AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline

Amorphous NH2-MIL-68 as an efficient electro- and photo-catalyst for CO2 conversion reactions

Lifei Liu1,2Jianling Zhang1,2( )Xiuyan Cheng1,2Mingzhao Xu1,2Xinchen Kang1,2Qiang Wan1,2Buxing Han1,2Ningning Wu1,2Lirong Zheng3Chenyan Ma3
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

We demonstrate for the first time an amorphous NH2-MIL-68 with hierarchical pore structure and a large number of open metal sites due to ligand-missing effect. The amorphous NH2-MIL-68 exhibits high activity and durability in electrochemical reduction of CO2 to formate and photochemical cycloaddition of CO2 with styrene oxide under mild conditions.

Abstract

To produce metal-organic framework (MOF) catalysts with both high activity and durability is interesting but challenging. We report an amorphous MOF (NH2-MIL-68), which combines the advantages of (1) a large number of open metal sites, (2) the basic building blocks and connectivity of crystalline NH2-MIL-68, and (3) hierarchically meso- and microporous structure. It exhibits high performances in electrocatalytic reduction of CO2 and photochemical cycloaddition of CO2 under mild conditions. For the former reaction, the maximum Faradaic efficiency for product formic acid (FEHCOOH) reaches 93.3% with a current density of 34.2 mA·cm−2 at −2.05 V vs. Ag/Ag+ catalyzed by amorphous NH2-MIL-68, while the crystalline NH2-MIL-68 shows FEHCOOH of 67.7% with considerable productions of CO and H2 at the same experimental conditions. For the photochemical cycloaddition of CO2 with styrene oxide, the yield by amorphous NH2-MIL-68 can reach 94.1% at 12 h, which is higher than the reported value under similar conditions. The structure–efficiency relationship of the catalyst for the two reactions was investigated. This work opens up new possibility for designing high-performance MOF and MOF-based catalysts.

Electronic Supplementary Material

Download File(s)
12274_2022_4664_MOESM1_ESM.pdf (2 MB)

References

[1]

Feng, L.; Wang, K. Y.; Lv, X. L.; Yan, T. H.; Li, J. R.; Zhou, H. C. Modular total synthesis in reticular chemistry. J. Am. Chem. Soc. 2020, 142, 3069–3076.

[2]

Hao, L. D.; Xia, Q. N.; Zhang, Q.; Masa, J.; Sun, Z. Y. Improving the performance of metal-organic frameworks for thermo-catalytic CO2 conversion: Strategies and perspectives. Chin. J. Catal. 2021, 42, 1903–1920.

[3]

Ji, P. F.; Drake, T.; Murakami, A.; Oliveres, P.; Skone, J. H.; Lin, W. B. Tuning Lewis acidity of metal-organic frameworks via perfluorination of bridging ligands: Spectroscopic, theoretical, and catalytic studies. J. Am. Chem. Soc. 2018, 140, 10553–10561.

[4]

Lo, S. H.; Feng, L.; Tan, K.; Huang, Z. H.; Yuan, S.; Wang, K. Y.; Li, B. H.; Liu, W. L.; Day, G. S.; Tao, S. S. et al. Rapid desolvation-triggered domino lattice rearrangement in a metal-organic framework. Nat. Chem. 2020, 12, 90–97.

[5]

Yuan, S.; Zou, L. F.; Qin, J. S.; Li, J. L.; Huang, L.; Feng, L.; Wang, X.; Bosch, M.; Alsalme, A.; Cagin, T. et al. Construction of hierarchically porous metal-organic frameworks through linker labilization. Nat. Commun. 2017, 8, 15356.

[6]

Wu, H. B.; Lou, X. W. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges. Sci. Adv. 2017, 3, eaap9252.

[7]

Duan, J. J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 2017, 8, 15341.

[8]

Zhang, F. Y.; Zhang, J. L.; Zhang, B. X.; Zheng, L. R.; Cheng, X. Y.; Wan, Q.; Han, B. X.; Zhang, J. CO2 controls the oriented growth of metal-organic framework with highly accessible active sites. Nat. Commun. 2020, 11, 1431.

[9]

Sang, X. X.; Zhang, J. L.; Xiang, J. F.; Cui, J.; Zheng, L. R.; Zhang, J.; Wu, Z. H.; Li, Z. H.; Mo, G.; Xu, Y. et al. Ionic liquid accelerates the crystallization of Zr-based metal-organic frameworks. Nat. Commun. 2017, 8, 175.

[10]

Peng, L.; Zhang, J. L.; Xue, Z. M.; Han, B. X.; Sang, X. X.; Liu, C. C.; Yang, G. Y. Highly mesoporous metal-organic framework assembled in a switchable solvent. Nat. Commun. 2014, 5, 4465.

[11]

Liu, L. M.; Chen, Z. J.; Wang, J. J.; Zhang, D. L.; Zhu, Y. H.; Ling, S. L.; Huang, K. W.; Belmabkhout, Y.; Adil, K.; Zhang, Y. X. et al. Imaging defects and their evolution in a metal-organic framework at sub-unit-cell resolution. Nat. Chem. 2019, 11, 622–628.

[12]

Feng, L.; Yuan, S.; Zhang, L. L.; Tan, K.; Li, J. L.; Kirchon, A.; Liu, L. M.; Zhang, P.; Han, Y.; Chabal, Y. J. et al. Creating hierarchical pores by controlled linker thermolysis in multivariate metal-organic frameworks. J. Am. Chem. Soc. 2018, 140, 2363–2372.

[13]

Chen, Y. Z.; Zhang, R.; Jiao, L.; Jiang, H. L. Metal-organic framework-derived porous materials for catalysis. Coord. Chem. Rev. 2018, 362, 1–23.

[14]

Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438–1511.

[15]

Li, B. W.; Zeng, H. C. Synthetic chemistry and multifunctionality of an amorphous Ni-MOF-74 shell on a Ni/SiO2 hollow catalyst for efficient tandem reactions. Chem. Mater. 2019, 31, 5320–5330.

[16]

Stolar, T.; Prašnikar, A.; Martinez, V.; Karadeniz, B.; Bjelić, A.; Mali, G.; Friščić, T.; Likozar, B.; Užarević, K. Scalable mechanochemical amorphization of bimetallic Cu-Zn MOF-74 catalyst for selective CO2 reduction reaction to methanol. ACS Appl. Mater. Interfaces 2021, 13, 3070–3077.

[17]

Li, Y.; Gao, Z. G.; Bao, H. M.; Zhang, B. H.; Wu, C.; Huang, C. F.; Zhang, Z. L.; Xie, Y. Y.; Wang, H. Amorphous nickel-cobalt bimetal-organic framework nanosheets with crystalline motifs enable efficient oxygen evolution reaction: Ligands hybridization engineering. J. Energy Chem. 2021, 53, 251–259.

[18]

Liu, C.; Wang, J.; Wan, J. J.; Cheng, Y.; Huang, R.; Zhang, C. Q.; Hu, W. L.; Wei, G. F.; Yu, C. Z. Amorphous metal-organic framework-dominated nanocomposites with both compositional and structural heterogeneity for oxygen evolution. Angew. Chem., Int. Ed. 2020, 59, 3630–3637.

[19]

Zhang, X. D.; Li, H. X.; Lv, X. T.; Xu, J. C.; Wang, Y. X.; He, C.; Liu, N.; Yang, Y. Q.; Wang, Y. Facile synthesis of highly efficient amorphous Mn-MIL-100 catalysts: Formation mechanism and structure changes during application in CO oxidation. Chem.—Eur. J. 2018, 24, 8822–8832.

[20]

Bennett, T. D.; Cheetham, A. K. Amorphous metal-organic frameworks. Acc. Chem. Res. 2014, 47, 1555–1562.

[21]

Graham, A. J.; Banu, A. M.; Düren, T.; Greenaway, A.; McKellar, S. C.; Mowat, J. P. S.; Ward, K.; Wright, P. A.; Moggach, S. A. Stabilization of scandium terephthalate MOFs against reversible amorphization and structural phase transition by guest uptake at extreme pressure. J. Am. Chem. Soc. 2014, 136, 8606–8613.

[22]

Conrad, S.; Kumar, P.; Xue, F.; Ren, L. M.; Henning, S.; Xiao, C. H.; Mkhoyan, K. A.; Tsapatsis, M. Controlling dissolution and transformation of zeolitic imidazolate frameworks by using electron-beam-induced amorphization. Angew. Chem., Int. Ed. 2018, 57, 13592–13597.

[23]

Bennett, T. D.; Keen, D. A.; Tan, J. C.; Barney, E. R.; Goodwin, A. L.; Cheetham, A. K. Thermal amorphization of zeolitic imidazolate frameworks. Angew. Chem., Int. Ed. 2011, 50, 3067–3071.

[24]

Lee, H. J.; We, J.; Kim, J. O.; Kim, D.; Cha, W.; Lee, E.; Sohn, J.; Oh, M. Morphological and structural evolutions of metal-organic framework particles from amorphous spheres to crystalline hexagonal rods. Angew. Chem., Int. Ed. 2015, 54, 10564–10568.

[25]

Iacomi, P.; Formalik, F.; Marreiros, J.; Shang, J.; Rogacka, J.; Mohmeyer, A.; Behrens, P.; Ameloot, R.; Kuchta, B.; Llewellyn, P. L. Role of structural defects in the adsorption and separation of C3 hydrocarbons in Zr-fumarate-MOF (MOF-801). Chem. Mater. 2019, 31, 8413–8423.

[26]

Bennett, T. D.; Horike, S. Liquid, glass and amorphous solid states of coordination polymers and metal-organic frameworks. Nat. Rev. Mater. 2018, 3, 431–440.

[27]

Peng, Y. W.; Zhao, M. T.; Chen, B.; Zhang, Z. C.; Huang, Y.; Dai, F. N.; Lai, Z. C.; Cui, X. Y.; Tan, C. L.; Zhang, H. Hybridization of MOFs and COFs: A new strategy for construction of MOF@COF core–shell hybrid materials. Adv. Mater. 2017, 1705454.

[28]

Pi, Y. H.; Li, X. Y.; Xia, Q. B.; Wu, J. L.; Li, Z.; Li, Y. W.; Xiao, J. Formation of willow leaf-like structures composed of NH2-MIL68(In) on a multifunctional multiwalled carbon nanotube backbone for enhanced photocatalytic reduction of Cr(VI). Nano Res. 2017, 10, 3543–3556.

[29]

Hu, B. B.; Hu, M. C.; Guo, Q.; Wang, K.; Wang, X. T. In-vacancy engineered plate-like In(OH)3 for effective photocatalytic reduction of CO2 with H2O vapor. Appl. Catal. B 2019, 253, 77–87.

[30]

Ameloot, R.; Vermoortele, F.; Hofkens, J.; De Schryver, F. C.; De Vos, D. E.; Roeffaers, M. B. J. Three-dimensional visualization of defects formed during the synthesis of metal-organic frameworks: A fluorescence microscopy study. Angew. Chem., Int. Ed. 2013, 52, 401–405.

[31]

Zhang, B. X.; Zhang, J. L.; Tan, X. N.; Shao, D.; Shi, J. B.; Zheng, L. R.; Zhang, J.; Yang, G. Y.; Han, B. X. MIL-125-NH2@TiO2 core–shell particles produced by a post-solvothermal route for high-performance photocatalytic H2 production. ACS Appl. Mater. Interfaces 2018, 10, 16418–16423.

[32]

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

[33]

Ren, W. H.; Tan, X.; Qu, J. T.; Li, S. S.; Li, J. T.; Liu, X.; Ringer, S. P.; Cairney, J. M.; Wang, K. X.; Smith, S. et al. Isolated copper-tin atomic interfaces tuning electrocatalytic CO2 conversion. Nat. Commun. 2021, 12, 1449.

[34]

Zhao, Y.; Tan, X.; Yang, W. F.; Jia, C.; Chen, X. J.; Ren, W. H.; Smith, S. C.; Zhao, C. Surface reconstruction of ultrathin palladium nanosheets during electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 21493–21498.

[35]

Zhang, B. X.; Zhang, J. L.; Hua, M. L.; Wan, Q.; Su, Z. Z.; Tan, X. N.; Liu, L. F.; Zhang, F. Y.; Chen, G.; Tan, D. X. et al. Highly electrocatalytic ethylene production from CO2 on nanodefective Cu nanosheets. J. Am. Chem. Soc. 2020, 142, 13606–13613.

[36]

Zhang, B. X.; Zhang, J. L.; Zhang, F. Y.; Zheng, L. R.; Mo, G.; Han, B. X.; Yang, G. Y. Selenium-doped hierarchically porous carbon nanosheets as an efficient metal-free electrocatalyst for CO2 reduction. Adv. Funct. Mater. 2020, 30, 1906194.

[37]

Zhang, B. X.; Zhang, J. L.; Shi, J. B.; Tan, D. X.; Liu, L. F.; Zhang, F. Y.; Lu, C.; Su, Z. Z.; Tan, X. N.; Cheng, X. Y. et al. Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 2019, 10, 2980.

[38]

Cao, C. S.; Ma, D. D.; Gu, J. F.; Xie, X. Y.; Zeng, G.; Li, X. F.; Han, S. G.; Zhu, Q. L.; Wu, X. T.; Xu, Q. Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel. Angew. Chem., Int. Ed. 2020, 59, 15014–15020.

[39]

Zheng, T. T.; Liu, C. X.; Guo, C. X.; Zhang, M. L.; Li, X.; Jiang, Q.; Xue, W. Q.; Li, H. L.; Li, A. W.; Pao, C. W. et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat. Nanotechnol. 2021, 16, 1386–1393.

[40]

Chi, L. P.; Niu, Z. Z.; Zhang, X. L.; Yang, P. P.; Liao, J.; Gao, F. Y.; Wu, Z. Z.; Tang, K. B.; Gao, M. R. Stabilizing indium sulfide for CO2 electroreduction to formate at high rate by zinc incorporation. Nat. Commun. 2021, 12, 5835.

[41]

Kang, X. C.; Wang, B.; Hu, K.; Lyu, K.; Han, X.; Spencer, B. F.; Frogley, M. D.; Tuna, F.; McInnes, E. J. L.; Dryfe, R. A. W. et al. Quantitative electro-reduction of CO2 to liquid fuel over electro-synthesized metal-organic frameworks. J. Am. Chem. Soc. 2020, 142, 17384–17392.

[42]

Zou, Y. Q.; Wang, S. Y. An investigation of active sites for electrochemical CO2 reduction reactions: From in situ characterization to rational design. Adv. Sci. 2021, 8, 2003579.

[43]

Chatelet, B.; Joucla, L.; Dutasta, J. P.; Martinez, A.; Szeto, K. C.; Dufaud, V. Azaphosphatranes as structurally tunable organocatalysts for carbonate synthesis from CO2 and epoxides. J. Am. Chem. Soc. 2013, 135, 5348–5351.

[44]

Yuan, Y.; Li, J. T.; Sun, X. D.; Li, G. H.; Liu, Y. L.; Verma, G.; Ma, S. Q. Indium-organic frameworks based on dual secondary building units featuring halogen-decorated channels for highly effective CO2 fixation. Chem. Mater. 2019, 31, 1084–1091.

[45]

Huang, Z. W.; Hu, K. Q.; Mei, L.; Wang, C. Z.; Chen, Y. M.; Wu, W. S.; Chai, Z. F.; Shi, W. Q. Potassium ions induced framework interpenetration for enhancing the stability of uranium-based porphyrin MOF with visible-light-driven photocatalytic activity. Inorg. Chem. 2021, 60, 651–659.

Nano Research
Pages 181-188
Cite this article:
Liu L, Zhang J, Cheng X, et al. Amorphous NH2-MIL-68 as an efficient electro- and photo-catalyst for CO2 conversion reactions. Nano Research, 2023, 16(1): 181-188. https://doi.org/10.1007/s12274-022-4664-0
Topics:

974

Views

22

Crossref

23

Web of Science

22

Scopus

1

CSCD

Altmetrics

Received: 04 May 2022
Revised: 01 June 2022
Accepted: 14 June 2022
Published: 23 July 2022
© Tsinghua University Press 2022
Return