Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Biological proton pumps ferry protons in an active manner and have a high flux (a few to 10 protons/(s·nm2)). Integrating these features in an artificial membrane may open the way for a wide range of applications but it remains challenging. In this work, we employed a structural engineering strategy to construct an asymmetric photonic polymeric carbon nitride (C3N4) membrane that exhibited photo-driven high flux proton pumping performance. The ion transport path through the membrane is reminiscent of that in the high-flux asymmetric biological ion channel. In addition, it has a photonic structure that mimics the mosquito compound eyes with improved light adsorption. Finally, the asymmetric structure constitutes an isotype (n–n) heterojunction that enhances the separation of the light-induced electron–hole pairs. As a result, the membrane shows a flux of 89 μA/cm2 under 100 mW/cm2 white light illumination (approximately one sun), the highest ever reported. This translates to a pumping rate of ~ 6 proton/(s·nm2), comparable to the biological counterpart. This work highlights the potential of multi-level structural engineering to construct high-performance bionic devices, and may find applications in solar energy harvesting and solar powered membrane process.
Esfandiar, A.; Radha, B.; Wang, F. C.; Yang, Q.; Hu, S.; Garaj, S.; Nair, R. R.; Geim, A. K.; Gopinadhan, K. Size effect in ion transport through angstrom-scale slits. Science 2017, 358, 511–513.
Acar, E. T.; Buchsbaum, S. F.; Combs, C.; Fornasiero, F.; Siwy, Z. S. Biomimetic potassium-selective nanopores. Sci. Adv. 2019, 5, eaav2568.
Zhang, Z.; Wen, L. P.; Jiang, L. Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 2021, 6, 622–639.
Steinberg-Yfrach, G.; Liddell, P. A.; Hung, S. C.; Moore, A. L.; Gust, D.; Moore, T. A. Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres. Nature 1997, 385, 239–241.
Xie, X. J.; Crespo, G. A.; Mistlberger, G.; Bakker, E. Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nat. Chem. 2014, 6, 202–207.
Xiao, K.; Chen, L.; Jiang, L.; Antonietti, M. Carbon nitride nanotube for ion transport based photo-rechargeable electric energy storage. Nano Energy 2020, 67, 104230.
Epsztein, R.; DuChanois, R. M.; Ritt, C. L.; Noy, A.; Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 2020, 15, 426–436.
Zhang, H. C.; Hou, J.; Hu, Y. X.; Wang, P. Y.; Ou, R. W.; Jiang, L.; Liu, J. Z.; Freeman, B. D.; Hill, A. J.; Wang, H. T. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Sci. Adv. 2018, 4, eaaq0066.
Lu, J.; Zhang, H. C.; Hou, J.; Li, X. Y.; Hu, X. Y.; Hu, Y. X.; Easton, C. D.; Li, Q. Y.; Sun, C. H.; Thornton, A. W. et al. Efficient metal ion sieving in rectifying subnanochannels enabled by metal-organic frameworks. Nat. Mater. 2020, 19, 767–774.
Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature 2016, 532, 435–437.
Wang, L. L.; Wen, Q.; Jia, P.; Jia, M. J.; Lu, D. N.; Sun, X. M.; Jiang, L.; Guo, W. Light-driven active proton transport through photoacid- and photobase-doped Janus graphene oxide membranes. Adv. Mater. 2019, 31, 1903029.
Quan, D.; Ji, D. Y.; Wen, Q.; Du, L. H.; Wang, L. L.; Jia, P.; Liu, D.; Ding, L. P.; Dong, H. L.; Lu, D. N. et al. Laterally heterogeneous 2D layered materials as an artificial light-harvesting proton pump. Adv. Funct. Mater. 2020, 30, 2001549.
Xiao, K.; Chen, L.; Chen, R. T.; Heil, T.; Lemus, S. D. C.; Fan, F. T.; Wen, L. P.; Jiang, L.; Antonietti, M. Artificial light-driven ion pump for photoelectric energy conversion. Nat. Commun. 2019, 10, 74.
Jiang, Y. N.; Ma, W. J.; Qiao, Y. J.; Xue, Y. F.; Lu, J. H.; Gao, J.; Liu, N. N.; Wu, F.; Yu, P.; Jiang, L. et al. Metal-organic framework membrane nanopores as biomimetic photoresponsive ion channels and photodriven ion pumps. Angew. Chem., Int. Ed. 2020, 59, 12795–12799.
Yang, J. L.; Liu, P. C.; He, X.; Hou, J. J.; Feng, Y. P.; Huang, Z. W.; Yu, L.; Li, L. S.; Tang, Z. Y. Photodriven active ion transport through a Janus microporous membrane. Angew. Chem., Int. Ed. 2020, 59, 6244–6248.
Zhang, Z.; Kong, X. Y.; Xie, G. H.; Li, P.; Xiao, K.; Wen, L. P.; Jiang, L. “Uphill” cation transport: A bioinspired photo-driven ion pump. Sci. Adv. 2016, 2, e1600689.
Wen, L. P.; Hou, X.; Tian, Y.; Zhai, J.; Jiang, L. Bio-inspired photoelectric conversion based on smart-gating nanochannels. Adv. Funct. Mater. 2010, 20, 2636–2642.
Jia, P.; Wang, L. L.; Zhang, Y. H.; Yang, Y. T.; Jin, X. Y.; Zhou, M.; Quan, D.; Jia, M. J.; Cao, L. X.; Long, R. et al. Harnessing ionic power from equilibrium electrolyte solution via photoinduced active ion transport through van-der-Waals-like heterostructures. Adv. Mater. 2021, 33, 2007529.
Rao, S. Y.; Lu, S. F.; Guo, Z. B.; Li, Y.; Chen, D. L.; Xiang, Y. A light-powered bio-capacitor with nanochannel modulation. Adv. Mater. 2014, 26, 5846–5850.
Lv, Y. J.; Yang, N. N.; Li, S. H.; Lu, S. F.; Xiang, Y. A novel light-driven pH-biosensor based on bacteriorhodopsin. Nano Energy 2019, 66, 104129.
Zhang, Q. Q.; Liu, Z. Y.; Zhai, J. Photocurrent generation in a light-harvesting system with multifunctional artificial nanochannels. Chem. Commun. 2015, 51, 12286–12289.
Yang, J. L.; Hu, X. Y.; Kong, X.; Jia, P.; Ji, D. Y.; Quan, D.; Wang, L. L.; Wen, Q.; Lu, D. N.; Wu, J. Z. et al. Photo-induced ultrafast active ion transport through graphene oxide membranes. Nat. Commun. 2019, 10, 1171.
Liu, P.; Zhou, T.; Teng, Y. F.; Fu, L.; Hu, Y. H.; Lin, X. B.; Kong, X. Y.; Jiang, L.; Wen, L. P. Light-induced heat driving active ion transport based on 2D MXene nanofluids for enhancing osmotic energy conversion. CCS Chem. 2021, 3, 1325–1335.
Liu, P.; Zhou, T.; Yang, L. S.; Zhu, C. C.; Teng, Y. F.; Kong, X. Y.; Wen, L. P. Synergy of light and acid-base reaction in energy conversion based on cellulose nanofiber intercalated titanium carbide composite nanofluidics. Energy Environ. Sci. 2021, 14, 4400–4409.
Zhao, X. L.; Lu, C. X.; Yang, L. S.; Chen, W. P.; Xin, W. W.; Kong, X. Y.; Fu, Q.; Wen, L. P.; Qiao, G.; Jiang, L. Metal organic framework enhanced SPEEK/SPSF heterogeneous membrane for ion transport and energy conversion. Nano Energy 2021, 81, 105657.
Chen, L.; Tu, B.; Lu, X. B.; Li, F.; Jiang, L.; Antonietti, M.; Xiao, K. Unidirectional ion transport in nanoporous carbon membranes with a hierarchical pore architecture. Nat. Commun. 2021, 12, 4650.
Sze, H.; Li, X. H.; Palmgren, M. G. Energization of plant cell membranes by H+-pumping ATPases: Regulation and biosynthesis. Plant Cell 1999, 11, 677–689.
Abe, K.; Irie, K.; Nakanishi, H.; Suzuki, H.; Fujiyoshi, Y. Crystal structures of the gastric proton pump. Nature 2018, 556, 214–218.
Focht, D.; Croll, T. I.; Pedersen, B. P.; Nissen, P. Improved model of proton pump crystal structure obtained by interactive molecular dynamics flexible fitting expands the mechanistic model for proton translocation in P-type ATPases. Front. Physiol. 2017, 8, 202.
Kühlbrandt, W.; Zeelen, J.; Dietrich, J. Structure, mechanism, and regulation of the Neurospora plasma membrane H+-ATPase. Science 2002, 297, 1692–1696.
Lee, L. P.; Szema, R. Inspirations from biological optics for advanced photonic systems. Science 2005, 310, 1148–1150.
Li, J.; Wang, W. J.; Mei, X. S.; Hou, D. X.; Pan, A. F.; Liu, B.; Cui, J. L. Fabrication of artificial compound eye with controllable field of view and improved imaging. ACS Appl. Mater. Interfaces 2020, 12, 8870–8878.
Zhang, J. S.; Zhang, M. W.; Sun, R. Q.; Wang, X. C. A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew. Chem., Int. Ed. 2012, 51, 10145–10149.
Liu, J.; Wang, H. Q.; Antonietti, M. Graphitic carbon nitride “reloaded”: Emerging applications beyond (photo)catalysis. Chem. Soc. Rev. 2016, 45, 2308–2326.
Arazoe, H.; Miyajima, D.; Akaike, K.; Araoka, F.; Sato, E.; Hikima, T.; Kawamoto, M.; Aida, T. An autonomous actuator driven by fluctuations in ambient humidity. Nat. Mater. 2016, 15, 1084–1089.
Liu, J.; Wang, H. Q.; Chen, Z. P.; Moehwald, H.; Fiechter, S.; Van De Krol, R.; Wen, L. P.; Jiang, L.; Antonietti, M. Microcontact-printing-assisted access of graphitic carbon nitride films with favorable textures toward photoelectrochemical application. Adv. Mater. 2015, 27, 712–718.
Jia, C. C.; Yang, L. J.; Zhang, Y. Y.; Zhang, X.; Xiao, K.; Xu, J. S.; Liu, J. Graphitic carbon nitride films: Emerging paradigm for versatile applications. ACS Appl. Mater. Interfaces 2020, 12, 53571–53591.
Zou, Y. J.; Xiao, K.; Qin, Q.; Shi, J. W.; Heil, T.; Markushyna, Y.; Jiang, L.; Antonietti, M.; Savateev, A. Enhanced organic photocatalysis in confined flow through a carbon nitride nanotube membrane with conversions in the millisecond regime. ACS Nano 2021, 15, 6551–6561.
Jia, C. C.; Hu, W. J.; Zhang, Y. Y.; Teng, C.; Chen, Z. P.; Liu, J. Facile assembly of a graphitic carbon nitride film at an air/water interface for photoelectrochemical NADH regeneration. Inorg. Chem. Front. 2020, 7, 2434–2442.
Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.
Jia, F. H.; Zhang, Y. Z.; Hu, W. J.; Lv, M.; Jia, C. C.; Liu, J. In-situ construction of superhydrophilic g-C3N4 film by vapor-assisted confined deposition for photocatalysis. Front. Mater. 2019, 6, 52.
Zhao, Y. C.; Liu, Z.; Chu, W. G.; Song, L.; Zhang, Z. X.; Yu, D. L.; Tian, Y. J.; Xie, S. S.; Sun, L. F. Large-scale synthesis of nitrogen-rich carbon nitride microfibers by using graphitic carbon nitride as precursor. Adv. Mat. 2008, 20, 1777–1781.
Liu, J.; Huang, J. H.; Dontosova, D.; Antonietti, M. Facile synthesis of carbon nitride micro-/nanoclusters with photocatalytic activity for hydrogen evolution. RSC Adv. 2013, 3, 22988–22993.
Shockley, W.; Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 1961, 32, 510–519.
Chang, S. L.; Wu, B. R.; Yang, P. H.; Lin, M. F. Curvature effects on electronic properties of armchair graphenenanoribbons without passivation. Phys. Chem. Chem. Phys. 2012, 14, 16409–16414.
Batista, F. Jr.; Chaves, A.; Da Costa, D. R.; Farias, G. A. Curvature effects on the electronic and transport properties of semiconductor films. Phys. E 2018, 99, 304–309.
Yan, W.; He, W. Y.; Chu, Z. D.; Liu, M. X.; Meng, L.; Dou, R. F.; Zhang, Y. F.; Liu, Z. F.; Nie, J. C.; He, L. Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer. Nat. Commun. 2013, 4, 2159.
Gupta, A. K.; Nisoli, C.; Lammert, P. E.; Crespi, V. H.; Eklund, P. C. Curvature-induced D-band Raman scattering in folded graphene. J. Phys. :Condens. Matter 2010, 22, 334205.
Li, R. G.; Zhang, F. X.; Wang, D. E.; Yang, J. X.; Li, M. R.; Zhu, J.; Zhou, X.; Han, H. X.; Li, C. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat. Commun. 2013, 4, 1432.
Zhu, J.; Fan, F. T.; Chen, R. T.; An, H. Y.; Feng, Z. C.; Li, C. Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst. Angew. Chem., Int. Ed. 2015, 54, 9111–9114.