Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Perovskites nanocrystals (NCs) with circularly polarized light (CPL) activity have drawn much attention due to the fascinating photoelectric properties of perovskite NCs as well as the abundant applications of CPL in three-dimensional (3D) displays, nonlinear optics, spintronics devices, CPL lasers, and so on. Herein, bio-inspired by life, we designed and synthesized a simple amphiphilic molecule which could self-assemble into chiral gel with helix chirality in non-polar solvents. Through co-assembly of the CsPbX3 NCs with the chiral gel, CPL at the first excitation band of CsPbX3 NCs is induced in the whole visible spectrum with a maximum glum of 8.2 × 10−3. The induced CPL arises from the selective CPL-absorption of the CsPbX3 NCs’ luminesce by the chiral gel, which provides a facile and practical approach to induce CPL in perovskite NCs and other nanocrystals.
Schadt, M. Liquid crystal materials and liquid crystal displays. Annu. Rev. Mater. Sci 1997, 27, 305–379.
Maki, J. J.; Verbiest, T.; Kauranen, M.; Elshocht, S. V.; Persoons, A. Comparison of linearly and circularly polarized probes of second-order optical activity of chiral surfaces. J. Chem. Phys. 1996, 105, 767–772.
Farshchi, R.; Ramsteiner, M.; Herfort, J.; Tahraoui, A.; Grahn, H. T. Optical communication of spin information between light emitting diodes. Appl. Phys. Lett. 2011, 98, 162508.
Jiménez, J.; Cerdán, L.; Moreno, F.; Maroto, B. L.; García-Moreno, I.; Lunkley, J. L.; Muller, G.; de la Moya, S. Chiral organic dyes endowed with circularly polarized laser emission. J. Phys. Chem. C 2017, 121, 5287–5292.
Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L. Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 2019, 119, 3296–3348.
Kim, Y. H.; Zhai, Y. X.; Gaulding, E. A.; Habisreutinger, S. N.; Moot, T.; Rosales, B. A.; Lu, H. P.; Hazarika, A.; Brunecky, R.; Wheeler, L. M. et al. Strategies to achieve high circularly polarized luminescence from colloidal organic-inorganic hybrid perovskite nanocrystals. ACS Nano 2020, 14, 8816–8825.
Shi, Y. H.; Duan, P. F.; Huo, S. W.; Li, Y. G.; Liu, M. H. Endowing perovskite nanocrystals with circularly polarized luminescence. Adv. Mater. 2018, 30, 1705011.
Yang, X. F.; Zhou, M. H.; Wang, Y. F.; Duan, P. F. Electric-field-regulated energy transfer in chiral liquid crystals for enhancing upconverted circularly polarized luminescence through steering the photonic bandgap. Adv. Mater. 2020, 32, 2000820.
Zhao, B.; Gao, X. B.; Pan, K.; Deng, J. P. Chiral helical polymer/perovskite hybrid nanofibers with intense circularly polarized luminescence. ACS Nano. 2021, 15, 7463–7471.
Zhang, C.; Li, Z. S.; Dong, X. Y.; Niu, Y. Y.; Zang, S. Q. Multiple responsive CPL switches in an enantiomeric pair of perovskite confined in lanthanide MOFs. Adv. Mater. 2022, 34, 2109496.
Chen, W. J.; Zhang, S.; Zhou, M. H.; Zhao, T. H.; Qin, X. J.; Liu, X. F.; Liu, M. H.; Duan, P. F. Two-photon absorption-based upconverted circularly polarized luminescence generated in chiral perovskite nanocrystals. J. Phys. Chem. Lett. 2019, 10, 3290–3295.
Dai, Q. Q.; Li, H.; Sini, G.; Bredas, J. L. Evolution of the nature of excitons and electronic couplings in hybrid 2D perovskites as a function of organic cation π-conjugation. Adv. Funct. Mater. 2022, 32, 2108662.
Liu, P. Z.; Chen, W.; Okazaki, Y.; Battie, Y.; Brocard, L.; Decossas, M.; Pouget, E.; Müller-Buschbaum, P.; Kauffmann, B.; Pathan, S. et al. Optically active perovskite CsPbBr3 nanocrystals helically arranged on inorganic silica nanohelices. Nano Lett. 2020, 20, 8453–8460.
Smith, D. K. Lost in translation? Chirality effects in the self-assembly of nanostructured gel-phase materials. Chem. Soc. Rev. 2009, 38, 684–694.
Goto, T.; Okazaki, Y.; Ueki, M.; Kuwahara, Y.; Takafuji, M.; Oda, R.; Ihara, H. Induction of strong and tunable circularly polarized luminescence of nonchiral, nonmetal, low-molecular-weight fluorophores using chiral nanotemplates. Angew. Chem., Int. Ed. 2017, 56, 2989–2993.
Yang, L.; Huang, J. X.; Qin, M. G.; Ma, X. Y.; Dou, X. Y.; Feng, C. L. Highly efficient full-color and white circularly polarized luminescent nanoassemblies and their performance in light emitting devices. Nanoscale 2020, 12, 6233–6238.
Li, P. Y.; Lü, B. Z.; Han, D. X.; Duan, P. F.; Liu, M. H.; Yin, M. Z. Stoichiometry-controlled inversion of circularly polarized luminescence in co-assembly of chiral gelators with an achiral tetraphenylethylene derivative. Chem. Commun. 2019, 55, 2194–2197.
Yang, D.; Duan, P. F; Zhang, L.; Liu, M. H. Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix. Nat. Commun. 2017, 8, 15727.
Han, J. L.; You, J.; Li, X. G.; Duan, P. F.; Liu, M. H. Full-color tunable circularly polarized luminescent nanoassemblies of achiral AIEgens in confined chiral nanotubes. Adv. Mater. 2017, 29, 1606503.
Hirst, A. R.; Smith, D. K.; Feiters, M. C.; Geurts, H. P. M.; Wright, A. C. Two-component dendritic gels: Easily tunable materials. J. Am. Chem. Soc. 2003, 125, 9010–9011.
Pal, A.; Ghosh, Y. K.; Bhattacharya, S. Molecular mechanism of physical gelation of hydrocarbons by fatty acid amides of natural amino acids. Tetrahedron 2007, 63, 7334–7348.
Adhikari, B.; Nanda, J.; Banerjee, A. Multicomponent hydrogels from enantiomeric amino acid derivatives: Helical nanofibers, handedness and self-sorting. Soft Matter 2011, 7, 8913–8922.
Guo, Z. X.; Gong, R. Y.; Jiang, Y.; Wan, X. B. Tetrapeptide-coumarin conjugate 3D networks based on hydrogen-bonded charge transfer complexes: Gel formation and dye release. Soft Matter 2015, 11, 6118–6124.
Ahn, J.; Lee, E.; Tan, J. W.; Yang, W.; Kim, B.; Moon, J. A new class of chiral semiconductors: Chiral-organic-molecule-incorporating organic-inorganic hybrid perovskites. Mater. Horiz. 2017, 4, 851–856.
Miles, A. J.; Wallace, B. A. Circular dichroism spectroscopy of membrane proteins. Chem. Soc. Rev. 2016, 45, 4859–4872.
Shi, S. S.; Wang, Y.; Zeng, S. Y.; Cui, Y.; Xiao, Y. Surface regulation of CsPbBr3 quantum dots for standard blue-emission with boosted PLQY. Adv. Opt. Mater. 2020, 8, 2000167.
Song, J. Z.; Li, J. H.; Li, X. M; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.
Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.
Hao, C. L; Gao, Y. F.; Wu, D.; Li, S.; Xu, L. G.; Wu, X. L.; Guo, J.; Sun, M. Z.; Li, X.; Xu, C. L. et al. Tailoring chiroptical activity of iron disulfide quantum dot hydrogels with circularly polarized light. Adv. Mater. 2019, 31, 1903200.
Cho, J.; Banerjee, S. Ligand-directed stabilization of ternary phases: Synthetic control of structural dimensionality in solution-grown cesium lead bromide nanocrystals. Chem. Mater. 2018, 30, 6144–6155.
Udayabhaskararao, T.; Houben, L.; Cohen, H.; Menahem, M.; Pinkas, I.; Avram, L.; Wolf, T.; Teitelboim, A.; Leskes, M.; Yaffe, O. et al. A mechanistic study of phase transformation in perovskite nanocrystals driven by ligand passivation. Chem. Mater. 2018, 30, 84–93.