AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Novel self-assembled two-dimensional layered oxide structure incorporated with Au nanoinclusions towards multifunctionalities

Di Zhang1,2( )Xingyao Gao1Juanjuan Lu1Ping Lu3Julia Deitz3Jianan Shen1Hongyi Dou1Zihao He4Zhongxia Shang1C. Austin Wade5Xinghang Zhang1Aiping Chen2Haiyan Wang1,4( )
School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Sandia National Laboratories, Albuquerque, NM 87185, USA
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
Thermo Fisher Scientific, Hillsboro, OR 97124, USA
Show Author Information

Graphical Abstract

A self-assembled two-dimensional (2D) layered Bi2MoO6 (BMO) thin film incorporated with Au nanoinclusions has been demonstrated. This study presents a platform for synthesizing novel hybrid metallayered oxide structures by introducing various secondary phases towards multifunctionality explorations and device integrations.

Abstract

Two-dimensional (2D) layered oxides have recently attracted wide attention owing to the strong coupling among charges, spins, lattice, and strain, which allows great flexibility and opportunities in structure designs as well as multifunctionality exploration. In parallel, plasmonic hybrid nanostructures exhibit exotic localized surface plasmon resonance (LSPR) providing a broad range of applications in nanophotonic devices and sensors. A hybrid material platform combining the unique multifunctional 2D layered oxides and plasmonic nanostructures brings optical tuning into the new level. In this work, a novel self-assembled Bi2MoO6 (BMO) 2D layered oxide incorporated with plasmonic Au nanoinclusions has been demonstrated via one-step pulsed laser deposition (PLD) technique. Comprehensive microstructural characterizations, including scanning transmission electron microscopy (STEM), differential phase contrast imaging (DPC), and STEM tomography, have demonstrated the high epitaxial quality and particle-in-matrix morphology of the BMO-Au nanocomposite film. DPC-STEM imaging clarifies the magnetic domain structures of BMO matrix. Three different BMO structures including layered supercell (LSC) and superlattices have been revealed which is attributed to the variable strain states throughout the BMO-Au film. Owing to the combination of plasmonic Au and layered structure of BMO, the nanocomposite film exhibits a typical LSPR in visible wavelength region and strong anisotropy in terms of its optical and ferromagnetic properties. This study opens a new avenue for developing novel 2D layered complex oxides incorporated with plasmonic metal or semiconductor phases showing great potential for applications in multifunctional nanoelectronics devices.

Electronic Supplementary Material

Video
12274_2022_4663_MOESM2_ESM.avi
Download File(s)
12274_2022_4663_MOESM1_ESM.pdf (3.6 MB)

References

[1]

Kalantar-Zadeh, K.; Ou, J. Z.; Daeneke, T.; Mitchell, A.; Sasaki, T.; Fuhrer, M. S. Two dimensional and layered transition metal oxides. Appl. Mater. Today 2016, 5, 73–89.

[2]

Osada, M.; Sasaki, T. Two-dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 2012, 24, 210–228.

[3]

Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.

[4]

Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin hall effect in two-dimensional transition metal dichalcogenides. Science 2014, 346, 1344–1347.

[5]

Xiao, D.; Zhu, W. G.; Ran, Y.; Nagaosa, N.; Okamoto, S. Interface engineering of quantum hall effects in digital transition metal oxide heterostructures. Nat. Commun. 2011, 2, 596.

[6]

Hwang, H. Y.; Iwasa, Y.; Kawasaki, M.; Keimer, B.; Nagaosa, N.; Tokura, Y. Emergent phenomena at oxide interfaces. Nat. Mater. 2012, 11, 103–113.

[7]

Kargarian, M.; Fiete, G. A. Topological crystalline insulators in transition metal oxides. Phys. Rev. Lett. 2013, 110, 156403.

[8]

Kou, L. Z.; Ma, Y. D.; Sun, Z. Q.; Heine, T.; Chen, C. F. Two-dimensional topological insulators: Progress and prospects. J. Phys. Chem. Lett. 2017, 8, 1905–1919.

[9]

Wu, F.; Huang, C. X.; Wu, H. P.; Lee, C.; Deng, K. M.; Kan, E. J.; Jena, P. Atomically thin transition-metal dinitrides: High-temperature ferromagnetism and half-metallicity. Nano Lett. 2015, 15, 8277–8281.

[10]

Zhang, W.; Wong, P. K. J.; Zhou, X. C.; Rath, A.; Huang, Z. C.; Wang, H. Y.; Morton, S. A.; Yuan, J. R.; Zhang, L.; Chua, R. et al. Ferromagnet/two-dimensional semiconducting transition-metal dichalcogenide interface with perpendicular magnetic anisotropy. ACS Nano 2019, 13, 2253–2261.

[11]

Haque, F.; Daeneke, T.; Kalantar-Zadeh, K.; Ou, J. Z. Two-dimensional transition metal oxide and chalcogenide-based photocatalysts. Nano-Micro Lett. 2018, 10, 23.

[12]

Yang, T.; Song, T. T.; Callsen, M.; Zhou, J.; Chai, J. W.; Feng, Y. P.; Wang, S. J.; Yang, M. Atomically thin 2D transition metal oxides: Structural reconstruction, interaction with substrates, and potential applications. Adv. Mater. Interfaces 2019, 6, 1801160.

[13]

Schaak, R. E.; Mallouk, T. E. Perovskites by design: A toolbox of solid-state reactions. Chem. Mater. 2002, 14, 1455–1471.

[14]

Kim, J. Y.; Chung, I.; Choy, J. H.; Park, G. S. Macromolecular nanoplatelet of Aurivillius-type layered perovskite oxide, Bi4Ti3O12. Chem. Mater. 2001, 13, 2759–2761.

[15]

Zheng, Y. T.; Niu, T. T.; Ran, X. Q.; Qiu, J.; Li, B. X.; Xia, Y. D.; Chen, Y. H.; Huang, W. Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application. J. Mater. Chem. A 2019, 7, 13860–13872.

[16]

Tsai, H.; Nie, W. Y.; Blancon, J. C.; Stoumpos, C. C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S. et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 2016, 536, 312–316.

[17]

Ghosh, D.; Acharya, D.; Pedesseau, L.; Katan, C.; Even, J.; Tretiak, S.; Neukirch, A. J. Charge carrier dynamics in two-dimensional hybrid perovskites: Dion-Jacobson vs. Ruddlesden−Popper phases. J. Mater. Chem. A 2020, 8, 22009–22022.

[18]

Kim, H. G.; Tran, T. T.; Choi, W.; You, T. S.; Halasyamani, P. S.; Ok, K. M. Two new non-centrosymmetric n = 3 layered Dion-Jacobson perovskites: Polar RbBi2Ti2NbO10 and nonpolar CsBi2Ti2TaO10. Chem. Mater. 2016, 28, 2424–2432.

[19]

Chen, A. P.; Zhou, H. H.; Bi, Z. X.; Zhu, Y. Y.; Luo, Z. P.; Bayraktaroglu, A.; Phillips, J.; Choi, E. M.; MacManus-Driscoll, J. L.; Pennycook, S. J. et al. A new class of room-temperature multiferroic thin films with bismuth-based supercell structure. Adv. Mater. 2013, 25, 1028–1032.

[20]

Li, L. G.; Zhang, W. R.; Khatkhatay, F.; Jian, J.; Fan, M.; Su, Q.; Zhu, Y. Y.; Chen, A. P.; Lu, P.; Zhang, X. H. et al. Strain and interface effects in a novel bismuth-based self-assembled supercell structure. ACS Appl. Mater. Interfaces 2015, 7, 11631–11636.

[21]

Zhang, W. R.; Li, M. T.; Chen, A. P.; Li, L. G.; Zhu, Y. Y.; Xia, Z. H.; Lu, P.; Boullay, P.; Wu, L. J.; Zhu, Y. M. et al. Two-dimensional layered oxide structures tailored by self-assembled layer stacking via interfacial strain. ACS Appl. Mater. Interfaces 2016, 8, 16845–16851.

[22]

Li, L. G.; Boullay, P.; Lu, P.; Wang, X. J.; Jian, J.; Huang, J. J.; Gao, X.; Misra, S.; Zhang, W. R.; Perez, O. et al. Novel layered supercell structure from Bi2AlMnO6 for multifunctionalities. Nano Lett. 2017, 17, 6575–6582.

[23]

Li, L.; Boullay, P.; Cheng, J.; Lu, P.; Wang, X.; Steciuk, G.; Huang, J.; Jian, J.; Gao, X.; Zhang, B. et al. Self-assembled two-dimensional layered oxide supercells with modulated layer stacking and tunable physical properties. Mater. Today Nano, 2019, 6, 100037.

[24]

He, Z. H.; Gao, X. Y.; Zhang, D.; Lu, P.; Wang, X. J.; Kalaswad, M.; Rutherford, B. X.; Wang, H. Y. Tailorable multifunctionalities in ultrathin 2D Bi-based layered supercell structures. Nanoscale 2021, 13, 16672–16679.

[25]

Takada, K.; Sakurai, H.; Takayama-Muromachi, E.; Izumi, F.; Dilanian, R. A.; Sasaki, T. Superconductivity in two-dimensional CoO2 layers. Nature 2003, 422, 53–55.

[26]

Freeman, A. J.; Yu, J. Electronic structure and high Tc superconductivity in transition metal oxides. Phys. B + C 1988, 150, 50–55.

[27]

Du, H. L.; Shi, X. Dielectric and piezoelectric properties of barium-modified Aurivillius-type Na0.5Bi4.5Ti4O15. J. Phys. Chem. Solids 2011, 72, 1279–1283.

[28]

Ida, S.; Ishihara, T. Recent progress in two-dimensional oxide photocatalysts for water splitting. J. Phys. Chem. Lett. 2014, 5, 2533–2542.

[29]

Schuller, J. A.; Barnard, E. S.; Cai, W. S.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010, 9, 193–204.

[30]

Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830.

[31]

Liu, Z. W.; Lee, H.; Xiong, Y.; Sun, C.; Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 2007, 315, 1686.

[32]

Jacob, Z.; Alekseyev, L. V.; Narimanov, E. Optical hyperlens: Far-field imaging beyond the diffraction limit. Opt. Express 2006, 14, 8247–8256.

[33]

Lu, D.; Liu, Z. W. Hyperlenses and metalenses for far-field super-resolution imaging. Nat. Commun. 2012, 3, 1205.

[34]

Valentine, J.; Li, J.; Zentgraf, T.; Bartal, G.; Zhang, X. An optical cloak made of dielectrics. Nat. Mater. 2009, 8, 568–571.

[35]

Ni, X. J.; Wong, Z. J.; Mrejen, M.; Wang, Y.; Zhang, X. An ultrathin invisibility skin cloak for visible light. Science 2015, 349, 1310–1314.

[36]

Shelby, R. A.; Smith, D. R.; Schultz, S. Experimental verification of a negative index of refraction. Science 2001, 292, 77–79.

[37]

Lezec, H. J.; Dionne, J. A.; Atwater, H. A. Negative refraction at visible frequencies. Science 2007, 316, 430–432.

[38]

Zhang, D.; Wang, H. Y. Self-assembled metal-dielectric hybrid metamaterials in vertically aligned nanocomposite form with tailorable optical properties and coupled multifunctionalities. Adv. Photonics Res. 2021, 2, 2000174.

[39]

Zhang, D.; Misra, S.; Li, L. G.; Wang, X. J.; Jian, J.; Lu, P.; Gao, X. Y.; Sun, X.; Qi, Z. M.; Kalaswad, M. et al. Tunable optical properties in self-assembled oxide-metal hybrid thin films via Au-phase geometry control: From nanopillars to nanodisks. Adv. Opt. Mater. 2020, 8, 1901359.

[40]

Zhang, D.; Lu, P.; Misra, S.; Wissel, A.; He, Z. H.; Qi, Z. M.; Gao, X. Y.; Sun, X.; Liu, J. C.; Lu, J. J. Design of 3D oxide-metal hybrid metamaterial for tailorable light–matter interactions in visible and near-infrared region. Adv. Opt. Mater. 2021, 9, 2001154.

[41]

Huang, J. J.; Wang, H.; Qi, Z. M.; Lu, P.; Zhang, D.; Zhang, B.; He, Z. H.; Wang, H. Y. Multifunctional metal-oxide nanocomposite thin film with plasmonic Au nanopillars embedded in magnetic La0.67Sr0.33MnO3 matrix. Nano Lett. 2021, 21, 1032–1039.

[42]

Huang, J.; Wang, X.; Phuah, X. L.; Lu, P.; Qi, Z.; Wang, H. Plasmonic Cu nanostructures in ZnO as hyperbolic metamaterial thin films. Mater. Today Nano 2019, 8, 100052.

[43]

Jian, J.; Wang, X. J.; Misra, S.; Sun, X.; Qi, Z. M.; Gao, X. Y.; Sun, J. N.; Donohue, A.; Lin, D. G.; Pol, V. et al. Broad range tuning of phase transition property in VO2 through metal-ceramic nanocomposite design. Adv. Funct. Mater. 2019, 29, 1903690.

[44]

He, Z. H.; Jian, J.; Misra, S.; Gao, X. Y.; Wang, X. J.; Qi, Z. M.; Yang, B.; Zhang, D.; Zhang, X. H.; Wang, H. Y. Bidirectional tuning of phase transition properties in Pt: VO2 nanocomposite thin films. Nanoscale 2020, 12, 17886–17894.

[45]

Zhang, L. W.; Wang, Y. J.; Cheng, H. Y.; Yao, W. Q.; Zhu, Y. F. Synthesis of porous Bi2WO6 thin films as efficient visible-light-active photocatalysts. Adv. Mater. 2009, 21, 1286–1290.

[46]

Yang, X. L.; Xu, X.; Wang, J.; Chen, T.; Wang, S. Y.; Ding, X.; Chen, H. Insights into the surface/interface modifications of Bi2MoO6: Feasible strategies and photocatalytic applications. Sol. RRL 2021, 5, 2000442.

[47]

Tao, R.; Shao, C. L.; Li, X. H.; Li, X. W.; Liu, S.; Yang, S.; Zhao, C. C.; Liu, Y. C. Bi2MoO6/BiFeO3 heterojunction nanofibers: Enhanced photocatalytic activity, charge separation mechanism and magnetic separability. J. Colloid Interface Sci. 2018, 529, 404–414.

[48]

Voyles, P. M.; Muller, D. A.; Grazul, J. L.; Citrin, P. H.; Gossmann, H. J. L. Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 2002, 416, 826–829.

[49]

Erni, R.; Heinrich, H.; Kostorz, G. Quantitative characterisation of chemical inhomogeneities in Al–Ag using high-resolution Z-contrast STEM. Ultramicroscopy 2003, 94, 125–133.

[50]

Klenov, D. O.; Stemmer, S. Contributions to the contrast in experimental high-angle annular dark-field images. Ultramicroscopy 2006, 106, 889–901.

[51]

Zhu, Y. Y.; Chen, A. P.; Zhou, H. H.; Zhang, W. R.; Narayan, J.; MacManus-Driscoll, J. L.; Jia, Q. X.; Wang, H. Y. Research updates: Epitaxial strain relaxation and associated interfacial reconstructions: The driving force for creating new structures with integrated functionality. APL Mater. 2013, 1, 050702.

[52]

Gong, C.; Kaplan, A.; Benson, Z. A.; Baker, D. R.; McClure, J. P.; Rocha, A. R.; Leite, M. S. Band structure engineering by alloying for photonics. Adv. Opt. Mater. 2018, 6, 1800218.

[53]

Yoon, J. K.; Kim, K.; Shin, K. S. Raman scattering of 4-aminobenzenethiol sandwiched between Au nanoparticles and a macroscopically smooth Au substrate: Effect of size of Au nanoparticles. J. Phys. Chem. C 2009, 113, 1769–1774.

[54]

Zhang, D.; Misra, S.; Jian, J.; Lu, P.; Li, L. G.; Wissel, A.; Zhang, X. H.; Wang, H. Y. Self-assembled BaTiO3–AuxAg1−x low-loss hybrid plasmonic metamaterials with an ordered “nano-domino-like” microstructure. ACS Appl. Mater. Interfaces 2021, 13, 5390–5398.

[55]

Alam, M. K.; Niu, C.; Wang, Y. N.; Wang, W.; Li, Y.; Dai, C.; Tong, T.; Shan, X. N.; Charlson, E.; Pei, S. et al. Large graphene-induced shift of surface-plasmon resonances of gold films: Effective-medium theory for atomically thin materials. Phys. Rev. Res. 2020, 2, 013008.

Nano Research
Pages 1465-1472
Cite this article:
Zhang D, Gao X, Lu J, et al. Novel self-assembled two-dimensional layered oxide structure incorporated with Au nanoinclusions towards multifunctionalities. Nano Research, 2023, 16(1): 1465-1472. https://doi.org/10.1007/s12274-022-4663-1
Topics:

944

Views

9

Crossref

9

Web of Science

9

Scopus

1

CSCD

Altmetrics

Received: 02 May 2022
Revised: 12 June 2022
Accepted: 13 June 2022
Published: 27 July 2022
© Tsinghua University Press 2022
Return