AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Combining two-photon lithography with laser ablation of sacrificial layers: A route to isolated 3D magnetic nanostructures

Arjen van den Berg1Mylène Caruel2Matthew Hunt1Sam Ladak1( )
School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, UK
Institut National des Sciences Appliquées (INSA) of Toulouse, 35 Avenue de Rangueil, 31400 Toulouse, France
Show Author Information

Graphical Abstract

A combination of two-photon lithography and femtosecond ablation is utilised to fabricate isolated three-dimensional (3D) magnetic nanostructures. Proof-of-principle is shown by realising planar magnetic nanowires, raised above the substrate, and that exhibit switching via domain wall propagation. 3D artificial spin-ice systems are then fabricated, and magneto-optical Kerr effect measurements are used to determine depth-dependent switching in the lattice.

Abstract

Three-dimensional (3D) nanostructured functional materials are important systems allowing new means for intricate control of electromagnetic properties. A key problem is realising a 3D printing methodology on the nanoscale that can yield a range of functional materials. In this article, it is shown that two-photon lithography, when combined with laser ablation of sacrificial layers, can be used to realise such a vision and produce 3D functional nanomaterials of complex geometry. Proof-of-principle is first shown by fabricating planar magnetic nanowires raised above the substrate that exhibit controlled domain wall injection and propagation. Secondly, 3D artificial spin-ice (3DASI) structures are fabricated, whose complex switching can be probed using optical magnetometry. We show that by careful analysis of the magneto-optical Kerr effect signal and by comparison with micro-magnetic simulations, depth dependent switching information can be obtained from the 3DASI lattice. The work paves the way for new materials, which exploit additional physics provided by non-trivial 3D geometries.

Electronic Supplementary Material

Download File(s)
12274_2022_4649_MOESM1_ESM.pdf (833.9 KB)

References

[1]

Skylar-Scott, M. A.; Mueller, J.; Visser, C. W.; Lewis, J. A. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 2019, 575, 330–335.

[2]

Elder, B.; Neupane, R.; Tokita, E.; Ghosh, U.; Hales, S.; Kong, Y. L. Nanomaterial patterning in 3D printing. Adv. Mater. 2020, 32, 1907142.

[3]

Bauer, J.; Schroer, A.; Schwaiger, R.; Kraft, O. Approaching theoretical strength in glassy carbon nanolattices. Nat. Mater. 2016, 15, 438–443.

[4]

Gernhardt, M.; Blasco, E.; Hippler, M.; Blinco, J.; Bastmeyer, M.; Wegener, M.; Frisch, H.; Barner‐Kowollik, C. Tailoring the mechanical properties of 3D microstructures using visible light post-manufacturing. Adv. Mater. 2019, 31, 1901269.

[5]

Kadic, M.; Milton, G. W.; Van Hecke, M.; Wegener, M. 3D metamaterials. Nat. Rev. Phys. 2019, 1, 198–210.

[6]

May, A.; Hunt, M.; Van Den Berg, A.; Hejazi, A.; Ladak, S. Realisation of a frustrated 3D magnetic nanowire lattice. Commun. Phys. 2019, 2, 13.

[7]

Kern, C.; Kadic, M.; Wegener, M. Experimental evidence for sign reversal of the hall coefficient in three-dimensional metamaterials. Phys. Rev. Lett. 2017, 118, 016601.

[8]

Cao, Y. Y.; Takeyasu, N.; Tanaka, T.; Duan, X. M.; Kawata, S. 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small 2009, 5, 1144–1148.

[9]

Bernardeschi, I.; Ilyas, M.; Beccai, L. A review on active 3D microstructures via direct laser lithography. Adv. Intell. Syst. 2021, 3, 2100051.

[10]

Hunt, M.; Taverne, M.; Askey, J.; May, A.; Van Den Berg, A.; Ho, Y. L. D.; Rarity, J.; Ladak, S. Harnessing multi-photon absorption to produce three-dimensional magnetic structures at the nanoscale. Materials 2020, 13, 761.

[11]

Harinarayana, V.; Shin, Y. C. Two-photon lithography for three-dimensional fabrication in micro/nanoscale regime: A comprehensive review. Opt. Laser Technol. 2021, 142, 107180.

[12]
Puce, S. ; Sciurti, E. ; Rizzi, F. ; Spagnolo, B. ; Qualtieri, A. ; De Vittorio, M. ; Staufer, U. 3D-microfabrication by two-photon polymerization of an integrated sacrificial stencil mask. Micro Nano Eng. 2019, 2, 70–75.
[13]

Liao, P.; Xing, L. X.; Zhang, S. W.; Sun, D. Magnetically driven undulatory microswimmers integrating multiple rigid segments. Small 2019, 15, 1901197.

[14]

Fernández-Pacheco, A.; Streubel, R.; Fruchart, O.; Hertel, R.; Fischer, P.; Cowburn, R. P. Three-dimensional nanomagnetism. Nat. Commun. 2017, 8, 15756.

[15]

Askey, J.; Hunt, M. O.; Langbein, W.; Ladak, S. Use of two-photon lithography with a negative resist and processing to realise cylindrical magnetic nanowires. Nanomaterials 2020, 10, 429.

[16]

Sahoo, S.; Mondal, S.; Williams, G.; May, A.; Ladak, S.; Barman, A. Ultrafast magnetization dynamics in a nanoscale three-dimensional cobalt tetrapod structure. Nanoscale 2018, 10, 9981–9986.

[17]

Williams, G.; Hunt, M.; Boehm, B.; May, A.; Taverne, M.; Ho, D.; Giblin, S.; Read, D.; Rarity, J.; Allenspach, R. et al. Two-photon lithography for 3D magnetic nanostructure fabrication. Nano Res. 2018, 11, 845–854.

[18]

Parkin, S. S. P.; Hayashi, M.; Thomas, L. Magnetic domain-wall racetrack memory. Science 2008, 320, 190–194.

[19]

Parkin, S.; Yang, S. H. Memory on the racetrack. Nat. Nanotechnol. 2015, 10, 195–198.

[20]

Sanz-Hernández, D.; Hamans, R. F.; Liao, J. W.; Welbourne, A.; Lavrijsen, R.; Fernández-Pacheco, A. Fabrication, detection, and operation of a three-dimensional nanomagnetic conduit. ACS Nano 2017, 11, 11066–11073.

[21]

Linder, V.; Gates, B. D.; Ryan, D.; Parviz, B. A.; Whitesides, G. M. Water-soluble sacrificial layers for surface micromachining. Small 2005, 1, 730–736.

[22]

Kumagai, H.; Midorikawa, K.; Toyoda, K.; Nakamura, S.; Okamoto, T.; Obara, M. Ablation of polymer films by a femtosecond high-peak-power Ti: sapphire laser at 798 nm. Appl. Phys. Lett. 1994, 65, 1850–1852.

[23]

Rethfeld, B.; Ivanov, D. S.; Garcia, M. E.; Anisimov, S. I. Modelling ultrafast laser ablation. J. Phys. D:Appl. Phys. 2017, 50, 193001.

[24]

May, A.; Saccone, M.; Van Den Berg, A.; Askey, J.; Hunt, M.; Ladak, S. Magnetic charge propagation upon a 3D artificial spin-ice. Nat. Commun. 2021, 12, 3217.

[25]

Sahoo, S.; May, A.; Van Den Berg, A.; Mondal, A. K.; Ladak, S.; Barman, A. Observation of coherent spin waves in a three-dimensional artificial spin ice structure. Nano Lett. 2021, 21, 4629–4635.

[26]

Allwood, D. A.; Xiong, G.; Cooke, M. D.; Cowburn, R. P. Magneto-optical kerr effect analysis of magnetic nanostructures. J. Phys. D:Appl. Phys. 2003, 36, 2175–2182.

[27]

Ladak, S.; Read, D. E.; Perkins, G. K.; Cohen, L. F.; Branford, W. R. Direct observation of magnetic monopole defects in an artificial spin-ice system. Nat. Phys. 2010, 6, 359–363.

[28]

Kondorsky, E. On hysteresis in ferromagnetics. J. Phys. 1940, 2, 161–181.

[29]

Fernández-Pacheco, A.; Serrano-Ramón, L.; Michalik, J. M.; Ibarra, M. R.; De Teresa, J. M.; O'Brien, L.; Petit, D.; Lee, J.; Cowburn, R. P. Three dimensional magnetic nanowires grown by focused electron-beam induced deposition. Scientific Reports 2013, 3, 1492.

[30]

Fischbacher, T.; Franchin, M.; Bordignon, G.; Fangohr, H. A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations: Nmag. IEEE Trans. Magn. 2007, 43, 2896–2898.

Nano Research
Pages 1441-1447
Cite this article:
den Berg Av, Caruel M, Hunt M, et al. Combining two-photon lithography with laser ablation of sacrificial layers: A route to isolated 3D magnetic nanostructures. Nano Research, 2023, 16(1): 1441-1447. https://doi.org/10.1007/s12274-022-4649-z
Topics:

885

Views

76

Downloads

10

Crossref

8

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 23 March 2022
Revised: 20 May 2022
Accepted: 13 June 2022
Published: 30 July 2022
© The Author(s) 2022

Copyright: 2022 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return