Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Lead-free bismuth-based halide perovskites and their analogues have attracted research interest for their high stability and optoelectronic properties. However, the morphology-controlled synthesis of bismuth-based perovskite nanocrystals has been rarely demonstrated. Herein, we report the colloidal synthesis of zero-dimensional (0D) Cs3BiCl6 nanosheets (NSs), Cs3Bi2Cl9 NSs/nanoplates (NPs) and Cs4MnBi2Cl12 NPs through a hot-injection method. We demonstrate that the Cs3BiCl6 NSs, as an initial product of Cs3Bi2Cl9 and Cs4MnBi2Cl12 NPs, can transform into Cs3Bi2Cl9 NSs or Cs4MnBi2Cl12 NPs via Cl-induced metal ion insertion reactions under the templating effect of Cs3BiCl6. This growth mechanism is also applicable for the synthesis of Cs4CdBi2Cl12 nanoplates. Furthermore, the alloying of Cd2+ into Cs4MnBi2Cl12 lattice could weaken the strong coupling effect between Mn and Mn, which leads to a prolonged photoluminescence lifetime and an enhanced photoluminescence quantum yield (PLQY). As a proof of concept, the alloyed Cs4MnxCd1–xBi2Cl12 NPs are used as a scintillator, which show a lowest detection limit of 134.5 nGy/s. The X-ray imaging results display a high spatial resolution of over 20 line pairs per millimeter (lp/mm). These results provide new insights in the synthesis of anisotropic bismuth-based perovskite nanocrystals and their applications in radiation detection.
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.
Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687–692.
Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.
Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.
Akkerman, Q. A.; D'Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.
Chen, W.; Wu, Y. Z.; Yue, Y. F.; Liu, J.; Zhang, W. J.; Yang, X. D.; Chen, H.; Bi, E. B.; Ashraful, I.; Grätzel, M. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944–948.
Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.
Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745–750.
Fu, P. F.; Hu, S.; Tang, J.; Xiao, Z. W. Material exploration via designing spatial arrangement of octahedral units: A case study of lead halide perovskites. Front. Optoelectron. 2021, 14, 252–259.
Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480.
Chang, Y. J.; Yoon, Y. J.; Li, G. P.; Xu, E. Z.; Yu, S. T.; Lu, C. H.; Wang, Z. W.; He, Y. J.; Lin, C. H.; Wagner, B. K. et al. All-inorganic perovskite nanocrystals with a stellar set of stabilities and their use in white light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 37267–37276.
Yoon, Y. J.; Chang, Y. J.; Zhang, S. G.; Zhang, M.; Pan, S.; He, Y. J.; Lin, C. H.; Yu, S. T.; Chen, Y. H.; Wang, Z. W. et al. Enabling tailorable optical properties and markedly enhanced stability of perovskite quantum dots by permanently ligating with polymer hairs. Adv. Mater. 2019, 31, 1901602.
Cai, T.; Shi, W. W.; Hwang, S.; Kobbekaduwa, K.; Nagaoka, Y.; Yang, H. J.; Hills-Kimball, K.; Zhu, H.; Wang, J. Y.; Wang, Z. G. et al. Lead-free Cs4CuSb2Cl12 layered double perovskite nanocrystals. J. Am. Chem. Soc. 2020, 142, 11927–11936.
Meng, W. W.; Wang, X. M.; Xiao, Z. W.; Wang, J. B.; Mitzi, D. B.; Yan, Y. F. Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites. J. Phys. Chem. Lett. 2017, 8, 2999–3007.
Igbari, F.; Wang, Z. K.; Liao, L. S. Progress of lead-free halide double perovskites. Adv. Energy Mater. 2019, 9, 1803150.
Slavney, A. H.; Hu, T.; Lindenberg, A. M.; Karunadasa, H. I. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 2016, 138, 2138–2141.
Qi, Z. Y.; Fu, X. W.; Yang, T. F.; Li, D.; Fan, P.; Li, H. L.; Jiang, F.; Li, L. H.; Luo, Z. Y.; Zhuang, X. J. et al. Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications. Nano Res. 2019, 12, 1894–1899.
Shimizu, M.; Koshimizu, M.; Fujimoto, Y.; Yanagida, T.; Ono, S.; Asai, K. Luminescence and scintillation properties of Cs3BiCl6 crystals. Opt. Mater. 2016, 61, 115–118.
Tang, Y. Y.; Liang, M. L.; Chang, B. D.; Sun, H. Y.; Zheng, K. B.; Pullerits, T.; Chi, Q. J. Lead-free double halide perovskite Cs3BiBr6 with well-defined crystal structure and high thermal stability for optoelectronics. J. Mater. Chem. C 2019, 7, 3369–3374.
Zhu, D. X.; Zaffalon, M. L.; Zito, J.; Cova, F.; Meinardi, F.; De Trizio, L.; Infante, I.; Brovelli, S.; Manna, L. Sb-doped metal halide nanocrystals: A 0D versus 3D comparison. ACS Energy Lett. 2021, 6, 2283–2292.
Lian, L. Y.; Zheng, M. Y.; Zhang, W. Z.; Yin, L. X.; Du, X. Y.; Zhang, P.; Zhang, X. W.; Gao, J. B.; Zhang, D. L.; Gao, L. et al. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons. Adv. Sci. 2020, 7, 2000195.
Sun, S. Q.; Lu, M.; Gao, X. P.; Shi, Z. F.; Bai, X.; Yu, W. W.; Zhang, Y. 0D perovskites: Unique properties, synthesis, and their applications. Adv. Sci. 2021, 8, 2102689.
Akkerman, Q. A.; Park, S.; Radicchi, E.; Nunzi, F.; Mosconi, E.; De Angelis, F.; Brescia, R.; Rastogi, P.; Prato, M.; Manna, L. Nearly monodisperse insulator Cs4PbX6 (X = Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals. Nano Lett. 2017, 17, 1924–1930.
Wu, L. Z.; Hu, H. C.; Xu, Y.; Jiang, S.; Chen, M.; Zhong, Q. X.; Yang, D.; Liu, Q. P.; Zhao, Y.; Sun, B. Q. et al. From nonluminescent Cs4PbX6 (X = Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: Water-triggered transformation through a CsX-stripping mechanism. Nano Lett. 2017, 17, 5799–5804.
Fanizza, E.; Cascella, F.; Altamura, D.; Giannini, C.; Panniello, A.; Triggiani, L.; Panzarea, F.; Depalo, N.; Grisorio, R.; Suranna, G. P. et al. Post-synthesis phase and shape evolution of CsPbBr3 colloidal nanocrystals: The role of ligands. Nano Res. 2019, 12, 1155–1166.
Yang, H. J.; Cai, T.; Dube, L.; Chen, O. Synthesis of double perovskite and quadruple perovskite nanocrystals through post-synthetic transformation reactions. Chem. Sci. 2022, 13, 4874–4883.
Chen, D. Q.; Wan, Z. Y.; Chen, X.; Yuan, Y. J.; Zhong, J. S. Large-scale room-temperature synthesis and optical properties of perovskite-related Cs4PbBr6 fluorophores. J. Mater. Chem. C 2016, 4, 10646–10653.
Saidaminov, M. I.; Almutlaq, J.; Sarmah, S.; Dursun, I.; Zhumekenov, A. A.; Begum, R.; Pan, J.; Cho, N.; Mohammed, O. F.; Bakr, O. M. Pure Cs4PbBr6: Highly luminescent zero-dimensional perovskite solids. ACS Energy Lett. 2016, 1, 840–845.
Peng, L. C.; Dutta, A.; Xie, R. G.; Yang, W. S.; Pradhan, N. Dot-wire-platelet-cube: Step growth and structural transformations in CsPbBr3 perovskite nanocrystals. ACS Energy Lett. 2018, 3, 2014–2020.
Kahwagi, R. F.; Thornton, S. T.; Smith, B.; Koleilat, G. I. Dimensionality engineering of metal halide perovskites. Front. Optoelectron. 2020, 13, 196–224.
Dutta, A.; Dutta, S. K.; Das Adhikari, S.; Pradhan, N. Tuning the size of CsPbBr3 nanocrystals: All at one constant temperature. ACS Energy Lett. 2018, 3, 329–334.
Shamsi, J.; Dang, Z. Y.; Bianchini, P.; Canale, C.; Di Stasio, F.; Brescia, R.; Prato, M.; Manna, L. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. J. Am. Chem. Soc. 2016, 138, 7240–7243.
Zhang, D. D.; Yang, Y. M.; Bekenstein, Y.; Yu, Y.; Gibson, N. A.; Wong, A. B.; Eaton, S. W.; Kornienko, N.; Kong, Q.; Lai, M. L. et al. Synthesis of composition tunable and highly luminescent cesium lead halide nanowires through anion-exchange reactions. J. Am. Chem. Soc. 2016, 138, 7236–7239.
Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.
Mohiuddin, M.; Zavabeti, A.; Haque, F.; Mahmood, A.; Datta, R. S.; Syed, N.; Khan, M. W.; Jannat, A.; Messalea, K.; Zhang, B. Y. et al. Synthesis of two-dimensional hematite and iron phosphide for hydrogen evolution. J. Mater. Chem. A 2020, 8, 2789–2797.
Liu, Z. Y.; Yang, H. J.; Wang, J. Y.; Yuan, Y. C.; Hills-Kimball, K.; Cai, T.; Wang, P.; Tang, A. W.; Chen, O. Synthesis of lead-free Cs2AgBiX6 (X = Cl, Br, I) double perovskite nanoplatelets and their application in CO2 photocatalytic reduction. Nano Lett. 2021, 21, 1620–1627.
Yang, H. J.; Cai, T.; Liu, E. X.; Hills-Kimball, K.; Gao, J. B.; Chen, O. Synthesis and transformation of zero-dimensional Cs3BiX6 (X = Cl, Br) perovskite-analogue nanocrystals. Nano Res. 2020, 13, 282–291.
Timmermans, C. W, M.; Cholakh, S. O.; Blasse, G. The luminescence of Cs3Bi2Cl9 and Cs3Sb2Cl9. J. Solid State Chem. 1983, 46, 222–233.
Yang, H. J.; Shi, W. W.; Cai, T.; Hills-Kimball, K.; Liu, Z. Y.; Dube, L.; Chen, O. Synthesis of lead-free Cs4(Cd1-xMnx)Bi2Cl12 (0 ≤ x ≤ 1) layered double perovskite nanocrystals with controlled Mn-Mn coupling interaction. Nanoscale 2020, 12, 23191–23199.
Holzapfel, N. P.; Majher, J. D.; Strom, T. A.; Moore, C. E.; Woodward, P. M. Cs4Cd1-xMnxBi2Cl12-a vacancy-ordered halide perovskite phosphor with high-efficiency orange-red emission. Chem. Mater. 2020, 32, 3510–3516.
Vargas, B.; Reyes-Castillo, D. T.; Coutino-Gonzalez, E.; Sánchez-Aké, C.; Ramos, C.; Falcony, C.; Solis-Ibarra, D. Enhanced luminescence and mechanistic studies on layered double-perovskite phosphors: Cs4Cd1-xMnxBi2Cl12. Chem. Mater. 2020, 32, 9307–9315.
Bai, T. X.; Yang, B.; Chen, J. S.; Zheng, D. Y.; Tang, Z.; Wang, X. C.; Zhao, Y.; Lu, R. F.; Han, K. L. Efficient luminescent halide quadruple-perovskite nanocrystals via trap-engineering for highly sensitive photodetectors. Adv. Mater. 2021, 33, 2007215.
Wei, J. H.; Liao, J. F.; Wang, X. D.; Zhou, L.; Jiang, Y.; Kuang, D. B. All-inorganic lead-free heterometallic Cs4MnBi2Cl12 perovskite single crystal with highly efficient orange emission. Matter 2020, 3, 892–903.
Benin, B. M.; Dirin, D. N.; Morad, V.; Wörle, M.; Yakunin, S.; Rainò, G.; Nazarenko, O.; Fischer, M.; Infante, I.; Kovalenko, M. V. Highly emissive self-trapped excitons in fully inorganic zero-dimensional tin halides. Angew. Chem., Int. Ed. 2018, 57, 11329–11333.
Liu, W. Y.; Lin, Q. L.; Li, H. B.; Wu, K. F.; Robel, I.; Pietryga, J. M.; Klimov, V. I. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. J. Am. Chem. Soc. 2016, 138, 14954–14961.
Luo, B. B.; Guo, Y.; Li, X. L.; Xiao, Y. H.; Huang, X. C.; Zhang, J. Z. Efficient trap-mediated Mn2+ dopant emission in two dimensional single-layered perovskite (CH3CH2NH3)2PbBr4. J. Phys. Chem. C 2019, 123, 14239–14245.
Wei, H. T.; Fang, Y. J.; Mulligan, P.; Chuirazzi, W.; Fang, H. H.; Wang, C. C.; Ecker, B. R.; Gao, Y. L.; Loi, M. A.; Cao, L. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 2016, 10, 333–339.
Wang, J. X.; Wang, X. J.; Yin, J.; Gutiérrez-Arzaluz, L.; He, T. Y.; Chen, C. L.; Han, Y.; Zhang, Y. H.; Bakr, O. M.; Eddaoudi, M. et al. Perovskite-nanosheet sensitizer for highly efficient organic X-ray imaging scintillator. ACS Energy Lett. 2022, 7, 10–16.
Zhou, Y.; Wang, X. J.; He, T. Y.; Yang, H. Z.; Yang, C.; Shao, B. Y.; Gutiérrez-Arzaluz, L.; Bakr, O. M.; Zhang, Y. H.; Mohammed, O. F. Large-area perovskite-related copper halide film for high-resolution flexible X-ray imaging scintillation screens. ACS Energy Lett. 2022, 7, 844–846.
Ma, W. B.; Jiang, T. M.; Yang, Z.; Zhang, H.; Su, Y. R.; Chen, Z.; Chen, X. Y.; Ma, Y. G.; Zhu, W. J.; Yu, X. et al. Highly resolved and robust dynamic X-ray imaging using perovskite glass-ceramic scintillator with reduced light scattering. Adv Sci. 2021, 8, 2003728.