Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The pursuit of energy conservation and environmental protection has always been a hot topic in the catalytic fields, which is inseparable from the rational designing of efficient catalysts and an in-depth understanding of the catalytic reaction mechanism. In this work, fully-exposed Pt clusters were fabricated on the atomically dispersed Sn decorated nanodiamond/graphene (Sn-ND@G) hybrid support and employed for direct dehydrogenation (DDH) of ethylbenzene (EB) to styrene (ST). The detailed structural characterizations revealed the fully-exposed Pt clusters were stabilized on Sn-ND@G, assisted by the spatial separation of atomically dispersed Sn species. The as-prepared Pt/Sn-ND@G catalyst showed enhanced ST yield (136.2 molEB·molPt−1·h−1 EB conversion rate and 99.7% ST selectivity) and robust long-term stability at 500 °C for the EB DDH reaction, compared with the traditional ND@G supported Pt nanoparticle catalyst (Pt/ND@G). The ST prefers to desorb from the fully-exposed Pt clusters, resulting in the enhanced DDH catalytic performance of the Pt/Sn-ND@G catalyst. The present work paves a new way for designing highly dispersed and stable supported metal catalysts for DDH reactions.
Liu, J.; Yue, Y. Y.; Liu, H. Y.; Da, Z. J.; Liu, C. C.; Ma, A. Z.; Rong, J. F.; Su, D. S.; Bao, X. J.; Zheng, H. D. Origin of the robust catalytic performance of nanodiamond-graphene-supported Pt nanoparticles used in the propane dehydrogenation reaction. ACS Catal. 2017, 7, 3349–3355.
Zhang, Y. Y.; Zhao, Y.; Otroshchenko, T.; Perechodjuk, A.; Kondratenko, V. A.; Bartling, S.; Rodemerck, U.; Linke, D.; Jiao, H. J.; Jiang, G. Y. et al. Structure-activity-selectivity relationships in propane dehydrogenation over Rh/ZrO2 catalysts. ACS Catal. 2020, 10, 6377–6388.
Jia, X. Q.; Huang, Z. Conversion of alkanes to linear alkylsilanes using an iridium-iron-catalysed tandem dehydrogenation-isomerization-hydrosilylation. Nat. Chem. 2016, 8, 157–161.
Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.
Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2021, 15, 38–70.
Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.
Lin, L. H.; Chen, Z.; Chen, W. X. Single atom catalysts by atomic diffusion strategy. Nano Res. 2021, 14, 4398–4416.
Zhou, D.; Zhang, L. L.; Liu, X. Y.; Qi, H. F.; Liu, Q. G.; Yang, J.; Su, Y.; Ma, J. Y.; Yin, J. Z.; Wang, A. Q. Tuning the coordination environment of single-atom catalyst M-N-C towards selective hydrogenation of functionalized nitroarenes. Nano Res. 2022, 15, 519–527.
Li, Z. J.; Zhang, M. Y.; Zhang, L. L.; Dong, X. L.; Leng, L. P.; Horton, J. H.; Wang, J. Engineering the atomic interface of porous ceria nanorod with single palladium atoms for hydrodehalogenation reaction. Nano Res. 2022, 15, 1338–1346.
Chen, Y. P.; Wei, J. T.; Duyar, M. S.; Ordomsky, V. V.; Khodakov, A. Y.; Liu, J. Carbon-based catalysts for Fischer–Tropsch synthesis. Chem. Soc. Rev. 2021, 50, 2337–2366.
Ren, X. M.; Guo, M.; Li, H.; Li, C. B.; Yu, L.; Liu, J.; Yang, Q. H. Microenvironment engineering of ruthenium nanoparticles incorporated into silica nanoreactors for enhanced hydrogenations. Angew. Chem., Int. Ed. 2019, 58, 14483–14488.
Wang, L. L.; Diao, J. Y.; Peng, M.; Chen, Y. L.; Cai, X. B.; Deng, Y. C.; Huang, F.; Qin, X. T.; Xiao, D. Q.; Jiang, Z. et al. Cooperative sites in fully exposed Pd clusters for low-temperature direct dehydrogenation reaction. ACS Catal. 2021, 11, 11469–11477.
Zhang, J. Y.; Deng, Y. C.; Cai, X. B.; Chen, Y. L.; Peng, M.; Jia, Z. M.; Jiang, Z.; Ren, P. J.; Yao, S. Y.; Xie, J. L. et al. Tin-assisted fully exposed platinum clusters stabilized on defect-rich graphene for dehydrogenation reaction. ACS Catal. 2019, 9, 5998–6005.
Chen, X. W.; Peng, M.; Cai, X. B.; Chen, Y. L.; Jia, Z. M.; Deng, Y. C.; Mei, B. B.; Jiang, Z.; Xiao, D. Q.; Wen, X. D. et al. Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction. Nat. Commun. 2021, 12, 2664.
Peng, M.; Dong, C. Y.; Gao, R.; Xiao, D. Q.; Liu, H. Y.; Ma, D. Fully exposed cluster catalyst (FECC): Toward rich surface sites and full atom utilization efficiency. ACS Cent. Sci. 2021, 7, 262–273.
Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal-oxide interaction. Chem. Rev. 2020, 120, 11986–12043.
Liu, L. C.; Meira, D. M.; Arenal, R.; Concepcion, P.; Puga, A. V.; Corma, A. Determination of the evolution of heterogeneous single metal atoms and nanoclusters under reaction conditions: Which are the working catalytic sites? ACS Catal. 2019, 9, 10626–10639.
Dong, C.; Yu, Q.; Ye, R. P.; Su, P. P.; Liu, J.; Wang, G. H. Hollow carbon sphere nanoreactors loaded with PdCu nanoparticles: Void-confinement effects in liquid-phase hydrogenations. Angew. Chem., Int. Ed. 2020, 59, 18374–18379.
Huang, H. G.; Shen, K.; Chen, F. F.; Li, Y. W. Metal-organic frameworks as a good platform for the fabrication of single-atom catalysts. ACS Catal. 2020, 10, 6579–6586.
Ding, S. P.; Guo, Y. L.; Hülsey, M. J.; Zhang, B.; Asakura, H.; Liu, L. M.; Han, Y.; Gao, M.; Hasegawa, J. Y.; Qiao, B. T. et al. Electrostatic stabilization of single-atom catalysts by ionic liquids. Chem 2019, 5, 3207–3219.
Yang, H. Z.; Shang, L.; Zhang, Q. H.; Shi, R.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 2019, 10, 4585.
Li, Z. X.; Hu, M. L.; Liu, J. H.; Wang, W. W.; Li, Y. J.; Fan, W. B.; Gong, Y. X.; Yao, J. S.; Wang, P.; He, M. et al. Mesoporous silica stabilized MOF nanoreactor for highly selective semi-hydrogenation of phenylacetylene via synergistic effect of Pd and Ru single site. Nano Res. 2022, 15, 1983–1992.
Keller, N.; Maksimova, N. I.; Roddatis, V. V.; Schur, M.; Mestl, G.; Butenko, Y. V.; Kuznetsov, V. L.; Schlögl, R. The catalytic use of onion-like carbon materials for styrene synthesis by oxidative dehydrogenation of ethylbenzene. Angew. Chem., Int. Ed. 2002, 41, 1885–1888.
Zhang, J.; Su, D. S.; Blume, R.; Schlögl, R.; Wang, R.; Yang, X. G.; Gajoviić, A. Surface chemistry and catalytic reactivity of a nanodiamond in the steam-free dehydrogenation of ethylbenzene. Angew. Chem., Int. Ed. 2010, 49, 8640–8644.
Meima, G. R.; Menon, P. G. Catalyst deactivation phenomena in styrene production. Appl. Catal. A Gen. 2001, 212, 239–245.
Lee, E. H. Iron oxide catalysts for dehydrogenation of ethylbenzene in the presence of steam. Catal. Rev. 1974, 8, 285–305.
Muhler, M.; Schütze, J.; Wesemann, M.; Raymen, T.; Dent, A.; Schlögl, R.; Ertl, G. The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene: I. Solid-state chemistry and bulk characterization. J. Catal. 1990, 126, 339–360.
Nakaya, Y.; Hirayama, J.; Yamazoe, S.; Shimizu, K. I.; Furukawa, S. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation. Nat. Commun. 2020, 11, 2838.
Sun, Q. M.; Wang, N.; Fan, Q. Y.; Zeng, L.; Mayoral, A.; Miao, S.; Yang, R. Q.; Jiang, Z.; Zhou, W.; Zhang, J. C. et al. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation. Angew. Chem., Int. Ed. 2020, 59, 19450–19459.
Sun, G. D.; Zhao, Z. J.; Mu, R. T.; Zha, S.; Li, L. L.; Chen, S.; Zang, K. T.; Luo, J.; Li, Z. L.; Purdy, S. C. et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 2018, 9, 4454.
Zha, S. J.; Sun, G. D.; Wu, T. F.; Zhao, J. B.; Zhao, Z. J.; Gong, J. L. Identification of Pt-based catalysts for propane dehydrogenation via a probability analysis. Chem. Sci. 2018, 9, 3925–3931.
Dervishi, E.; Ji, Z. Q.; Htoon, H.; Sykora, M.; Doorn, S. K. Raman spectroscopy of bottom-up synthesized graphene quantum dots: Size and structure dependence. Nanoscale 2019, 11, 16571–16581.
Huang, H.; Wang, C.; Zhang, S. H.; Zhang, L.; Pan, G. B. Electrodeposition of platinum nanoparticles onto porous GaN as a binder-free electrode for hydrogen evolution reaction. Chem. Phys. Lett. 2019, 737, 136796.
Bauters, S.; Scheinost, A. C.; Schmeide, K.; Weiss, S.; Dardenne, K.; Rothe, J.; Mayordomo, N.; Steudtner, R.; Stumpf, T.; Abram, U. et al. Signatures of technetium oxidation states: A new approach. Chem. Commun. 2020, 56, 9608–9611.
Deng, Y. C.; Guo, Y.; Jia, Z. M.; Liu, J. C.; Guo, J. Q.; Cai, X. B.; Dong, C. Y.; Wang, M.; Li, C. Y.; Diao, J. Y. et al. Few-atom Pt ensembles enable efficient catalytic cyclohexane dehydrogenation for hydrogen production. J. Am. Chem. Soc. 2022, 144, 3535–3542.
Chen, S.; Huang, L.; Sun, Z. H.; Cao, L. N.; Ying, W. X.; Shi, X. X.; Liu, W.; Gu, J.; Zheng, X. S.; Zhu, J. F. et al. Synthesis of quasi-bilayer subnano metal-oxide interfacial cluster catalysts for advanced catalysis. Small 2020, 16, 2005571.
Zeng, R. J.; Wang, W. J.; Cai, G. N.; Huang, Z. L.; Tao, J. M.; Tang, D. P.; Zhu, C. Z. Single-atom platinum nanocatalyst-improved catalytic efficiency with enzyme-DNA supermolecular architectures. Nano Energy 2020, 74, 104931.
Shang, H. S.; Chen, W. X.; Jiang, Z. L.; Zhou, D. N.; Zhang, J. T. Atomic-dispersed platinum anchored on porous alumina sheets as an efficient catalyst for diboration of alkynes. Chem. Commun. 2020, 56, 3127–3130.
Liu, Q.; Zhang, Z. L. Platinum single-atom catalysts: A comparative review towards effective characterization. Catal. Sci. Technol. 2019, 9, 4821–4834.
Chen, Y. J.; Ji, S. F.; Sun, W. M.; Chen, W. X.; Dong, J. C.; Wen, J. F.; Zhang, J.; Li, Z.; Zheng, L. R.; Chen, C. et al. Discovering partially charged single-atom Pt for enhanced anti-markovnikov alkene hydrosilylation. J. Am. Chem. Soc. 2018, 140, 7407–7410.
Dai, Y. H.; Wang, Y.; Liu, B.; Yang, Y. H. Metallic nanocatalysis: An accelerating seamless integration with nanotechnology. Small 2015, 11, 268–289.
Zhang, H. B.; Liu, G. G.; Shi, L.; Ye, J. H. Single-atom catalysts: Emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 2018, 8, 1701343.
Schwach, P.; Pan, X. L.; Bao, X. H. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: Challenges and prospects. Chem. Rev. 2017, 117, 8497–8520.
Shen, C. Q.; Ji, Y. J.; Wang, P. T.; Bai, S. X.; Wang, M.; Li, Y. Y.; Huang, X. Q.; Shao, Q. Interface confinement in metal nanosheet for high-efficiency semi-hydrogenation of alkynes. ACS Catal. 2021, 11, 5231–5239.
Ren, Z.; Yang, Y. S.; Wang, S.; Li, X. L.; Feng, H. S.; Wang, L.; Li, Y. M.; Zhang, X.; Wei, M. Pt atomic clusters catalysts with local charge transfer towards selective oxidation of furfural. Appl. Catal. B Environ. 2021, 295, 120290.