AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Induced circularly polarized luminescence of perovskite nanocrystals by self-assembly chiral gel

Rui Cao1,2,§Xuekang Yang3,§Yong Wang1( )Yin Xiao2( )
School of Science, Tianjin University, Tianjin 300350, China
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
National Center for Nanoscience and Technology, Beijing 100190, China

§ Rui Cao and Xuekang Yang contributed equally to this work.

Show Author Information

Graphical Abstract

Due to the high symmetry, construction of circularly polarized light (CPL) active perovskite colloidal nanocrystals (NCs) without structure adjustment is a great challenge. Herein, bio-inspired by life, we designed and synthesized a simple amphiphilic molecule which could self-assemble and co-assemble with perovskite NCs into chiral gel with helix chirality in non-polar solvents, inducing CPL active perovskite NCs due to selective CPL absorption.

Abstract

Perovskites nanocrystals (NCs) with circularly polarized light (CPL) activity have drawn much attention due to the fascinating photoelectric properties of perovskite NCs as well as the abundant applications of CPL in three-dimensional (3D) displays, nonlinear optics, spintronics devices, CPL lasers, and so on. Herein, bio-inspired by life, we designed and synthesized a simple amphiphilic molecule which could self-assemble into chiral gel with helix chirality in non-polar solvents. Through co-assembly of the CsPbX3 NCs with the chiral gel, CPL at the first excitation band of CsPbX3 NCs is induced in the whole visible spectrum with a maximum glum of 8.2 × 10−3. The induced CPL arises from the selective CPL-absorption of the CsPbX3 NCs’ luminesce by the chiral gel, which provides a facile and practical approach to induce CPL in perovskite NCs and other nanocrystals.

Electronic Supplementary Material

Download File(s)
12274_2022_4652_MOESM1_ESM.pdf (2.9 MB)

References

[1]

Schadt, M. Liquid crystal materials and liquid crystal displays. Annu. Rev. Mater. Sci 1997, 27, 305–379.

[2]

Maki, J. J.; Verbiest, T.; Kauranen, M.; Elshocht, S. V.; Persoons, A. Comparison of linearly and circularly polarized probes of second-order optical activity of chiral surfaces. J. Chem. Phys. 1996, 105, 767–772.

[3]

Farshchi, R.; Ramsteiner, M.; Herfort, J.; Tahraoui, A.; Grahn, H. T. Optical communication of spin information between light emitting diodes. Appl. Phys. Lett. 2011, 98, 162508.

[4]

Jiménez, J.; Cerdán, L.; Moreno, F.; Maroto, B. L.; García-Moreno, I.; Lunkley, J. L.; Muller, G.; de la Moya, S. Chiral organic dyes endowed with circularly polarized laser emission. J. Phys. Chem. C 2017, 121, 5287–5292.

[5]

Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L. Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 2019, 119, 3296–3348.

[6]

Kim, Y. H.; Zhai, Y. X.; Gaulding, E. A.; Habisreutinger, S. N.; Moot, T.; Rosales, B. A.; Lu, H. P.; Hazarika, A.; Brunecky, R.; Wheeler, L. M. et al. Strategies to achieve high circularly polarized luminescence from colloidal organic-inorganic hybrid perovskite nanocrystals. ACS Nano 2020, 14, 8816–8825.

[7]

Shi, Y. H.; Duan, P. F.; Huo, S. W.; Li, Y. G.; Liu, M. H. Endowing perovskite nanocrystals with circularly polarized luminescence. Adv. Mater. 2018, 30, 1705011.

[8]

Yang, X. F.; Zhou, M. H.; Wang, Y. F.; Duan, P. F. Electric-field-regulated energy transfer in chiral liquid crystals for enhancing upconverted circularly polarized luminescence through steering the photonic bandgap. Adv. Mater. 2020, 32, 2000820.

[9]

Zhao, B.; Gao, X. B.; Pan, K.; Deng, J. P. Chiral helical polymer/perovskite hybrid nanofibers with intense circularly polarized luminescence. ACS Nano. 2021, 15, 7463–7471.

[10]

Zhang, C.; Li, Z. S.; Dong, X. Y.; Niu, Y. Y.; Zang, S. Q. Multiple responsive CPL switches in an enantiomeric pair of perovskite confined in lanthanide MOFs. Adv. Mater. 2022, 34, 2109496.

[11]

Chen, W. J.; Zhang, S.; Zhou, M. H.; Zhao, T. H.; Qin, X. J.; Liu, X. F.; Liu, M. H.; Duan, P. F. Two-photon absorption-based upconverted circularly polarized luminescence generated in chiral perovskite nanocrystals. J. Phys. Chem. Lett. 2019, 10, 3290–3295.

[12]

Dai, Q. Q.; Li, H.; Sini, G.; Bredas, J. L. Evolution of the nature of excitons and electronic couplings in hybrid 2D perovskites as a function of organic cation π-conjugation. Adv. Funct. Mater. 2022, 32, 2108662.

[13]

Liu, P. Z.; Chen, W.; Okazaki, Y.; Battie, Y.; Brocard, L.; Decossas, M.; Pouget, E.; Müller-Buschbaum, P.; Kauffmann, B.; Pathan, S. et al. Optically active perovskite CsPbBr3 nanocrystals helically arranged on inorganic silica nanohelices. Nano Lett. 2020, 20, 8453–8460.

[14]

Smith, D. K. Lost in translation? Chirality effects in the self-assembly of nanostructured gel-phase materials. Chem. Soc. Rev. 2009, 38, 684–694.

[15]

Goto, T.; Okazaki, Y.; Ueki, M.; Kuwahara, Y.; Takafuji, M.; Oda, R.; Ihara, H. Induction of strong and tunable circularly polarized luminescence of nonchiral, nonmetal, low-molecular-weight fluorophores using chiral nanotemplates. Angew. Chem., Int. Ed. 2017, 56, 2989–2993.

[16]

Yang, L.; Huang, J. X.; Qin, M. G.; Ma, X. Y.; Dou, X. Y.; Feng, C. L. Highly efficient full-color and white circularly polarized luminescent nanoassemblies and their performance in light emitting devices. Nanoscale 2020, 12, 6233–6238.

[17]

Li, P. Y.; Lü, B. Z.; Han, D. X.; Duan, P. F.; Liu, M. H.; Yin, M. Z. Stoichiometry-controlled inversion of circularly polarized luminescence in co-assembly of chiral gelators with an achiral tetraphenylethylene derivative. Chem. Commun. 2019, 55, 2194–2197.

[18]

Yang, D.; Duan, P. F; Zhang, L.; Liu, M. H. Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix. Nat. Commun. 2017, 8, 15727.

[19]

Han, J. L.; You, J.; Li, X. G.; Duan, P. F.; Liu, M. H. Full-color tunable circularly polarized luminescent nanoassemblies of achiral AIEgens in confined chiral nanotubes. Adv. Mater. 2017, 29, 1606503.

[20]

Hirst, A. R.; Smith, D. K.; Feiters, M. C.; Geurts, H. P. M.; Wright, A. C. Two-component dendritic gels: Easily tunable materials. J. Am. Chem. Soc. 2003, 125, 9010–9011.

[21]

Pal, A.; Ghosh, Y. K.; Bhattacharya, S. Molecular mechanism of physical gelation of hydrocarbons by fatty acid amides of natural amino acids. Tetrahedron 2007, 63, 7334–7348.

[22]

Adhikari, B.; Nanda, J.; Banerjee, A. Multicomponent hydrogels from enantiomeric amino acid derivatives: Helical nanofibers, handedness and self-sorting. Soft Matter 2011, 7, 8913–8922.

[23]

Guo, Z. X.; Gong, R. Y.; Jiang, Y.; Wan, X. B. Tetrapeptide-coumarin conjugate 3D networks based on hydrogen-bonded charge transfer complexes: Gel formation and dye release. Soft Matter 2015, 11, 6118–6124.

[24]

Ahn, J.; Lee, E.; Tan, J. W.; Yang, W.; Kim, B.; Moon, J. A new class of chiral semiconductors: Chiral-organic-molecule-incorporating organic-inorganic hybrid perovskites. Mater. Horiz. 2017, 4, 851–856.

[25]

Miles, A. J.; Wallace, B. A. Circular dichroism spectroscopy of membrane proteins. Chem. Soc. Rev. 2016, 45, 4859–4872.

[26]

Shi, S. S.; Wang, Y.; Zeng, S. Y.; Cui, Y.; Xiao, Y. Surface regulation of CsPbBr3 quantum dots for standard blue-emission with boosted PLQY. Adv. Opt. Mater. 2020, 8, 2000167.

[27]

Song, J. Z.; Li, J. H.; Li, X. M; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

[28]

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

[29]

Hao, C. L; Gao, Y. F.; Wu, D.; Li, S.; Xu, L. G.; Wu, X. L.; Guo, J.; Sun, M. Z.; Li, X.; Xu, C. L. et al. Tailoring chiroptical activity of iron disulfide quantum dot hydrogels with circularly polarized light. Adv. Mater. 2019, 31, 1903200.

[30]

Cho, J.; Banerjee, S. Ligand-directed stabilization of ternary phases: Synthetic control of structural dimensionality in solution-grown cesium lead bromide nanocrystals. Chem. Mater. 2018, 30, 6144–6155.

[31]

Udayabhaskararao, T.; Houben, L.; Cohen, H.; Menahem, M.; Pinkas, I.; Avram, L.; Wolf, T.; Teitelboim, A.; Leskes, M.; Yaffe, O. et al. A mechanistic study of phase transformation in perovskite nanocrystals driven by ligand passivation. Chem. Mater. 2018, 30, 84–93.

Nano Research
Pages 1459-1464
Cite this article:
Cao R, Yang X, Wang Y, et al. Induced circularly polarized luminescence of perovskite nanocrystals by self-assembly chiral gel. Nano Research, 2023, 16(1): 1459-1464. https://doi.org/10.1007/s12274-022-4652-4
Topics:

1070

Views

24

Crossref

21

Web of Science

23

Scopus

2

CSCD

Altmetrics

Received: 04 April 2022
Revised: 04 June 2022
Accepted: 11 June 2022
Published: 30 July 2022
© Tsinghua University Press 2022
Return