Fe2O3/MgO composite: A new enhanced strategy for reducing the impacts of organophosphorus from wastewater. Chem. Eng. J. 2022, 435, 135087.

[39]

An, X. F.; Wang, H. X.; Dong, C.; Jiang, P. K.; Wu, Z. S.; Yu, B. Core–shell P-laden biochar/ZnO/g-C3N4 composite for enhanced photocatalytic degradation of atrazine and improved P slow-release performance. J. Colloid Interface Sci. 2022, 608, 2539–2548.

[40]

Yang, Y.; Wu, Z. S.; Yang, R. P.; Li, Y. F.; Liu, X. C.; Zhang, L. H.; Yu, B. Insights into the mechanism of enhanced photocatalytic dye degradation and antibacterial activity over ternary ZnO/ZnSe/MoSe2 photocatalysts under visible light irradiation. Appl. Surf. Sci. 2021, 539, 148220.

[41]

Yang, R. P.; Wu, Z. S.; Yang, Y.; Li, Y. F.; Zhang, L. H.; Yu, B. Understanding the origin of synergistic catalytic activities for ZnO based sonophotocatalytic degradation of methyl orange. J. Taiwan Inst. Chem. Eng. 2021, 119, 128–135.

[42]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[43]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[44]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[45]

Wang, L. W.; Bolan, N. S.; Tsang, D. C. W.; Hou, D. Y. Green immobilization of toxic metals using alkaline enhanced rice husk biochar: Effects of pyrolysis temperature and KOH concentration. Sci. Total Environ. 2020, 720, 137584.

[46]

Huang, D. L.; Zhang, Q.; Zhang, C.; Wang, R. Z.; Deng, R.; Luo, H.; Li, T.; Li, J.; Chen, S.; Liu, C. H. Mn doped magnetic biochar as persulfate activator for the degradation of tetracycline. Chem. Eng. J. 2020, 391, 123532.

[47]

Ding, W. C.; Dong, X. L.; Ime, I. M.; Gao, B.; Ma, L. Q. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere 2014, 105, 68–74.

[48]

Peng, J. L.; Zhou, H. Y.; Liu, W.; Ao, Z. M.; Ji, H. D.; Liu, Y.; Su, S. J.; Yao, G.; Lai, B. Insights into heterogeneous catalytic activation of peroxymonosulfate by natural chalcopyrite: pH-dependent radical generation, degradation pathway and mechanism. Chem. Eng. J. 2020, 397, 125387.

[49]

Tian, N.; Tian, X. K.; Nie, Y. L.; Yang, C.; Zhou, Z. X.; Li, Y. Enhanced 2,4-dichlorophenol degradation at pH 3–11 by peroxymonosulfate via controlling the reactive oxygen species over Ce substituted 3D Mn2O3. Chem. Eng. J. 2019, 355, 448–456.

[50]

Yao, Y. J.; Hu, H. H.; Zheng, H. D.; Hu, H. W.; Tang, Y. H.; Liu, X. Y.; Wang, S. B. Nonprecious bimetallic Fe, Mo-embedded N-enriched porous biochar for efficient oxidation of aqueous organic contaminants. J. Hazard. Mater. 2022, 422, 126776.

[51]

Wang, Q.; Zeng, H.; Liang, Y. H.; Cao, Y.; Xiao, Y.; Ma, J. Degradation of bisphenol AF in water by periodate activation with FeS (mackinawite) and the role of sulfur species in the generation of sulfate radicals. Chem. Eng. J. 2021, 407, 126738.

[52]

Li, X. W.; Liu, X. T.; Lin, C. Y.; Qi, C. D.; Zhang, H. J.; Ma, J. Enhanced activation of periodate by iodine-doped granular activated carbon for organic contaminant degradation. Chemosphere 2017, 181, 609–618.

[53]

Yu, Y.; Li, N.; Lu, X. K.; Yan, B. B.; Chen, G. Y.; Wang, Y. S.; Duan, X. G.; Cheng, Z. J.; Wang, S. B. Co/N co-doped carbonized wood sponge with 3D porous framework for efficient peroxymonosulfate activation: Performance and internal mechanism. J. Hazard. Mater. 2022, 421, 126735.

[54]

Qi, F.; Chu, W.; Xu, B. B. Modeling the heterogeneous peroxymonosulfate/Co-MCM41 process for the degradation of caffeine and the study of influence of cobalt sources. Chem. Eng. J. 2014, 235, 10–18.

[55]

Ma, R.; Yan, X. Q.; Mi, X. H.; Wu, Y. G.; Qian, J.; Zhang, Q. Y.; Chen, G. H. Enhanced catalytic degradation of aqueous doxycycline (DOX) in Mg-Fe-LDH@biochar composite-activated peroxymonosulfate system: Performances, degradation pathways, mechanisms and environmental implications. Chem. Eng. J. 2021, 425, 131457.

[56]

Li, G.; Cao, X. Q.; Meng, N.; Huang, Y. M.; Wang, X. D.; Gao, Y. Y.; Li, X.; Yang, T. S.; Li, B. L.; Zhang, Y. Z. et al. Fe3O4 supported on water caltrop-derived biochar toward peroxymonosulfate activation for urea degradation: The key role of sulfate radical. Chem. Eng. J. 2022, 433, 133595.

[57]

Pan, L. H.; Shi, W.; Sen, T.; Wang, L. Z.; Zhang, J. L. Visible light-driven selective organic degradation by FeTiO3/persulfate system: The formation and effect of high valent Fe(IV). Appl. Catal. B: Environ. 2021, 280, 119414.

[58]

Duan, X. G.; Ao, Z. M.; Zhang, H. Y.; Saunders, M.; Sun, H. Q.; Shao, Z. P.; Wang, S. B. Nanodiamonds in sp2/sp3 configuration for radical to nonradical oxidation: Core–shell layer dependence. Appl. Catal. B: Environ. 2018, 222, 176–181.

[59]

Gao, Y. W.; Chen, Z. H.; Zhu, Y.; Li, T.; Hu, C. New insights into the generation of singlet oxygen in the metal-free peroxymonosulfate activation process: Important role of electron-deficient carbon atoms. Environ. Sci. Technol. 2020, 54, 1232–1241.

[60]

Wang, J. B.; Zhi, D.; Zhou, H.; He, X. W.; Zhang, D. Y. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode. Water Res. 2018, 137, 324–334.

[61]

Luo, T.; Feng, H. P.; Tang, L.; Lu, Y.; Tang, W. W.; Chen, S.; Yu, J. F.; Xie, Q. Q.; Ouyang, X. L.; Chen, Z. M. Efficient degradation of tetracycline by heterogeneous electro-Fenton process using Cu-doped Fe@Fe2O3: Mechanism and degradation pathway. Chem. Eng. J. 2020, 382, 122970.

[62]

Xiao, B.; Wu, M.; Wang, Y.; Chen, R. F.; Liu, H. Sulfite activation and tetracycline removal by rectangular copper oxide nanosheets with dominantly exposed (001) reactive facets: Performance, degradation pathway and mechanism. Chem. Eng. J. 2021, 406, 126693.

[63]

Pi, Z. J.; Li, X. M.; Wang, D. B.; Xu, Q. X.; Tao, Z.; Huang, X. D.; Yao, F. B.; Wu, Y.; He, L.; Yang, Q. Persulfate activation by oxidation biochar supported magnetite particles for tetracycline removal: Performance and degradation pathway. J. Clean. Prod. 2019, 235, 1103–1115.

[64]

Zhang, S. Q.; Zhang, Z. F.; Li, B.; Dai, W. L.; Si, Y. M.; Yang, L. X.; Luo, S. L. Hierarchical Ag3PO4@ZnIn2S4 nanoscoparium: An innovative Z-scheme photocatalyst for highly efficient and predictable tetracycline degradation. J. Colloid Interface Sci. 2021, 586, 708–718.

[65]

Fang, G. D.; Zhang, T.; Cui, H. B.; Dionysiou, D. D.; Liu, C.; Gao, J.; Wang, Y. J.; Zhou, D. M. Synergy between iron and selenide on FeSe2 (111) surface driving peroxymonosulfate activation for efficient degradation of pollutants. Environ. Sci. Technol. 2020, 54, 15489–15498.

[66]

Fan, J. H.; Wang, Q. Q.; Yan, W.; Chen, J. B.; Zhou, X. F.; Xie, H. J. Mn3O4-g-C3N4 composite to activate peroxymonosulfate for organic pollutants degradation: Electron transfer and structure-dependence. J. Hazard. Mater. 2022, 434, 128818.

Nano Research
Pages 155-165
Cite this article:
Li Y, Lin D, Li Y, et al. Nonradical-dominated peroxymonosulfate activation through bimetallic Fe/Mn-loaded hydroxyl-rich biochar for efficient degradation of tetracycline. Nano Research, 2023, 16(1): 155-165. https://doi.org/10.1007/s12274-022-4640-8
Topics:

1072

Views

32

Crossref

36

Web of Science

39

Scopus

4

CSCD

Altmetrics

Received: 08 April 2022
Revised: 07 June 2022
Accepted: 08 June 2022
Published: 23 July 2022
© Tsinghua University Press 2022
Return