AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Colloidal synthesis and phase transformation of all-inorganic bismuth halide perovskite nanoplates

Chao Wang1Jiawen Xiao1( )Zhengguang Yan1( )Xiaowei Niu1Taifeng Lin2Yingchun Zhou1Jingyu Li1Xiaodong Han1( )
Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
Show Author Information

Graphical Abstract

The Cs3BiCl6 nanosheets, Cs3Bi2Cl9 and Cs4MnBi2Cl12 nanoplates are successfully synthesized, and the morphology-controlled synthesis mechanism are carefully studied. The X-ray imaging application of alloyed Cs4MnxCd1–xBi2Cl12 nanoplates is also demonstrated.

Abstract

Lead-free bismuth-based halide perovskites and their analogues have attracted research interest for their high stability and optoelectronic properties. However, the morphology-controlled synthesis of bismuth-based perovskite nanocrystals has been rarely demonstrated. Herein, we report the colloidal synthesis of zero-dimensional (0D) Cs3BiCl6 nanosheets (NSs), Cs3Bi2Cl9 NSs/nanoplates (NPs) and Cs4MnBi2Cl12 NPs through a hot-injection method. We demonstrate that the Cs3BiCl6 NSs, as an initial product of Cs3Bi2Cl9 and Cs4MnBi2Cl12 NPs, can transform into Cs3Bi2Cl9 NSs or Cs4MnBi2Cl12 NPs via Cl-induced metal ion insertion reactions under the templating effect of Cs3BiCl6. This growth mechanism is also applicable for the synthesis of Cs4CdBi2Cl12 nanoplates. Furthermore, the alloying of Cd2+ into Cs4MnBi2Cl12 lattice could weaken the strong coupling effect between Mn and Mn, which leads to a prolonged photoluminescence lifetime and an enhanced photoluminescence quantum yield (PLQY). As a proof of concept, the alloyed Cs4MnxCd1–xBi2Cl12 NPs are used as a scintillator, which show a lowest detection limit of 134.5 nGy/s. The X-ray imaging results display a high spatial resolution of over 20 line pairs per millimeter (lp/mm). These results provide new insights in the synthesis of anisotropic bismuth-based perovskite nanocrystals and their applications in radiation detection.

Electronic Supplementary Material

Download File(s)
12274_2022_4656_MOESM1_ESM.pdf (1.3 MB)

References

[1]

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

[2]

Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687–692.

[3]

Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

[4]

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

[5]

Akkerman, Q. A.; D'Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.

[6]

Chen, W.; Wu, Y. Z.; Yue, Y. F.; Liu, J.; Zhang, W. J.; Yang, X. D.; Chen, H.; Bi, E. B.; Ashraful, I.; Grätzel, M. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944–948.

[7]

Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.

[8]

Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745–750.

[9]

Fu, P. F.; Hu, S.; Tang, J.; Xiao, Z. W. Material exploration via designing spatial arrangement of octahedral units: A case study of lead halide perovskites. Front. Optoelectron. 2021, 14, 252–259.

[10]

Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480.

[11]

Chang, Y. J.; Yoon, Y. J.; Li, G. P.; Xu, E. Z.; Yu, S. T.; Lu, C. H.; Wang, Z. W.; He, Y. J.; Lin, C. H.; Wagner, B. K. et al. All-inorganic perovskite nanocrystals with a stellar set of stabilities and their use in white light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 37267–37276.

[12]

Yoon, Y. J.; Chang, Y. J.; Zhang, S. G.; Zhang, M.; Pan, S.; He, Y. J.; Lin, C. H.; Yu, S. T.; Chen, Y. H.; Wang, Z. W. et al. Enabling tailorable optical properties and markedly enhanced stability of perovskite quantum dots by permanently ligating with polymer hairs. Adv. Mater. 2019, 31, 1901602.

[13]

Cai, T.; Shi, W. W.; Hwang, S.; Kobbekaduwa, K.; Nagaoka, Y.; Yang, H. J.; Hills-Kimball, K.; Zhu, H.; Wang, J. Y.; Wang, Z. G. et al. Lead-free Cs4CuSb2Cl12 layered double perovskite nanocrystals. J. Am. Chem. Soc. 2020, 142, 11927–11936.

[14]

Meng, W. W.; Wang, X. M.; Xiao, Z. W.; Wang, J. B.; Mitzi, D. B.; Yan, Y. F. Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites. J. Phys. Chem. Lett. 2017, 8, 2999–3007.

[15]

Igbari, F.; Wang, Z. K.; Liao, L. S. Progress of lead-free halide double perovskites. Adv. Energy Mater. 2019, 9, 1803150.

[16]

Slavney, A. H.; Hu, T.; Lindenberg, A. M.; Karunadasa, H. I. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 2016, 138, 2138–2141.

[17]

Qi, Z. Y.; Fu, X. W.; Yang, T. F.; Li, D.; Fan, P.; Li, H. L.; Jiang, F.; Li, L. H.; Luo, Z. Y.; Zhuang, X. J. et al. Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications. Nano Res. 2019, 12, 1894–1899.

[18]

Shimizu, M.; Koshimizu, M.; Fujimoto, Y.; Yanagida, T.; Ono, S.; Asai, K. Luminescence and scintillation properties of Cs3BiCl6 crystals. Opt. Mater. 2016, 61, 115–118.

[19]

Tang, Y. Y.; Liang, M. L.; Chang, B. D.; Sun, H. Y.; Zheng, K. B.; Pullerits, T.; Chi, Q. J. Lead-free double halide perovskite Cs3BiBr6 with well-defined crystal structure and high thermal stability for optoelectronics. J. Mater. Chem. C 2019, 7, 3369–3374.

[20]

Zhu, D. X.; Zaffalon, M. L.; Zito, J.; Cova, F.; Meinardi, F.; De Trizio, L.; Infante, I.; Brovelli, S.; Manna, L. Sb-doped metal halide nanocrystals: A 0D versus 3D comparison. ACS Energy Lett. 2021, 6, 2283–2292.

[21]

Lian, L. Y.; Zheng, M. Y.; Zhang, W. Z.; Yin, L. X.; Du, X. Y.; Zhang, P.; Zhang, X. W.; Gao, J. B.; Zhang, D. L.; Gao, L. et al. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons. Adv. Sci. 2020, 7, 2000195.

[22]

Sun, S. Q.; Lu, M.; Gao, X. P.; Shi, Z. F.; Bai, X.; Yu, W. W.; Zhang, Y. 0D perovskites: Unique properties, synthesis, and their applications. Adv. Sci. 2021, 8, 2102689.

[23]

Akkerman, Q. A.; Park, S.; Radicchi, E.; Nunzi, F.; Mosconi, E.; De Angelis, F.; Brescia, R.; Rastogi, P.; Prato, M.; Manna, L. Nearly monodisperse insulator Cs4PbX6 (X = Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals. Nano Lett. 2017, 17, 1924–1930.

[24]

Wu, L. Z.; Hu, H. C.; Xu, Y.; Jiang, S.; Chen, M.; Zhong, Q. X.; Yang, D.; Liu, Q. P.; Zhao, Y.; Sun, B. Q. et al. From nonluminescent Cs4PbX6 (X = Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: Water-triggered transformation through a CsX-stripping mechanism. Nano Lett. 2017, 17, 5799–5804.

[25]

Fanizza, E.; Cascella, F.; Altamura, D.; Giannini, C.; Panniello, A.; Triggiani, L.; Panzarea, F.; Depalo, N.; Grisorio, R.; Suranna, G. P. et al. Post-synthesis phase and shape evolution of CsPbBr3 colloidal nanocrystals: The role of ligands. Nano Res. 2019, 12, 1155–1166.

[26]

Yang, H. J.; Cai, T.; Dube, L.; Chen, O. Synthesis of double perovskite and quadruple perovskite nanocrystals through post-synthetic transformation reactions. Chem. Sci. 2022, 13, 4874–4883.

[27]

Chen, D. Q.; Wan, Z. Y.; Chen, X.; Yuan, Y. J.; Zhong, J. S. Large-scale room-temperature synthesis and optical properties of perovskite-related Cs4PbBr6 fluorophores. J. Mater. Chem. C 2016, 4, 10646–10653.

[28]

Saidaminov, M. I.; Almutlaq, J.; Sarmah, S.; Dursun, I.; Zhumekenov, A. A.; Begum, R.; Pan, J.; Cho, N.; Mohammed, O. F.; Bakr, O. M. Pure Cs4PbBr6: Highly luminescent zero-dimensional perovskite solids. ACS Energy Lett. 2016, 1, 840–845.

[29]

Peng, L. C.; Dutta, A.; Xie, R. G.; Yang, W. S.; Pradhan, N. Dot-wire-platelet-cube: Step growth and structural transformations in CsPbBr3 perovskite nanocrystals. ACS Energy Lett. 2018, 3, 2014–2020.

[30]

Kahwagi, R. F.; Thornton, S. T.; Smith, B.; Koleilat, G. I. Dimensionality engineering of metal halide perovskites. Front. Optoelectron. 2020, 13, 196–224.

[31]

Dutta, A.; Dutta, S. K.; Das Adhikari, S.; Pradhan, N. Tuning the size of CsPbBr3 nanocrystals: All at one constant temperature. ACS Energy Lett. 2018, 3, 329–334.

[32]

Shamsi, J.; Dang, Z. Y.; Bianchini, P.; Canale, C.; Di Stasio, F.; Brescia, R.; Prato, M.; Manna, L. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. J. Am. Chem. Soc. 2016, 138, 7240–7243.

[33]

Zhang, D. D.; Yang, Y. M.; Bekenstein, Y.; Yu, Y.; Gibson, N. A.; Wong, A. B.; Eaton, S. W.; Kornienko, N.; Kong, Q.; Lai, M. L. et al. Synthesis of composition tunable and highly luminescent cesium lead halide nanowires through anion-exchange reactions. J. Am. Chem. Soc. 2016, 138, 7236–7239.

[34]

Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

[35]

Mohiuddin, M.; Zavabeti, A.; Haque, F.; Mahmood, A.; Datta, R. S.; Syed, N.; Khan, M. W.; Jannat, A.; Messalea, K.; Zhang, B. Y. et al. Synthesis of two-dimensional hematite and iron phosphide for hydrogen evolution. J. Mater. Chem. A 2020, 8, 2789–2797.

[36]

Liu, Z. Y.; Yang, H. J.; Wang, J. Y.; Yuan, Y. C.; Hills-Kimball, K.; Cai, T.; Wang, P.; Tang, A. W.; Chen, O. Synthesis of lead-free Cs2AgBiX6 (X = Cl, Br, I) double perovskite nanoplatelets and their application in CO2 photocatalytic reduction. Nano Lett. 2021, 21, 1620–1627.

[37]

Yang, H. J.; Cai, T.; Liu, E. X.; Hills-Kimball, K.; Gao, J. B.; Chen, O. Synthesis and transformation of zero-dimensional Cs3BiX6 (X = Cl, Br) perovskite-analogue nanocrystals. Nano Res. 2020, 13, 282–291.

[38]

Timmermans, C. W, M.; Cholakh, S. O.; Blasse, G. The luminescence of Cs3Bi2Cl9 and Cs3Sb2Cl9. J. Solid State Chem. 1983, 46, 222–233.

[39]

Yang, H. J.; Shi, W. W.; Cai, T.; Hills-Kimball, K.; Liu, Z. Y.; Dube, L.; Chen, O. Synthesis of lead-free Cs4(Cd1-xMnx)Bi2Cl12 (0 ≤ x ≤ 1) layered double perovskite nanocrystals with controlled Mn-Mn coupling interaction. Nanoscale 2020, 12, 23191–23199.

[40]

Holzapfel, N. P.; Majher, J. D.; Strom, T. A.; Moore, C. E.; Woodward, P. M. Cs4Cd1-xMnxBi2Cl12-a vacancy-ordered halide perovskite phosphor with high-efficiency orange-red emission. Chem. Mater. 2020, 32, 3510–3516.

[41]

Vargas, B.; Reyes-Castillo, D. T.; Coutino-Gonzalez, E.; Sánchez-Aké, C.; Ramos, C.; Falcony, C.; Solis-Ibarra, D. Enhanced luminescence and mechanistic studies on layered double-perovskite phosphors: Cs4Cd1-xMnxBi2Cl12. Chem. Mater. 2020, 32, 9307–9315.

[42]

Bai, T. X.; Yang, B.; Chen, J. S.; Zheng, D. Y.; Tang, Z.; Wang, X. C.; Zhao, Y.; Lu, R. F.; Han, K. L. Efficient luminescent halide quadruple-perovskite nanocrystals via trap-engineering for highly sensitive photodetectors. Adv. Mater. 2021, 33, 2007215.

[43]

Wei, J. H.; Liao, J. F.; Wang, X. D.; Zhou, L.; Jiang, Y.; Kuang, D. B. All-inorganic lead-free heterometallic Cs4MnBi2Cl12 perovskite single crystal with highly efficient orange emission. Matter 2020, 3, 892–903.

[44]
Infante, I. ; Manna, L. Are there good alternatives to lead halide perovskite nanocrystals? Nano Lett. 2021, 21, 6–9.
[45]

Benin, B. M.; Dirin, D. N.; Morad, V.; Wörle, M.; Yakunin, S.; Rainò, G.; Nazarenko, O.; Fischer, M.; Infante, I.; Kovalenko, M. V. Highly emissive self-trapped excitons in fully inorganic zero-dimensional tin halides. Angew. Chem., Int. Ed. 2018, 57, 11329–11333.

[46]

Liu, W. Y.; Lin, Q. L.; Li, H. B.; Wu, K. F.; Robel, I.; Pietryga, J. M.; Klimov, V. I. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. J. Am. Chem. Soc. 2016, 138, 14954–14961.

[47]

Luo, B. B.; Guo, Y.; Li, X. L.; Xiao, Y. H.; Huang, X. C.; Zhang, J. Z. Efficient trap-mediated Mn2+ dopant emission in two dimensional single-layered perovskite (CH3CH2NH3)2PbBr4. J. Phys. Chem. C 2019, 123, 14239–14245.

[48]

Wei, H. T.; Fang, Y. J.; Mulligan, P.; Chuirazzi, W.; Fang, H. H.; Wang, C. C.; Ecker, B. R.; Gao, Y. L.; Loi, M. A.; Cao, L. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 2016, 10, 333–339.

[49]

Wang, J. X.; Wang, X. J.; Yin, J.; Gutiérrez-Arzaluz, L.; He, T. Y.; Chen, C. L.; Han, Y.; Zhang, Y. H.; Bakr, O. M.; Eddaoudi, M. et al. Perovskite-nanosheet sensitizer for highly efficient organic X-ray imaging scintillator. ACS Energy Lett. 2022, 7, 10–16.

[50]
Wang, Z. F. ; Sun, R. J. ; Liu, N. Q. ; Fan, H. L. ; Hu, X. ; Shen, D. P. ; Zhang, Y. H. ; Liu, H. X-ray imager of 26-µm resolution achieved by perovskite assembly. Nano Res. 2022, 15, 2399–2404.
[51]

Zhou, Y.; Wang, X. J.; He, T. Y.; Yang, H. Z.; Yang, C.; Shao, B. Y.; Gutiérrez-Arzaluz, L.; Bakr, O. M.; Zhang, Y. H.; Mohammed, O. F. Large-area perovskite-related copper halide film for high-resolution flexible X-ray imaging scintillation screens. ACS Energy Lett. 2022, 7, 844–846.

[52]

Ma, W. B.; Jiang, T. M.; Yang, Z.; Zhang, H.; Su, Y. R.; Chen, Z.; Chen, X. Y.; Ma, Y. G.; Zhu, W. J.; Yu, X. et al. Highly resolved and robust dynamic X-ray imaging using perovskite glass-ceramic scintillator with reduced light scattering. Adv Sci. 2021, 8, 2003728.

Nano Research
Pages 1703-1711
Cite this article:
Wang C, Xiao J, Yan Z, et al. Colloidal synthesis and phase transformation of all-inorganic bismuth halide perovskite nanoplates. Nano Research, 2023, 16(1): 1703-1711. https://doi.org/10.1007/s12274-022-4656-0
Topics:

932

Views

24

Crossref

28

Web of Science

25

Scopus

0

CSCD

Altmetrics

Received: 01 May 2022
Revised: 04 June 2022
Accepted: 11 June 2022
Published: 27 June 2022
© Tsinghua University Press 2022
Return