AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synergistic CO2 reduction and tetracycline degradation by CuInZnS-Ti3C2Tx in one photoredox cycle

Lijing Wang1,2,§Zhan Zhang2,§Renquan Guan2Dandan Wu3Weilong Shi4Limin Yu1Pan Li1Wei Wei1( )Zhao Zhao2( )Zaicheng Sun3( )
Henan Engineering Center of New Energy Battery Materials, Henan D & A Engineering Center of Advanced Battery Materials, College of Chemistry and Chemical Engineering, Institute of Architectural Engineering, Shangqiu Normal University, Shangqiu 476000, China
Faculty of Physics, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
Center of excellence for environmental safety and biological effects, Beijing Key Lab for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

§ Lijing Wang and Zhan Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

CuInZnS-Ti3C2Tx Schottky heterojunction with matched redox capacity is rationally designed for waste to energy conversion. The opportune proportion of Ti3C2Tx with negative charge successfully interferes with the nucleation and growth process of CuInZnS, which optimized its photocatalytic activity owing to the thinner nanosheets, wider sunlight absorption range, higher nanosheets distance, and specific surface area.

Abstract

Optimizing photocatalytic CO2 reduction with simultaneous pollutant degradation is highly desired. However, the photocatalytic efficiency is restricted by the unmatched redox ability, high carriers’ recombination rate, and lack of reactive sites of the present photocatalysts. Herein, the CuInZnS-Ti3C2Tx hybrid with matched redox ability and suitable CO2 adsorption property was rationally synthesized. The nucleation and growth process of CuInZnS was interfered by the addition of Ti3C2Tx with a negative charge, resulting in thinner nanosheets and richer reactive sites. Besides, the Schottky heterojunction built in the hybrid simultaneously improved the photoexcited charge transfer property, sunlight absorption range, and CO2 adsorption ability. Consequently, upon exposure to sunlight, CuInZnS-Ti3C2Tx exhibited an efficient photocatalytic CO2 reduction performance (10.2 μmol·h−1·g−1) with synergetic tetracycline degradation, obviously higher than that of pure CuInZnS. Based on the combination of theoretical calculation and experimental characterization, the photocatalytic mechanism was investigated comprehensively. This work offers a reference for the remission of worldwide energy shortage and environmental pollution problems.

Electronic Supplementary Material

Download File(s)
12274_2022_4661_MOESM1_ESM.pdf (997.6 KB)

References

1

Shafaat, H. S.; Yang, J. Y. Uniting biological and chemical strategies for selective CO2 reduction. Nat. Catal. 2021, 4, 928–933.

2

Que, M. D.; Zhao, Y.; Yang, Y. W.; Pan, L. K.; Lei, W. Y.; Cai, W. H.; Yuan, H. D.; Chen, J.; Zhu, G. Q. Anchoring of formamidinium lead bromide quantum dots on Ti3C2 nanosheets for efficient photocatalytic reduction of CO2. ACS Appl. Mater. Interfaces 2021, 13, 6180–6187.

3

Li, X. D.; Sun, Y. F.; Xu, J. Q.; Shao, Y. J.; Wu, J.; Xu, X. L.; Pan, Y.; Ju, H. X.; Zhu, J. F.; Xie, Y. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 2019, 4, 690–699.

4

Wang, P. F.; Shen, Z. R.; Xia, Y. G.; Wang, H. T.; Zheng, L. R.; Xi, W.; Zhan, S. H. Atomic insights for optimum and excess doping in photocatalysis: A case study of few-layer Cu-ZnIn2S4. Adv. Funct. Mater. 2019, 29, 1807013.

5

Wang, L. J.; Qi, Y. F.; Li, H.; Guan, R. Q.; Zhang, F. L.; Zhou, Q. F.; Wu, D. D.; Zhao, Z.; Zhou, G.; Sun, Z. C. Au/g-C3N4 heterostructure sensitized by black phosphorus for full solar spectrum waste-to-hydrogen conversion. Sci. China Mater. 2022, 65, 974–984.

6

Wang, L. J.; Zhou, G.; Tian, Y.; Yan, L. K.; Deng, M. X.; Yang, B.; Kang, Z. H.; Sun, H. Z. Hydroxyl decorated g-C3N4 nanoparticles with narrowed bandgap for high efficient photocatalyst design. Appl. Catal. B: Environ. 2019, 244, 262–271.

7

Guo, F.; Huang, X. L.; Chen, Z. H.; Cao, L. W.; Cheng, X. F.; Chen, L. Z.; Shi, W. L. Construction of Cu3P-ZnSnO3-g-C3N4 p–n–n heterojunction with multiple built-in electric fields for effectively boosting visible-light photocatalytic degradation of broad-spectrum antibiotics. Sep. Purif. Technol. 2021, 265, 118477.

8

Zhang, S. Q.; Zhang, Z. F.; Si, Y. M.; Li, B.; Deng, F.; Yang, L. X.; Liu, X.; Dai, W. L.; Luo, S. L. Gradient hydrogen migration modulated with self-adapting s vacancy in copper-doped ZnIn2S4 nanosheet for photocatalytic hydrogen evolution. ACS Nano 2021, 15, 15238–15248.

9

Han, M.; Lu, S. Y.; Qi, F.; Zhu, S. J.; Sun, H. Z.; Yang, B. Carbon dots-implanted graphitic carbon nitride nanosheets for photocatalysis: Simultaneously manipulating carrier transport in inter- and intralayers. Sol. RRL 2020, 4, 1900517.

10

Dong, W. H.; Wu, D. D.; Luo, J. M.; Xing, Q. J.; Liu, H.; Zou, J. P.; Luo, X. B.; Min, X. B.; Liu, H. L.; Luo, S. L. et al. Coupling of photodegradation of RhB with photoreduction of CO2 over rGO/SrTi0.95Fe0.05O3 catalyst:A strategy for one-pot conversion of organic pollutants to methanol and ethanol. J. Catal. 2017, 349, 218–225.

11

Su, Y. H.; Song, Z. L.; Zhu, W.; Mu, Q. Q.; Yuan, X. Z.; Lian, Y. B.; Cheng, H.; Deng, Z.; Chen, M. Z.; Yin, W. J. et al. Visible-light photocatalytic CO2 reduction using metal-organic framework derived Ni(OH)2 nanocages: A synergy from multiple light reflection, static charge transfer, and oxygen vacancies. ACS Catal. 2021, 11, 345–354.

12

Song, T.; Hou, L. Q.; Long, B.; Ali, A.; Deng, G. J. Ultrathin MXene “bridge” to accelerate charge transfer in ultrathin metal-free 0D/2D black phosphorus/g-C3N4 heterojunction toward photocatalytic hydrogen production. J. Colloid Interface Sci. 2021, 584, 474–483.

13

Wang, L.; Wan, J. W.; Zhao, Y. S.; Yang, N. L.; Wang, D. Hollow multi-shelled structures of Co3O4 dodecahedron with unique crystal orientation for enhanced photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 2238–2241.

14

Ran, J. R.; Gao, G. P.; Li, F. T.; Ma, T. Y.; Du, A. J.; Qiao, S. Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907.

15

Zuo, G. C.; Wang, Y. T.; Teo, W. L.; Xie, A. M.; Guo, Y.; Dai, Y. X.; Zhou, W. Q.; Jana, D.; Xian, Q. M.; Dong, W. et al. Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2Tx MXene for photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2020, 59, 11287–11292.

16

Zou, X.; Zhao, X. S.; Zhang, J. X.; Lv, W.; Qiu, L.; Zhang, Z. H. Photocatalytic degradation of ranitidine and reduction of nitrosamine dimethylamine formation potential over MXene-Ti3C2/MoS2 under visible light irradiation. J. Hazard. Mater. 2021, 413, 125424.

17

Xie, X. Q.; Zhang, N. Positioning MXenes in the photocatalysis landscape: Competitiveness, challenges, and future perspectives. Adv. Funct. Mater. 2020, 30, 2002528.

18

Lai, C.; An, Z. W.; Yi, H.; Huo, X. Q.; Qin, L.; Liu, X. G.; Li, B. S.; Zhang, M. M.; Liu, S. Y.; Li, L. et al. Enhanced visible-light-driven photocatalytic activity of bismuth oxide via the decoration of titanium carbide quantum dots. J. Colloid Interface Sci. 2021, 600, 161–173.

19

Li, Y. J.; Liu, Y. Y.; Xing, D. N.; Wang, J. J.; Zheng, L. R.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Cheng, H. F.; Dai, Y. et al. 2D/2D heterostructure of ultrathin BiVO4/Ti3C2 nanosheets for photocatalytic overall water splitting. Appl. Catal. B: Environ. 2021, 285, 119855.

20

Ma, J.; Jiang, Q.; Zhou, Y. N.; Chu, W.; Perathoner, S.; Jiang, C. F.; Wu, K. H.; Centi, G.; Liu, Y. F. Tuning the chemical properties of Co-Ti3C2Tx MXene materials for catalytic CO2 reduction. Small 2021, 17, 2007509.

21

Yang, Y. L.; Zhang, D. N.; Fan, J. J.; Liao, Y. L.; Xiang, Q. J. Construction of an ultrathin S-scheme heterojunction based on few-layer g-C3N4 and monolayer Ti3C2Tx MXene for photocatalytic CO2 reduction. Sol. RRL 2021, 5, 2000351.

22

Su, T. M.; Men, C.; Chen, L. Y.; Chu, B. X.; Luo, X.; Ji, H. B.; Chen, J. H.; Qin, Z. Z. Sulfur vacancy and Ti3C2Tx cocatalyst synergistically boosting interfacial charge transfer in 2D/2D Ti3C2Tx/ZnIn2S4 heterostructure for enhanced photocatalytic hydrogen evolution. Adv. Sci. 2022, 9, 2103715.

23

Wang, H.; Sun, Y. M.; Wu, Y.; Tu, W. G.; Wu, S. Y.; Yuan, X. Z.; Zeng, G. M.; Xu, Z. J.; Li, S. Z.; Chew, J. W. Electrical promotion of spatially photoinduced charge separation via interfacial-built-in quasi-alloying effect in hierarchical Zn2In2S5/Ti3C2(O, OH)x hybrids toward efficient photocatalytic hydrogen evolution and environmental remediation. Appl. Catal. B: Environ. 2019, 245, 290–301.

24

Wang, L. J.; Hu, Y. Y.; Qi, F.; Ding, L.; Wang, J. M.; Zhang, X. Y.; Liu, Q. W.; Liu, L. Z.; Sun, H. Z.; Qu, P. Anchoring black phosphorus nanoparticles onto ZnS porous nanosheets: Efficient photocatalyst design and charge carrier dynamics. ACS Appl. Mater. Interfaces 2020, 12, 8157–8167.

25

Zhou, G.; Li, T. H.; Huang, R.; Wang, P. F.; Hu, B.; Li, H.; Liu, L. Z.; Sun, Y. Recharged catalyst with memristive nitrogen reduction activity through learning networks of spiking neurons. J. Am. Chem. Soc. 2021, 143, 5378–5385.

26

Wang, L. J.; Guan, R. Q.; Qi, Y. F.; Zhang, F. L.; Li, P.; Wang, J. M.; Qu, P.; Zhou, G.; Shi, W. L. Constructing Zn-P charge transfer bridge over ZnFe2O4-black phosphorus 3D microcavity structure: Efficient photocatalyst design in visible-near-infrared region. J. Colloid Interface Sci. 2021, 600, 463–472.

27

Chen, Z. H.; Guo, F.; Sun, H. R.; Shi, Y. X.; Shi, W. L. Well-designed three-dimensional hierarchical hollow tubular g-C3N4/ZnIn2S4 nanosheets heterostructure for achieving efficient visible-light photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2022, 607, 1391–1401.

28

Huang, T.; Luo, Y. T.; Chen, W.; Yao, J. C.; Liu, X. H. Self-assembled MoS2-GO framework as an efficient cocatalyst of CuInZnS for visible-light driven hydrogen evolution. ACS Sustainable Chem. Eng. 2018, 6, 4671–4679.

29

Shi, W. L.; Sun, W.; Liu, Y. N.; Li, X. Y.; Lin, X.; Guo, F.; Hong, Y. Z. Onion-ring-like g-C3N4 modified with Bi3TaO7 quantum dots: A novel 0D/3D S-scheme heterojunction for enhanced photocatalytic hydrogen production under visible light irradiation. Renewable Energy 2022, 182, 958–968.

30

Zhang, W. H.; Peng, Y. Y.; Yang, Y. J.; Zhang, L.; Bian, Z. Y.; Wang, H. Bismuth-rich strategy intensifies the molecular oxygen activation and internal electrical field for the photocatalytic degradation of tetracycline hydrochloride. Chem. Eng. J. 2022, 430, 132963.

31

Guo, F.; Chen, Z. H.; Huang, X. L.; Cao, L. W.; Cheng, X. F.; Shi, W. L.; Chen, L. Z. Cu3P nanoparticles decorated hollow tubular carbon nitride as a superior photocatalyst for photodegradation of tetracycline under visible light. Sep. Purif. Technol. 2021, 275, 119223.

32

Guan, R. Q.; Wang, D. D.; Zhang, Y. J.; Liu, C.; Xu, W.; Wang, J. O.; Zhao, Z.; Feng, M.; Shang, Q. K.; Sun, Z. C. Enhanced photocatalytic N2 fixation via defective and fluoride modified TiO2 surface. Appl. Catal. B:Environ. 2021, 282, 119580.

33

Han, C.; Li, Y. H.; Li, J. Y.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Cooperative syngas production and C–N bond formation in one photoredox cycle. Angew. Chem., Int. Ed. 2021, 60, 7962–7970.

34

Liu, E. L.; Lin, X.; Hong, Y. Z.; Yang, L.; Luo, B. F.; Shi, W. L.; Shi, J. Y. Rational copolymerization strategy engineered C self-doped g-C3N4 for efficient and robust solar photocatalytic H2 evolution. Renewable Energy 2021, 178, 757–765.

35

Zhou, G.; Shan, Y.; Wang, L. L.; Hu, Y. Y.; Guo, J. H.; Hu, F. R.; Shen, J. C.; Gu, Y.; Cui, J. T.; Liu, L. Z. et al. Photoinduced semiconductor-metal transition in ultrathin troilite FeS nanosheets to trigger efficient hydrogen evolution. Nat. Commun. 2019, 10, 399.

36

Zhao, Z.; Wang, D. D.; Gao, R.; Wen, G. B.; Feng, M.; Song, G. X.; Zhu, J. B.; Luo, D.; Tan, H. Q.; Ge, X. et al. Magnetic-field-stimulated efficient photocatalytic N2 fixation over defective BaTiO3 perovskites. Angew. Chem., Int. Ed. 2021, 60, 11910–11918.

37

Guan, R. Q.; Zhai, H. J.; Li, J. X.; Qi, Y. F.; Li, M. X.; Song, M. Y.; Zhao, Z.; Zhang, J. K.; Wang, D. D.; Tan, H. Q. Reduced mesoporous TiO2 with Cu2S heterojunction and enhanced hydrogen production without noble metal cocatalyst. Appl. Surf. Sci. 2020, 507, 144772.

38

Cheng, X. Y.; Guan, R. Q.; Chen, Y. N.; Sun, Y. N.; Shang, Q. K. The unique TiO2(B)/BiOCl0.7I0.3-P Z-scheme heterojunction effectively degrades and mineralizes the herbicide fomesafen. Chem. Eng. J. 2022, 431, 134021.

39

Song, G. X.; Gao, R.; Zhao, Z.; Zhang, Y. J.; Tan, H. Q.; Li, H. B.; Wang, D. D.; Sun, Z. C.; Feng, M. High-spin state Fe(III) doped TiO2 for electrocatalytic nitrogen fixation induced by surface F modification. Appl. Catal. B:Environ. 2022, 301, 120809.

40

Li, M. X.; Zhang, J.; Wang, L. J.; Cheng, X. Y.; Gao, X. C.; Wang, Y. Q.; Zhang, G. Y.; Qi, Y. F.; Zhai, H. J.; Guan, R. Q. et al. Direct Z-scheme oxygen-vacancy-rich TiO2/Ta3N5 heterojunction for degradation of ciprofloxacin under visible light: Degradation pathways and mechanism insight. Appl. Surf. Sci. 2022, 583, 152516.

41

Xiong, X. Y.; Zhao, Y. F.; Run, S.; Yin, W. J.; Zhao, Y. X.; Waterhouse, G. I. N.; Zhang, T. R. Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals. Sci. Bull. 2020, 65, 987–994.

42

Zhao, Y. F.; Chen, G. B.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Smith, L. J.; O’Hare, D.; Zhang, T. R. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 2015, 27, 7824–7831.

43

Wang, S. B.; Han, X.; Zhang, Y. H.; Tian, N.; Ma, T. Y.; Huang, H. W. Inside-and-out semiconductor engineering for CO2 photoreduction: From recent advances to new trends. Small Struct. 2021, 2, 2000061.

44

Li, H.; Zhang, J. C.; Yu, J. G.; Cao, S. W. Ultra-thin carbon-doped Bi2WO6 nanosheets for enhanced photocatalytic CO2 reduction. Trans. Tianjin Univ. 2021, 27, 338–347.

45

Ahmad, T.; Liu, S.; Sajid, M.; Li, K. Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1: e9120021.

46

Linxing Meng, L. X.; Liang Li, L. Recent research progress on operational stability of metal oxide/sulfide photoanodes in photoelectrochemical cells. Nano Res. Energy 2022, 1: e9120020.

47
Liang G. J.  Li  X. L. Wang  Y. B. Yang S. Huang Z. D.   Yang Q.  Wang  D. H. Dong B. B.  Zhu M. S.  Zhi C. Y. Building durable aqueous K-ion capacitors based on MXene family Nano Res. Energy 2022 1: e9120002 10.26599/NRE.2022.9120002

Liang, G. J.; Li, X. L.; Wang, Y. B.; Yang, S.; Huang, Z. D.; Yang, Q.; Wang, D. H.; Dong, B. B.; Zhu, M. S.; Zhi, C. Y. Building durable aqueous K-ion capacitors based on MXene family. Nano Res. Energy 2022, 1: e9120002.

48

Lin, Z. Q.; Zhi, C. Y.; Qu, L. T. Nano Research Energy: An interdisciplinary journal centered on nanomaterials and nanotechnology for energy. Nano Res. Energy 2022, 1: e9120005.

49

Gu, J. W.; Peng, Y.; Zhou, T.; Ma, J.; Pang, H.; Yamauchi, Y. Porphyrin-based framework materials for energy conversion. Nano Res. Energy 2022, 1: e9120009.

50

Li, L. L.; Hasan, I.; Farwa; He, R. N. Peng, L. W.; Xu, N. N.; Niazi, N. K.; Zhang, J. N.; Qiao, J. L. Copper as a single metal atom based photo-, electro- and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy 2022, 1: e9120015.

Nano Research
Pages 8010-8018
Cite this article:
Wang L, Zhang Z, Guan R, et al. Synergistic CO2 reduction and tetracycline degradation by CuInZnS-Ti3C2Tx in one photoredox cycle. Nano Research, 2022, 15(9): 8010-8018. https://doi.org/10.1007/s12274-022-4661-3
Topics:

1652

Views

29

Crossref

30

Web of Science

27

Scopus

0

CSCD

Altmetrics

Received: 01 April 2022
Revised: 10 June 2022
Accepted: 13 June 2022
Published: 11 July 2022
© Tsinghua University Press 2022
Return