Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Low electrolyte/sulfur ratio (E/S) is an important factor in increasing the energy density of lithium-sulfur batteries (LSBs). Recently, the E/S has been widely lowered using catalytic hosts that can suppress “shuttle effect” during cycling by relying on a limited adsorption area. However, the shelf-lives of these cathodes have not yet received attention. Herein, we show that the self-discharge of sulfur cathodes based on frequently-used catalytic hosts is serious under low E/S because the “shuttle effect” during storage process caused by polysulfides (PSs) disproportionation cannot be suppressed using a limited adsorption area. We further prove that the adsorption strength toward PSs, which is unfortunately weak in commonly-used catalytic hosts, is critical for effectively hindering the disproportionation of the PSs. Subsequently, to verify this conclusion, we prepare a sulfur-doped titanium nitride (S-TiN) catalytic array host. As the adsorption strength and catalytic activity of TiN can be improved by S doping simultaneously, the constructed S/S-TiN cathodes under a low E/S (6.5 μL·mg−1) exhibit better shelf-life and cycle-stability than those of S/TiN cathodes. Our work suggests that enhancing the adsorption strength of catalytic hosts, while maintaining their function to reduce E/S, is crucial for practical LSBs.
Manthiram, A.; Chung, S. H.; Zu, C. X. Lithium-sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980–2006.
Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.
Croy, J. R.; Abouimrane, A.; Zhang, Z. C. Next-generation lithium-ion batteries: The promise of near-term advancements. MRS Bull. 2014, 39, 407–415.
Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.
Zhang, J.; Huang, H.; Bae, J.; Chung, S. H.; Zhang, W. K.; Manthiram, A.; Yu, G. H. Nanostructured host materials for trapping sulfur in rechargeable Li-S batteries: Structure design and interfacial chemistry. Small Methods 2018, 2, 1700279.
Xu, N.; Qian, T.; Liu, X. J.; Liu, J.; Chen, Y.; Yan, C. L. Greatly suppressed shuttle effect for improved lithium sulfur battery performance through short chain intermediates. Nano Lett. 2017, 17, 538–543.
Hua, W. X.; Yang, Z.; Nie, H. G.; Li, Z. Y.; Yang, J. Z.; Guo, Z. Q.; Ruan, C. P.; Chen, X.; Huang, S. M. Polysulfide-scission reagents for the suppression of the shuttle effect in lithium-sulfur batteries. ACS Nano 2017, 11, 2209–2218.
Li, Z.; Zhang, J. T.; Guan, B. Y.; Wang, D.; Liu, L. M.; Lou, X. W. D. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries. Nat. Commun. 2016, 7, 13065.
Zhou, L.; Danilov, D. L.; Eichel, R. A.; Notten, P. H. L. Host materials anchoring polysulfides in Li-S batteries reviewed. Adv. Energy Mater. 2021, 11, 2001304.
Chen, S. R.; Gao, Y.; Yu, Z. X.; Gordin, M. L.; Song, J. X.; Wang, D. H. High capacity of lithium-sulfur batteries at low electrolyte/sulfur ratio enabled by an organosulfide containing electrolyte. Nano Energy 2017, 31, 418–423.
Hagen, M.; Fanz, P.; Tübke, J. Cell energy density and electrolyte/sulfur ratio in Li-S cells. J. Power Sources 2014, 264, 30–34.
Wang, H. Q.; Zhang, W. C.; Xu, J. Z.; Guo, Z. P. Advances in polar materials for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707520.
Guo, J. L.; Pei, H. Y.; Dou, Y.; Zhao, S. Y.; Shao, G. S.; Liu, J. P. Rational designs for lithium-sulfur batteries with low electrolyte/sulfur ratio. Adv. Funct. Mater. 2021, 31, 2010499.
Shin, W.; Lu, J.; Ji, X. L. ZnS coating of cathode facilitates lean-electrolyte Li-S batteries. Carbon Energy 2019, 1, 165–172.
Qian, J.; Wang, F. J.; Li, Y.; Wang, S.; Zhao, Y. Y.; Li, W. L.; Xing, Y.; Deng, L.; Sun, Q.; Li, L. et al. Electrocatalytic interlayer with fast lithium-polysulfides diffusion for lithium-sulfur batteries to enhance electrochemical kinetics under lean electrolyte conditions. Adv. Funct. Mater. 2020, 30, 2000742.
Pan, H. L.; Han, K. S.; Engelhard, M. H.; Cao, R. G.; Chen, J. Z.; Zhang, J. G.; Mueller, K. T.; Shao, Y. Y.; Liu, J. Addressing passivation in lithium-sulfur battery under lean electrolyte condition. Adv. Funct. Mater. 2018, 28, 1707234.
Han, Z. L.; Li, S. P.; Xiong, R. Y.; Jiang, Z. P.; Sun, M. J.; Hu, W.; Peng, L. F.; He, R. J.; Zhou, H. M.; Yu, C. et al. Low tortuosity and reinforced concrete type ultra-thick electrode for practical lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2108669.
Gao, X. J.; Yang, X. F.; Sun, Q.; Luo, J.; Liang, J. N.; Li, W. H.; Wang, J. W.; Wang, S. Z.; Li, M. S.; Li, R. Y. et al. Converting a thick electrode into vertically aligned “thin electrodes” by 3D-printing for designing thickness independent Li-S cathode. Energy Storage Mater. 2020, 24, 682–688.
He, J. R.; Bhargav, A.; Manthiram, A. Molybdenum boride as an efficient catalyst for polysulfide redox to enable high-energy-density lithium-sulfur batteries. Adv. Mater. 2020, 32, 2004741.
Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016, 16, 519–527.
Hao, X. G.; Ma, J. B.; Cheng, X.; Zhong, G. M.; Yang, J. L.; Huang, L.; Ling, H. J.; Lai, C.; Lv, W.; Kang, F. Y. et al. Electron and ion co-conductive catalyst achieving instant transformation of lithium polysulfide towards Li2S. Adv. Mater. 2021, 33, 2105362.
Song, H.; Suh, S.; Park, H.; Jang, D.; Kim, J.; Kim, H. J. Synthesis of pompon-like ZnO microspheres as host materials and the catalytic effects of nonconductive metal oxides for lithium-sulfur batteries. J. Ind. Eng. Chem. 2021, 99, 309–316.
Balogun, M. S.; Huang, Y. C.; Qiu, W. T.; Yang, H.; Ji, H. B.; Tong, Y. X. Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Mater. Today 2017, 20, 425–451.
Dai, C. L.; Hu, L. Y.; Li, X. Y.; Xu, Q. J.; Wang, R.; Liu, H.; Chen, H.; Bao, S. J.; Chen, Y. M.; Henkelman, G. et al. Chinese knot-like electrode design for advanced Li-S batteries. Nano Energy 2018, 53, 354–361.
Yu, S. L.; Cai, W. L.; Chen, L.; Song, L. X.; Song, Y. Z. Recent advances of metal phosphides for Li-S chemistry. J. Energy Chem. 2021, 55, 533–548.
Mi, Y. Y.; Liu, W.; Li, X. L.; Zhuang, J. L.; Zhou, H. H.; Wang, H. L. High-performance Li-S battery cathode with catalyst-like carbon nanotube-mop promoting polysulfide redox. Nano Res. 2017, 10, 3698–3705.
Zhang, L.; Liu, Y. C.; Zhao, Z. D.; Jiang, P. L.; Zhang, T.; Li, M. X.; Pan, S. X.; Tang, T. Y.; Wu, T. Q.; Liu, P. Y. et al. Enhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal-organic frameworks toward high-performance Li-S batteries. ACS Nano 2020, 14, 8495–8507.
Yao, Y.; Wang, H. Y.; Yang, H.; Zeng, S. F.; Xu, R.; Liu, F. F.; Shi, P. C.; Feng, Y. Z.; Wang, K.; Yang, W. J. et al. A dual-functional conductive framework embedded with TiN-VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li-S full batteries. Adv. Mater. 2020, 32, 1905658.
Chen, G. L.; Zhong, W. T.; Li, Y. S.; Deng, Q.; Ou, X.; Pan, Q. C.; Wang, X. W.; Xiong, X. H.; Yang, C. H.; Liu, M. L. Rational design of TiO-TiO2 heterostructure/polypyrrole as a multifunctional sulfur host for advanced lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 5055–5063.
Schipper, F.; Vizintin, A.; Ren, J. W.; Dominko, R.; Fellinger, T. P. Biomass-derived heteroatom-doped carbon aerogels from a salt melt sol-gel synthesis and their performance in Li-S batteries. ChemSusChem 2015, 8, 3077–3083.
Pan, H.; Cheng, Z. B.; Xiao, Z. B.; Li, X. J.; Wang, R. H. The fusion of imidazolium-based ionic polymer and carbon nanotubes: One type of new heteroatom-doped carbon precursors for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2017, 27, 1703936.
Yang, K.; Zhong, L.; Mo, Y. D.; Wen, R.; Xiao, M.; Han, D. M.; Wang, S. J.; Meng, Y. Z. A functional separator coated with sulfonated poly(styrene-ethylene-butylene-styrene) to synergistically enhance the electrochemical performance and anti-self-discharge behavior of Li-S batteries. ACS Appl. Energy Mater. 2018, 1, 2555–2564.
Jin, C. B.; Zhang, W. K.; Zhuang, Z. Z.; Wang, J. G.; Huang, H.; Gan, Y. P.; Xia, Y.; Liang, C.; Zhang, J.; Tao, X. Y. Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 632–640.
Li, J. B.; Chen, C. Y.; Chen, Y. W.; Li, Z. H.; Xie, W. F.; Zhang, X.; Shao, M. F.; Wei, M. Polysulfide confinement and highly efficient conversion on hierarchical mesoporous carbon nanosheets for Li-S batteries. Adv. Energy Mater. 2019, 9, 1901935.
Chen, F. C.; Gao, C. H.; Li, H.; Hou, J. H.; Jiang, D. Y. FeS monolayer as a potential anchoring material for lithium-sulfur batteries: A theoretical study. Surf. Sci. 2021, 707, 121818.
Ren, Y. L.; Zhai, Q. X.; Wang, B.; Hu, L. B.; Ma, Y. J.; Dai, Y. M.; Tang, S. C.; Meng, X. K. Synergistic adsorption-electrocatalysis of 2D/2D heterostructure toward high performance Li-S batteries. Chem. Eng. J. 2022, 439, 135535.
Zhao, S. P.; Li, Y. P.; Zhang, F. X.; Guo, J. L. Li4Ti5O12 nanowire array as a sulfur host for high performance lithium sulfur battery. J. Alloys Compd. 2019, 805, 873–879.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.
Bieker, G.; Diddens, D.; Kolek, M.; Borodin, O.; Winter, M.; Bieker, P.; Jalkanen, K. Cation-dependent electrochemistry of polysulfides in lithium and magnesium electrolyte solutions. J. Phys. Chem. C 2018, 122, 21770–21783.
Barchasz, C.; Molton, F.; Duboc, C.; Leprêtre, J. C.; Patoux, S.; Alloin, F. Lithium/sulfur cell discharge mechanism: An original approach for intermediate species identification. Anal. Chem. 2012, 84, 3973–3980.
Lacey, M. J.; Yalamanchili, A.; Maibach, J.; Tengstedt, C.; Edström, K.; Brandell, D. The Li-S battery: An investigation of redox shuttle and self-discharge behaviour with LiNO3-containing electrolytes. RSC Adv. 2016, 6, 3632–3641.
Xu, R.; Lu, J.; Amine, K. Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy Mater. 2015, 5, 1500408.
Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694–1703.
Guo, J. L.; Zhao, S. Y.; Shen, Y. L.; Shao, G. S.; Zhang, F. X. “Room-like” TiO2 array as a sulfur host for lithium-sulfur batteries: Combining advantages of array and closed structures. ACS Sustainable Chem. Eng. 2020, 8, 7609–7616.
Nguyen, A. D.; Pham, T. H.; Nguyen, T. K.; Ullah, H.; Tahir, Z.; Park, Y. C.; Park, J.; Jang, J. I.; Shin, Y. H.; Kim, Y. S. TiO2 nanorod array conformally coated with a monolayer MoS2 film: An efficient electrocatalyst for hydrogen evolution reaction. ACS Appl. Energy Mater. 2020, 3, 10854–10862.
Zha, C.; Zhu, X. R.; Deng, J.; Zhou, Y.; Li, Y. S.; Chen, J. M.; Ding, P.; Hu, Y. P.; Li, Y. F.; Chen, H. Y. Facet-tailoring five-coordinated Ti sites and structure-optimizing electron transfer in a bifunctional cathode with titanium nitride nanowire array to boost the performance of Li2S6-based lithium-sulfur batteries. Energy Storage Mater. 2020, 26, 40–45.
Feng, H. W.; Xu, H.; Feng, H. T.; Gao, Y.; Jin, X. Y. The sol−gel synthesis and photocatalytic activity of Gd-SiO2-TiO2 photocatalyst. Chem. Phys. Lett. 2019, 733, 136676.
Li, Y. M.; Ni, W. M.; Chen, M. Q.; Zhou, Z.; Yang, Y. Q. Preparation of Fe3O4/TiO2 composite and its application in photocatalysis of organic pollutants. Bulg. Chem. Commun. 2018, 50, 494–501.
Savaloni, H.; Khojier, K.; Torabi, S. Influence of N+ ion implantation on the corrosion and nano-structure of Ti samples. Corros. Sci. 2010, 52, 1263–1267.
Korpi, A. R.; Balashabadi, P.; Larijani, M. M.; Habibi, M.; Hamidi, A.; Malek, M. Effect of gas ratio on tribological and corrosion properties of ion beam sputter deposited TiN coatings. Prog. Color Colorants Coat. 2018, 11, 129–135.
Ni, J. F.; Fu, S. D.; Wu, C.; Maier, J.; Yu, Y.; Li, L. Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Adv. Mater. 2016, 28, 2259–2265.
Filatova, E. O.; Sakhonenkov, S. S.; Konashuk, A. S.; Kasatikov, S. A.; Afanas’ev, V. V. Inhibition of oxygen scavenging by TiN at the TiN/SiO2 interface by atomic-layer-deposited Al2O3 protective interlayer. J. Phys. Chem. C 2019, 123, 22335–22344.
Greczynski, G.; Hultman, L. Self-consistent modelling of X-ray photoelectron spectra from air-exposed polycrystalline TiN thin films. Appl. Surf. Sci. 2016, 387, 294–300.
Chen, X.; Wang, Y. B.; Wang, J. N.; Liu, J. W.; Sun, S. Y.; Zhu, L.; Ma, Q. Y.; Zhu, N. R.; Wang, X.; Chen, J. et al. A COF-like conductive conjugated microporous poly (aniline) serving as a current collector modifier for high-performance Li-S batteries. J. Mater. Chem. A 2022, 10, 1359–1368.
Knap, V.; Stroe, D. I.; Christensen, A. E.; Propp, K.; Fotouhi, A.; Auger, D. J.; Schaltz, E.; Teodorescu, R. Self-balancing feature of lithium-sulfur batteries. J. Power Sources 2017, 372, 245–251.
Knap, V.; Stroe, D. I.; Swierczynski, M.; Teodorescu, R.; Schaltz, E. Investigation of the self-discharge behavior of lithium-sulfur batteries. J. Electrochem. Soc. 2016, 163, A911–A916.
Al-Tahan, M. A.; Dong, Y. T.; Shrshr, A. E.; Liu, X. B.; Zhang, R.; Guan, H.; Kang, X. Y.; Wei, R. P.; Zhang, J. M. Enormous-sulfur-content cathode and excellent electrochemical performance of Li-S battery accouched by surface engineering of Ni-doped WS2@rGO nanohybrid as a modified separator. J. Colloid Interface Sci. 2022, 609, 235–248.
Zhang, D.; Wang, S.; Hu, R. M.; Gu, J. N.; Cui, Y. L. S.; Li, B.; Chen, W. H.; Liu, C. T.; Shang, J. X.; Yang, S. B. Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries. Adv. Funct. Mater. 2020, 30, 2002471.
Yao, C. H.; Li, W.; Duan, K.; Zhu, C.; Li, J. Z.; Ren, Q. Y.; Bai, G. Properties of S-functionalized nitrogen-based MXene (Ti2NS2) as a hosting material for lithium-sulfur batteries. Nanomaterials (Basel) 2021, 11, 2478.
Baumann, A. E.; Aversa, G. E.; Roy, A.; Falk, M. L.; Bedford, N. M.; Thoi, V. S. Promoting sulfur adsorption using surface Cu sites in metal-organic frameworks for lithium sulfur batteries. J. Mater. Chem. A 2018, 6, 4811–4821.
Song, X. D.; Zhou, F. Y.; Yao, M.; Hao, C.; Qiu, J. S. Insights into the anchoring of polysulfides and catalytic performance by metal phthalocyanine covalent organic frameworks as the cathode in lithium-sulfur batteries. ACS Sustainable Chem. Eng. 2020, 8, 10185–10192.
Zhang, L.; Liang, P.; Shu, H. B.; Man, X. L.; Li, F.; Huang, J.; Dong, Q. M.; Chao, D. l. Borophene as efficient sulfur hosts for lithium-sulfur batteries: Suppressing shuttle effect and improving conductivity. J. Phys. Chem. C 2017, 121, 15549–15555.
Ma, C.; Zhang, Y. Q.; Feng, Y. M.; Wang, N.; Zhou, L. J.; Liang, C. P.; Chen, L. B.; Lai, Y. Q.; Ji, X. B.; Yan, C. L. et al. Engineering Fe-N coordination structures for fast redox conversion in lithium-sulfur batteries. Adv. Mater. 2021, 33, 2100171.
Wang, R. R.; Wu, R. B.; Ding, C. F.; Chen, Z. L.; Xu, H. B.; Liu, Y. F.; Zhang, J. C.; Ha, Y.; Fei, B.; Pan, H. G. Porous carbon architecture assembled by cross-linked carbon leaves with implanted atomic cobalt for high-performance Li-S batteries. Nano-Micro Lett. 2021, 13, 151.
Rao, D. W.; Yang, H.; Shen, X. Q.; Yan, X. H.; Qiao, G. J. Immobilisation of sulphur on cathodes of lithium-sulphur batteries via B-doped atomic-layer carbon materials. Phys. Chem. Chem. Phys. 2019, 21, 10895–10901.
Li, Y. P.; Lei, D.; Jiang, T. Y.; Guo, J. L.; Deng, X. Y.; Zhang, X.; Hao, C.; Zhang, F. X. P-doped Co9S8 nanoparticles embedded on 3D spongy carbon-sheets as electrochemical catalyst for lithium-sulfur batteries. Chem. Eng. J. 2021, 426, 131798.
Tian, H.; Ma, J. F.; Li, K.; Li, J. J. Hydrothermal synthesis of S-doped TiO2 nanoparticles and their photocatalytic ability for degradation of methyl orange. Ceram. Int. 2009, 35, 1289–1292.
Sun, C. Z.; Zhang, H.; Liu, H.; Zheng, X. X.; Zou, W. X.; Dong, L.; Qi, L. Enhanced activity of visible-light photocatalytic H2 evolution of sulfur-doped g-C3N4 photocatalyst via nanoparticle metal Ni as cocatalyst. Appl. Catal. B Environ. 2018, 235, 66–74.
Zhang, H. C.; Jiang, Y.; Qi, Z. Y.; Zhong, X. W.; Yu, Y. Sulfur doped ultra-thin anatase TiO2 nanosheets/graphene nanocomposite for high-performance pseudocapacitive sodium storage. Energy Storage Mater. 2018, 12, 37–43.
Martinez, H.; Auriel, C.; Gonbeau, D.; Loudet, M.; Pfister-Guillouzo, G. Studies of 1T TiS2 by STM, AFM and XPS: The mechanism of hydrolysis in air. Appl. Surf. Sci. 1996, 93, 231–235.
Hao, B. Y.; Li, H.; Lv, W.; Zhang, Y. B.; Niu, S. Z.; Qi, Q.; Xiao, S. J.; Li, J.; Kang, F. Y.; Yang, Q. H. Reviving catalytic activity of nitrides by the doping of the inert surface layer to promote polysulfide conversion in lithium-sulfur batteries. Nano Energy 2019, 60, 305–311.
Wang, H.; Qiu, Z. Z.; Xia, W. Y.; Ming, C.; Han, Y. Y.; Cao, L.; Lu, J.; Zhang, P. H.; Zhang, S. B.; Xu, H. et al. Semimetal or semiconductor: The nature of high intrinsic electrical conductivity in TiS2. J. Phys. Chem. Lett. 2019, 10, 6996–7001.
Zhao, H.; Tian, B. B.; Su, C. L.; Li, Y. Single-atom iron and doped sulfur improve the catalysis of polysulfide conversion for obtaining high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 7171–7177.
Wang, M. X.; Fan, L. S.; Sun, X.; Guan, B.; Jiang, B.; Wu, X.; Tian, D.; Sun, K. N.; Qiu, Y.; Yin, X. J. et al. Nitrogen-doped CoSe2 as a bifunctional catalyst for high areal capacity and lean electrolyte of Li-S battery. ACS Energy Lett. 2020, 5, 3041–3050.