Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Radiotherapy (RT) mediated tumor immunogenicity offers an opportunity for simultaneous RT and immunotherapy via immunogenic cell death (ICD), which releases damaged-associated molecular patterns and generates “eat me” signals for the innate immune system to modulate the immunogenicity. However, tumor hypoxia significantly reduces the therapeutic efficacy of RT and hampers its mediation of ICD induction. Herein, Au@Bi2Te3-polyethylene glycol (PEG) was rationally constructed as theranostic nanozymes for mild photothermal therapy, tumor hypoxia modulation, and RT adjuvant cancer immunotherapy. The tumor-specific production of oxygen could not only augment the effects of RT by enhanced reactive oxygen species (ROS) generation, but also reduce hypoxia-related cytokines and downregulate programmed cell death-ligand 1 (PD-L1) to unleash immune-enhancing T cells. Moreover, Au@Bi2Te3-PEG could act as an immune-blocking inhibitor by efficient ICD induction with the combination of mild-photothermal therapy + RT to inhibit the tumor immune escape and improve antitumor immune response. Increased amounts of CD4+ and CD8+ T cells and elevated levels of cytokines could be observed that eventually led to effective post-medication inhibition of primary and abscopal tumors. Spectral computed tomography/photoacoustic imaging allowed noninvasive and real-time tracking of nanoparticle (NP) accumulation and oxygenation status at tumor sites. Collectively, Au@Bi2Te3-PEG NPs could serve as effective theranostic nanoregulators with remarkable synergistic mild-photothermal/RT/immunotherapy effects that helped reshape the immune microenvironment and had remarkable molecular imaging properties.
Sharma, P.; Hu-Lieskovan, S.; Wargo, J. A.; Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 2017, 168, 707–723.
Zhu, L. P.; Liu, J.; Zhou, G. Y.; Liu, T. M.; Dai, Y. L.; Nie, G. J.; Zhao, Q. Remodeling of tumor microenvironment by tumor-targeting nanozymes enhances immune activation of CAR T cells for combination therapy. Small 2021, 17, 2102624.
Song, C.; Phuengkham, H.; Kim, Y. S.; Dinh, V. V.; Lee, I.; Shin, I. W.; Shin, H. S.; Jin, S. M.; Um, S. H.; Lee, H. et al. Syringeable immunotherapeutic nanogel reshapes tumor microenvironment and prevents tumor metastasis and recurrence. Nat. Commun. 2019, 10, 3745.
Guevara, M. L.; Persano, F.; Persano, S. Nano-immunotherapy: Overcoming tumour immune evasion. Semin. Cancer Biol. 2021, 69, 238–248.
Baxevanis, C. N.; Fortis, S. P.; Perez, S. A. The balance between breast cancer and the immune system: Challenges for prognosis and clinical benefit from immunotherapies. Semin. Cancer Biol. 2021, 72, 76–89.
Wan, C. X.; Keany, M. P.; Dong, H.; Al-Alem, L. F.; Pandya, U. M.; Lazo, S.; Boehnke, K.; Lynch, K. N.; Xu, R.; Zarrella, D. T. et al. Enhanced efficacy of simultaneous PD-1 and PD-L1 immune checkpoint blockade in high-grade serous ovarian cancer. Cancer Res. 2021, 81, 158–173.
Vranic, S.; Cyprian, F. S.; Gatalica, Z.; Palazzo, J. PD-L1 status in breast cancer: Current view and perspectives. Semin. Cancer Biol. 2021, 72, 146–154.
Mpekris, F.; Panagi, M.; Voutouri, C.; Martin, J. D.; Samuel, R.; Takahashi, S.; Gotohda, N.; Suzuki, T.; Papageorgis, P.; Demetriou, P. et al. Normalizing the microenvironment overcomes vessel compression and resistance to nano-immunotherapy in breast cancer lung metastasis. Adv. Sci. 2021, 8, 2001917.
Salas-Benito, D.; Pérez-Gracia, J. L.; Ponz-Sarvisé, M.; Rodriguez-Ruiz, M. E.; Martínez-Forero, I.; Castañón, E.; López-Picazo, J. M.; Sanmamed, M. F.; Melero, I. Paradigms on immunotherapy combinations with chemotherapy. Cancer Discov. 2021, 11, 1353–1367.
Tang, T. Y.; Huang, X.; Zhang, G.; Hong, Z. T.; Bai, X. L.; Liang, T. B. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Sig. Transduct. Target. Ther. 2021, 6, 72.
Cousin, N.; Cap, S.; Dihr, M.; Tacconi, C.; Detmar, M.; Dieterich, L. C. Lymphatic PD-L1 expression restricts tumor-specific CD8+ T-cell responses. Cancer Res. 2021, 81, 4133–4144.
Noman, M. Z.; Desantis, G.; Janji, B.; Hasmim, M.; Karray, S.; Dessen, P.; Bronte, V.; Chouaib, S. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 2014, 211, 781–790.
Yu, M.; Duan, X. H.; Cai, Y. J.; Zhang, F.; Jiang, S. Q.; Han, S. S.; Shen, J.; Shuai, X. T. Multifunctional nanoregulator reshapes immune microenvironment and enhances immune memory for tumor immunotherapy. Adv. Sci. 2019, 6, 1900037.
Qi, J.; Jin, F. Y.; Xu, X. L.; Du, Y. Z. Combination cancer immunotherapy of nanoparticle-based immunogenic cell death inducers and immune checkpoint inhibitors. Int. J. Nanomed. 2021, 16, 1435–1456.
Zheng, P.; Ding, B. B.; Jiang, Z. Y.; Xu, W. G.; Li, G.; Ding, J. X.; Chen, X. S. Ultrasound-augmented mitochondrial calcium ion overload by calcium nanomodulator to induce immunogenic cell death. Nano Lett. 2021, 21, 2088–2093.
Tang, H. L.; Xu, X. J.; Chen, Y. X.; Xin, H. H.; Wan, T.; Li, B. W.; Pan, H. M.; Li, D.; Ping, Y. Reprogramming the tumor microenvironment through second-near-infrared-window photothermal genome editing of PD-L1 mediated by supramolecular gold nanorods for enhanced cancer immunotherapy. Adv. Mater. 2021, 33, 2006003.
Obeid, M.; Tesniere, A.; Ghiringhelli, F.; Fimia, G. M.; Apetoh, L.; Perfettini, J. L.; Castedo, M.; Mignot, G.; Panaretakis, T.; Casares, N. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 2007, 13, 54–61.
Zhou, F. Y.; Feng, B.; Yu, H. J.; Wang, D. G.; Wang, T. T.; Ma, Y. T.; Wang, S. L.; Li, Y. P. Tumor microenvironment-activatable prodrug vesicles for nanoenabled cancer chemoimmunotherapy combining immunogenic cell death induction and CD47 blockade. Adv. Mater. 2019, 31, 1805888.
Choi, B.; Choi, H.; Yu, B.; Kim, D. H. Synergistic local combination of radiation and anti-programmed death ligand 1 immunotherapy using radiation-responsive splintery metallic nanocarriers. ACS Nano 2020, 14, 13115–13126.
Donlon, N. E.; Power, R.; Hayes, C.; Reynolds, J. V.; Lysaght, J. Radiotherapy, immunotherapy, and the tumour microenvironment: Turning an immunosuppressive milieu into a therapeutic opportunity. Cancer Lett. 2021, 502, 84–96.
Zhang, C. Y.; Yan, L.; Gu, Z. J.; Zhao, Y. L. Strategies based on metal-based nanoparticles for hypoxic-tumor radiotherapy. Chem. Sci. 2019, 1, 6932–6943.
Zhang, Q. H.; Chen, J. W.; Ma, M.; Wang, H.; Chen, H. R. A bioenvironment-responsive versatile nanoplatform enabling rapid clearance and effective tumor homing for oxygen-enhanced radiotherapy. Chem. Mater. 2018, 30, 5412–5421.
Liu, H. M.; Cheng, R.; Dong, X. H.; Zhu, S.; Zhou, R. Y.; Yan, L.; Zhang, C. Y.; Wang, Q.; Gu, Z. J.; Zhao, Y. L. BiO2−x nanosheets as radiosensitizers with catalase-like activity for hypoxia alleviation and enhancement of the radiotherapy of tumors. Inorg. Chem. 2020, 59, 3482–3493.
Liang, Y.; Peng, C.; Su, N.; Li, Q. Y.; Chen, S. W.; Wu, D.; Wu, B.; Gao, Y.; Xu, Z. T.; Dan, Q. et al. Tumor microenvironments self-activated cascade catalytic nanoscale metal organic frameworks as ferroptosis inducer for radiosensitization. Chem. Eng. J. 2022, 437, 135309.
Hu, H. L.; Zheng, S. T.; Hou, M. R.; Zhu, K.; Chen, C. Y.; Wu, Z. D.; Qi, L.; Ren, Y. Y.; Wu, B.; Xu, Y. K. et al. Functionalized Au@Cu-Sb-S nanoparticles for spectral CT/photoacoustic imaging-guided synergetic photo-radiotherapy in breast cancer. Int. J. Nanomed. 2022, 17, 395–407.
Pei, P.; Shen, W. H.; Zhang, Y.; Zhang, Y. X.; Qi, Z. Y.; Zhou, H. L.; Liu, T.; Sun, L.; Yang, K. Radioactive nano-oxygen generator enhance anti-tumor radio-immunotherapy by regulating tumor microenvironment and reducing proliferation. Biomaterials 2022, 280, 121326.
Meng, L. T.; Cheng, Y. L.; Tong, X. N.; Gan, S. J.; Ding, Y. W.; Zhang, Y.; Wang, C.; Xu, L.; Zhu, Y. S.; Wu, J. H. et al. Tumor oxygenation and hypoxia inducible factor-1 functional inhibition via a reactive oxygen species responsive nanoplatform for enhancing radiation therapy and abscopal effects. ACS Nano 2018, 12, 8308–8322.
Gong, N. Q.; Sheppard, N. C.; Billingsley, M. M.; June, C. H.; Mitchell, M. J. Nanomaterials for T-cell cancer immunotherapy. Nat. Nanotechnol. 2021, 16, 25–36.
Wang, J. P.; Sun, J. Y.; Hu, W.; Wang, Y. H.; Chou, T.; Zhang, B. L.; Zhang, Q.; Ren, L.; Wang, H. J. A porous Au@Rh bimetallic core–shell nanostructure as an H2O2-driven oxygenerator to alleviate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv. Mater. 2020, 32, 2001862.
Dan, Q.; Hu, D. H.; Ge, Y. S.; Zhang, S. Y.; Li, S. Q.; Gao, D. Y.; Luo, W. X.; Ma, T.; Liu, X.; Zheng, H. R. et al. Ultrasmall theranostic nanozymes to modulate tumor hypoxia for augmenting photodynamic therapy and radiotherapy. Biomater. Sci. 2020, 8, 973–987.
Lin, Y. H.; Ren, J. S.; Qu, X. G. Nano-gold as artificial enzymes: Hidden talents. Adv. Mater. 2014, 26, 4200–4217.
Long, Y. J.; Li, Y. F.; Liu, Y.; Zheng, J. J.; Tang, J.; Huang, C. Z. Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem. Commun. 2011, 47, 11939–11941.
Lien, C. W.; Huang, C. C.; Chang, H. T. Peroxidase-mimic bismuth-gold nanoparticles for determining the activity of thrombin and drug screening. Chem. Commun. 2012, 48, 7952–7954.
Bai, J.; Jia, X. D.; Ruan, Y. D.; Wang, C.; Jiang, X. E. Photosensitizer-conjugated Bi2Te3 nanosheets as theranostic agent for synergistic photothermal and photodynamic therapy. Inorg. Chem. 2018, 57, 10180–10188.
Hou, M. R.; Yan, C. G.; Chen, Z. L.; Zhao, Q. L.; Yuan, M. M.; Xu, Y. K.; Zhao, B. X. Multifunctional NIR-responsive poly(vinylpyrrolidone)-Cu-Sb-S nanotheranostic agent for photoacoustic imaging and photothermal/photodynamic therapy. Acta Biomater. 2018, 74, 334–343.
Xia, J.; Yao, J. J.; Wang, L. H. V. Photoacoustic tomography: Principles and advances (invited review). Prog. Electromagn. Res. 2014, 147, 1–22.
Gargiulo, S.; Albanese, S.; Mancini, M. State-of-the-art preclinical photoacoustic imaging in oncology: Recent advances in cancer theranostics. Contrast Media Mol. Imaging 2019, 2019, 1–24.
Wang, B.; Zhao, Q.; Zhang, Y. Y.; Liu, Z. J.; Zheng, Z. Z.; Liu, S. Y.; Meng, L. B.; Xin, Y.; Jiang, X. Targeting hypoxia in the tumor microenvironment: A potential strategy to improve cancer immunotherapy. J. Exp. Clin. Cancer Res. 2021, 40, 24.
Liu, X.; Ye, N. B.; Liu, S.; Guan, J. K.; Deng, Q. Y.; Zhang, Z. J.; Xiao, C.; Ding, Z. Y.; Zhang, B. X.; Chen, X. P. et al. Hyperbaric oxygen boosts PD-1 antibody delivery and T cell infiltration for augmented immune responses against solid tumors. Adv. Sci. 2021, 8, 2100233.
Hu, C.; He, X. Q.; Chen, Y. X.; Yang, X. T.; Qin, L.; Lei, T.; Zhou, Y.; Gong, T.; Huang, Y.; Gao, H. L. Metformin mediated PD-L1 downregulation in combination with photodynamic-immunotherapy for treatment of breast cancer. Adv. Funct. Mater. 2021, 31, 2007149.