AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Insights on catalytic mechanism of CeO2 as multiple nanozymes

Yuanyuan Ma§Zhimin Tian§Wenfang ZhaiYongquan Qu ( )
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China

§ Yuanyuan Ma and Zhimin Tian contributed equally to this work.

Show Author Information

Graphical Abstract

Defective CeO2 nanocatalysts exhibit multiple enzyme-like activities, which are highly correlated to the reversible Ce3+/Ce4+ redox pair. Understanding catalytic mechanism under the catalytic conditions at molecular/electronic levels paves the way for their practical utilizations for disease diagnosis and treatments. This review focuses on the recent progress of catalytic mechanisms of CeO2-based nanozymes and presents the perspectives on this rapidly developing area.

Abstract

CeO2 with the reversible Ce3+/Ce4+ redox pair exhibits multiple enzyme-like catalytic performance, which has been recognized as a promising nanozyme with potentials for disease diagnosis and treatments. Tailorable surface physicochemical properties of various CeO2 catalysts with controllable sizes, morphologies, and surface states enable a rich surface chemistry for their interactions with various molecules and species, thus delivering a wide variety of catalytic behaviors under different conditions. Despite the significant progress made in developing CeO2-based nanozymes and their explorations for practical applications, their catalytic activity and specificity are still uncompetitive to their counterparts of natural enzymes under physiological environments. With the attempt to provide the insights on the rational design of highly performed CeO2 nanozymes, this review focuses on the recent explorations on the catalytic mechanisms of CeO2 with multiple enzyme-like performance. Given the detailed discussion and proposed perspectives, we hope this review can raise more interest and stimulate more efforts on this multi-disciplinary field.

References

[1]

Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

[2]

Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes(II). Chem. Soc. Rev. 2019, 48, 1004–1076.

[3]

Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

[4]

Fedeli, S.; Im, J.; Gopalakrishnan, S.; Elia, J. L.; Gupta, A.; Kim, D.; Rotello, V. M. Nanomaterial-based bioorthogonal nanozymes for biological applications. Chem. Soc. Rev. 2021, 50, 13467–13480.

[5]

Jiang, D. W.; Ni, D. L.; Rosenkrans, Z. T.; Huang, P.; Yan, X. Y.; Cai, W. B. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683–3704.

[6]

Mujtaba, J.; Liu, J. R.; Dey, K. K.; Li, T. L.; Chakraborty, R.; Xu, K. L.; Makarov, D.; Barmin, R. A.; Gorin, D. A.; Tolstoy, V. P. et al. Micro-bio-chemo-mechanical-systems: Micromotors, microfluidics, and nanozymes for biomedical applications. Adv. Mater. 2021, 33, 2007465.

[7]

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

[8]

Ai, Y. J.; Hu, Z. N.; Liang, X. P.; Sun, H. B.; Xin, H. B.; Liang, Q. L. Recent advances in nanozymes: From matters to bioapplications. Adv. Fun. Mater. 2022, 32, 2110432.

[9]

Han, J. J.; Gong, H. N.; Ren, X. K.; Yan, X. H. Supramolecular nanozymes based on peptide self-assembly for biomimetic catalysis. Nano Today 2021, 41, 101295.

[10]

Zhang, X. L.; Li, G. L.; Chen, G.; Wu, D.; Wu, Y. N.; James, T. D. Enzyme mimics for engineered biomimetic cascade nanoreactors: Mechanism, applications, and prospects. Adv. Fun. Mater. 2021, 31, 2106139.

[11]

Liu, S. D.; Xu, J. Y.; Xing, Y. P.; Yan, T. F.; Yu, S. J.; Sun, H. C.; Liu, J. Q. Nanozymes as efficient tools for catalytic therapeutics. View 2022, 3, 20200147.

[12]

Zhang, R. F.; Yan, X. Y.; Fan, K. L. Nanozymes inspired by natural enzymes. Acc. Mater. Res. 2021, 2, 534–547.

[13]

Li, Y. Q.; Liu, J. W. Nanozyme’s catching up: Activity, specificity, reaction conditions and reaction types. Mater. Horiz. 2021, 8, 336–350.

[14]

Zu, Y.; Yao, H. Q.; Wang, Y. F.; Yan, L.; Gu, Z. J.; Chen, C. Y.; Gao, L. Z.; Yin, W. Y. The age of bioinspired molybdenum-involved nanozymes: Synthesis, catalytic mechanisms, and biomedical applications. View 2021, 2, 20200188.

[15]

Ding, H.; Hu, B.; Zhang, B.; Zhang, H.; Yan, X. Y.; Nie, G. H.; Liang, M. M. Carbon-based nanozymes for biomedical applications. Nano Res. 2021, 14, 570–583.

[16]

Shen, L. H.; Ye, D. X.; Zhao, H. B.; Zhang, J. J. Perspectives for single-atom nanozymes: Advanced synthesis, functional mechanisms, and biomedical applications. Anal. Chem. 2021, 93, 1221–1231.

[17]

Zhou, Y.; Wei, Y.; Ren, J. S.; Qu, X. G. A chiral covalent organic framework (COF) nanozyme with ultrahigh enzymatic activity. Mater. Horiz. 2020, 7, 3291–3297.

[18]

Ma, L.; Jiang, F. B.; Fan, X.; Wang, L. Y.; He, C.; Zhou, M.; Li, S.; Luo, H. R.; Cheng, C.; Qiu, L. Metal-organic-framework-engineered enzyme-mimetic catalysts. Adv. Mater. 2020, 32, 2003065.

[19]

Wang, D. D.; Jana, D.; Zhao, Y. L. Metal-organic framework derived nanozymes in biomedicine. Acc. Chem. Res. 2020, 53, 1389–1400.

[20]

Mikolajczak, D. J.; Berger, A. A.; Koksch, B. Catalytically active peptide-gold nanoparticle conjugates: Prospecting for artificial enzymes. Angew. Chem., Int. Ed. 2020, 59, 8776–8785.

[21]

Meng, Y. T.; Li, W. F.; Pan, X. L.; Gadd, G. M. Applications of nanozymes in the environment. Environ. Sci. Nano 2020, 7, 1305–1318.

[22]

Liu, X. L.; Gao, Y.; Chandrawati, R.; Hosta-Rigau, L. Therapeutic applications of multifunctional nanozymes. Nanoscale 2019, 11, 21046–21060.

[23]

Wang, Q. Q.; Wei, H.; Zhang, Z. Q.; Wang, E. K.; Dong, S. J. Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal. Chem. 2018, 105, 218–224.

[24]

Cormode, D. P.; Gao, L. Z.; Koo, H. Emerging biomedical applications of enzyme-like catalytic nanomaterials. Trends Biotechnol. 2018, 36, 15–29.

[25]

Wang, H.; Wan, K. W.; Shi X. H. Recent advances in nanozyme research. Adv. Mater. 2019, 31, 1805368.

[26]

Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

[27]

Liu, Q.; Wan, K. W.; Shang, Y. X.; Wang, Z. G.; Zhang, Y. Y.; Dai, L. R.; Wang, C.; Wang, H.; Shi, X. H.; Liu, D. S. et al. Cofactor-free oxidase-mimetic nanomaterials from self-assembled histidine-rich peptides. Nat. Mater. 2021, 20, 395–402.

[28]

Lu, W. H.; Yuan, M.; Chen, J.; Zhang, J. X.; Kong, L. S.; Feng, Z. Y.; Ma, X. C.; Su, J.; Zhan, J. H. Synergistic Lewis acid-base sites of ultrathin porous Co3O4 nanosheets with enhanced peroxidase-like activity. Nano Res. 2021, 14, 3514–3522.

[29]

Zhou, Q.; Yang, H.; Chen, X. H.; Xu, Y.; Han, D.; Zhou, S. S.; Liu, S. Q.; Shen, Y. F.; Zhang, Y. J. Cascaded nanozyme system with high reaction selectivity by substrate screening and channeling in a microfluidic device. Angew. Chem., Int. Ed. 2022, 134, e202112453.

[30]

Cao, S. J.; Zhao, Z. Y.; Zheng, Y. J.; Wu, Z. H.; Ma, T.; Zhu, B. H.; Yang, C. D.; Xiang, X.; Ma, L.; Han, X. L. et al. A library of ROS-catalytic metalloenzyme mimics with atomic metal centers. Adv. Mater. 2022, 34, 2200255.

[31]

Liu, B. W.; Liu, J. W. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148.

[32]

Perez, J. M.; Asati, A.; Nath, S.; Kaittanis, C. Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. Small 2008, 4, 552–556.

[33]

Karakoti, A. S.; Singh, S.; Kumar, A.; Malinska, M.; Kuchibhatla, S. V. N. T.; Wozniak, K.; Self, W. T.; Seal, S. PEGylated nanoceria as radical scavenger with tunable redox chemistry. J. Am. Chem. Soc. 2009, 131, 14144–14145.

[34]

Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J. M. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem. 2009, 121, 2344–2348.

[35]

Singh, S.; Dosani, T.; Karakoti, A. S.; Kumar, A.; Seal, S.; Self, W. T. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials 2011, 32, 6745–6753.

[36]

Tan, Z. C.; Li, G. C.; Chou, H. L.; Li, Y. Y.; Yi, X. F.; Mahadi, A. H.; Zheng, A. M.; Tsang, S. C. E.; Peng, Y. K. Differentiating surface Ce species among CeO2 facets by solid-state NMR for catalytic correlation. ACS Catal. 2020, 10, 4003–4011.

[37]

Niu, X. H.; Xu, X. C.; Li, X.; Pan, J. M.; Qiu, F. X.; Zhao, H. L.; Lan, M. B. Surface charge engineering of nanosized CuS via acidic amino acid modification enables high peroxidase-mimicking activity at neutral pH for one-pot detection of glucose. Chem. Commun. 2018, 54, 13443–13446.

[38]

Xue, Y.; Zhai, Y. W.; Zhou, K. B.; Wang, L.; Tan, H. N.; Luan, Q. F.; Yao, X. The vital role of buffer anions in the antioxidant activity of CeO2 nanoparticles. Chem.—Eur. J. 2012, 18, 11115–11122.

[39]

Baldim, V.; Bedioui, F.; Mignet, N.; Margaill, I.; Berret, J. F. The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale 2018, 10, 6971–6980.

[40]

Li, Y. Y.; He, X.; Yin, J. J.; Ma, Y. H.; Zhang, P.; Li, J. Y.; Ding, Y. Y.; Zhang, J.; Zhao, Y. L.; Chai, Z. F. et al. Acquired superoxide-scavenging ability of ceria nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 1832–1835.

[41]

Tian, Z. M.; Li, J.; Zhang, Z. Y.; Gao, W. M.; Zhou, X. Q.; Qu, Y. Q. Highly sensitive and robust peroxidase-like activity of porous nanorods of ceria and their application for breast cancer detection. Biomaterials 2015, 59, 116–124.

[42]

Tian, Z. M.; Li, X. H.; Ma, Y. Y.; Chen, T.; Xu, D. H.; Wang, B. C.; Qu, Y. Q.; Gao, Y. Quantitatively intrinsic biomimetic catalytic activity of nanocerias as radical scavengers and their ability against H2O2 and doxorubicin-induced oxidative stress. ACS Appl. Mater. Interfaces 2017, 9, 23342–23352.

[43]

Tian, Z. M.; Liu, H. B.; Guo, Z. X.; Gou, W. Y.; Liang, Z. C.; Qu, Y. Q.; Han, L. L.; Liu, L. A pH-responsive polymer-CeO2 hybrid to catalytically generate oxidative stress for tumor therapy. Small 2020, 16, 2004654.

[44]

Cao, F. X.; Zhang, M. K.; Yang, K. L.; Tian, Z. M.; Li, J.; Qu, Y. Q. Single crystalline CeO2 nanotubes. Nano Res. 2021, 14, 715–719.

[45]

Lee, S. S.; Song, W. S.; Cho, M.; Puppala, H. L.; Nguyen, P.; Zhu, H. G.; Segatori, L.; Colvin, V. L. Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano 2013, 7, 9693–9703.

[46]

Liu, Y.; Purich, D. L.; Wu, C. C.; Wu, Y.; Chen, T.; Cui, C.; Zhang, L. Q.; Cansiz, S.; Hou, W. J.; Wang, Y. Y. et al. Ionic functionalization of hydrophobic colloidal nanoparticles to form ionic nanoparticles with enzymelike properties. J. Am. Chem. Soc. 2015, 137, 14952–14958.

[47]

Fan, K. L.; Wang, H.; Xi, J. Q.; Liu, Q.; Meng, X. Q.; Duan, D. M.; Gao, L. Z.; Yan, X. Y. Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem. Commun. 2017, 53, 424–427.

[48]

Zhang, L.; Liu, Z. W.; Deng, Q. Q.; Sang, Y. J.; Dong, K.; Ren, J. S.; Qu, X. G. Nature-inspired construction of MOF@COF nanozyme with active sites in tailored microenvironment and pseudopodia-like surface for enhanced bacterial inhibition. Angew. Chem., Int. Ed. 2021, 60, 3469–3474.

[49]

Cao-Milán, R.; He, L. D.; Shorkey, S.; Tonga, G. Y.; Wang, L. S.; Zhang, X. Z.; Uddin, I.; Das, R.; Sulak, M.; Rotello, V. M. Modulating the catalytic activity of enzyme-like nanoparticles through their surface functionalization. Mol. Syst. Des. Eng. 2017, 2, 624–628.

[50]

Bülbül, G.; Hayat, A.; Andreescu, S. ssDNA-functionalized nanoceria: A redox-active aptaswitch for biomolecular recognition. Adv. Healthc. Mater. 2016, 5, 822–828.

[51]

Lin, Y. H.; Huang, Y. Y.; Ren, J. S.; Qu, X. G. Incorporating ATP into biomimetic catalysts for realizing exceptional enzymatic performance over a broad temperature range. NPG Asia Mater. 2014, 6, e114.

[52]

Park, K. S.; Kim, M. I.; Cho, D. Y.; Park, H. G. Label-free colorimetric detection of nucleic acids based on target-induced shielding against the peroxidase-mimicking activity of magnetic nanoparticles. Small 2011, 7, 1521–1525.

[53]

Sun, H. J.; Zhao, A. D.; Gao, N.; Li, K.; Ren, J. S.; Qu, X. G. Deciphering a nanocarbon-based artificial peroxidase: Chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew. Chem., Int. Ed. 2015, 54, 7176–7180.

[54]

Lord, M. S.; Berret, J. F.; Singh, S.; Vinu, A.; Karakoti, A. S. Redox active cerium oxide nanoparticles: Current status and burning issues. Small 2021, 17, 2102342.

[55]

Xu, C.; Qu, X. G. Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 2014, 6, e90.

[56]

Saifi, M. A.; Seal, S.; Godugu, C. Nanoceria, the versatile nanoparticles: Promising biomedical applications. J. Control. Release 2021, 338, 164–189.

[57]

Das, S.; Dowding, J. M.; Klump, K. E.; McGinnis, J. F.; Self, W.; Seal, S. Cerium oxide nanoparticles: Applications and prospects in nanomedicine. Nanomedicine 2013, 8, 1483–1508.

[58]

Das, M.; Patil, S.; Bhargava, N.; Kang, J. F.; Riedel, L. M.; Seal, S.; Hickman, J. J. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 2007, 28, 1918–1925.

[59]

Tian, Z. M.; Zhao, J. L.; Zhao, S. J.; Li, H. C.; Guo, Z. X.; Liang, Z. C.; Li, J. Y.; Qu, Y. Q. Phytic acid-modified CeO2 as Ca2+ inhibitor for a security reversal of tumor drug resistance. Nano Res. 2022, 15, 4334–4343.

[60]

Yao, T. Z.; Tian, Z. M.; Zhang, Y. Q.; Qu, Y. Q. Phosphatase-like activity of porous nanorods of CeO2 for the highly stabilized dephosphorylation under interferences. ACS Appl. Mater. Interfaces 2019, 11, 195–201.

[61]

Tian, Z. M.; Yao, T. Z.; Qu, C. Y.; Zhang, S.; Li, X. H.; Qu, Y. Q. Photolyase-like catalytic behavior of CeO2. Nano Lett. 2019, 19, 8270–8277.

[62]

Herget, K.; Hubach, P.; Pusch, S.; Deglmann, P.; Götz, H.; Gorelik, T. E.; Gural’skiy, I. A.; Pfitzner, F.; Link, T.; Schenk, S. et al. Haloperoxidase mimicry by CeO2−x nanorods combats biofouling. Adv. Mater. 2017, 29, 1603823.

[63]

Zambon, A.; Malavasi, G.; Pallini, A.; Fraulini, F.; Lusvardi, G. Cerium containing bioactive glasses: A review. ACS Biomater. Sci. Eng. 2021, 7, 4388–4401.

[64]

Dong, H. J.; Fan, Y. Y.; Zhang, W.; Gu, N.; Zhang, Y. Catalytic mechanisms of nanozymes and their applications in biomedicine. Bioconjugate Chem. 2019, 30, 1273–1296.

[65]

Zandieh, M.; Liu, J. W. Surface science of nanozymes and defining a nanozyme unit. Langmuir 2022, 38, 3617–3622.

[66]

Seal, S.; Jeyaranjan, A.; Neal, C. J.; Kumar, U.; Sakthivel, T. S.; Sayle, D. C. Engineered defects in cerium oxides: Tuning chemical reactivity for biomedical, environmental, & energy applications. Nanoscale 2020, 12, 6879–6899.

[67]

Celardo, I.; Pedersen, J. Z.; Traversa, E.; Ghibelli, L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 2011, 3, 1411–1420.

[68]

Zahra, D.; Javaid, A.; Iqbal, M.; Akbar, I.; Ashfaq, U. A. Synthesis and therapeutic potential of nanoceria against cancer: An update. Crit. Rev. Ther. Drug Carrier Syst. 2021, 38, 1–26.

[69]

Hosseini, M.; Mozafari, M. Cerium oxide nanoparticles: Recent advances in tissue engineering. Materials 2020, 13, 3072.

[70]

Ma, Y. Y.; Gao, W.; Zhang, Z. Y.; Zhang, S.; Tian, Z. M.; Liu, Y. X.; Ho, J. C.; Qu, Y. Q. Regulating the surface of nanoceria and its applications in heterogeneous catalysis. Surf. Sci. Rep. 2018, 73, 1–36.

[71]

Zhang, S.; Xia, Z. M.; Zou, Y.; Cao, F. X.; Liu, Y. X.; Ma, Y. Y.; Qu, Y. Q. Interfacial frustrated Lewis pairs of CeO2 activate CO2 for selective tandem transformation of olefins and CO2 into cyclic carbonates. J. Am. Chem. Soc. 2019, 141, 11353–11357.

[72]

Zhang, S.; Huang, Z. Q.; Ma, Y. Y.; Gao, W.; Li, J.; Cao, F. X.; Li, L.; Chang, C. R.; Qu, Y. Q. Solid frustrated-Lewis-pair catalysts constructed by regulations on surface defects of porous nanorods of CeO2. Nat. Commun. 2017, 8, 15266.

[73]

Gao, W.; Xia, Z. M.; Cao, F. X.; Ho, J. C.; Jiang, Z.; Qu, Y. Q. Comprehensive understanding of the spatial configurations of CeO2 in NiO for the electrocatalytic oxygen evolution reaction: Embedded or surface-loaded. Adv. Fun. Mater. 2018, 28, 1706056.

[74]

Schmitt, R.; Nenning, A.; Kraynis, O.; Korobko, R.; Frenkel, A. I.; Lubomirsky, I.; Haile, S. M.; Rupp, J. L. M. A review of defect structure and chemistry in ceria and its solid solutions. Chem. Soc. Rev. 2020, 49, 554–592.

[75]

Wu, K.; Sun, L. D.; Yan, C. H. Recent progress in well-controlled synthesis of ceria-based nanocatalysts towards enhanced catalytic performance. Adv. Energy Mater. 2016, 6, 1600501.

[76]

Campbell, C. T.; Peden, C. H. F. Oxygen vacancies and catalysis on ceria surfaces. Science 2005, 309, 713–714.

[77]

Zhang, Y.; Zhao, S. N.; Feng, J.; Song, S. Y.; Shi, W. D.; Wang, D.; Zhang, H. J. Unraveling the physical chemistry and materials science of CeO2-based nanostructures. Chem 2021, 7, 2022–2059.

[78]

Ziemba, M.; Schilling, C.; Ganduglia-Pirovano, M. V.; Hess, C. Toward an atomic-level understanding of ceria-based catalysts: When experiment and theory go hand in hand. Acc. Chem. Res. 2021, 54, 2884–2893.

[79]

Xu, Y. W.; Mofarah, S. S.; Mehmood, R.; Cazorla, C.; Koshy, P.; Sorrell, C. C. Design strategies for ceria nanomaterials: Untangling key mechanistic concepts. Mater. Horiz. 2021, 8, 102–123.

[80]

Ma, J. L.; Ye, F.; Ou, D. R.; Li, L. L.; Mori, T. Structures of defect clusters on ceria {111} surface. J. Phys. Chem. C 2012, 116, 25777–25782.

[81]

Liu, X. W.; Zhou, K. B.; Wang, L.; Wang, B. Y.; Li, Y. D. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 2009, 131, 3140–3141.

[82]

Schilling, C.; Ganduglia-Pirovano, M. V.; Hess, C. Experimental and theoretical study on the nature of adsorbed oxygen species on shaped ceria nanoparticles. J. Phys. Chem. Lett. 2018, 9, 6593–6598.

[83]
TrovarelliA.LlorcaJ. Ceria catalysts at nanoscale: How do crystal shapes shape catalysis?ACS Catal.201774716473510.1021/acscatal.7b01246

Trovarelli, A.; Llorca, J. Ceria catalysts at nanoscale: How do crystal shapes shape catalysis? ACS Catal. 2017, 7, 4716–4735.

[84]

Vayssilov, G. N.; Migani, A.; Neyman, K. Density functional modeling of the interactions of platinum clusters with CeO2 nanoparticles of different size. J. Phys. Chem. C 2011, 115, 16081–16086.

[85]

Berestok, T.; Guardia, P.; Blanco, J.; Nafria, R.; Torruella, P.; López-Conesa, L.; Estradé, S.; Ibáñez, M.; De Roo, J.; Luo, Z. S. et al. Tuning branching in ceria nanocrystals. Chem. Mater. 2017, 29, 4418–4424.

[86]

Nolan, M. Enhanced oxygen vacancy formation in ceria (111) and (110) surfaces doped with divalent cations. J. Mater. Chem. 2011, 21, 9160–9168.

[87]

Nolan, M.; Parker, S. C.; Watson, G. W. The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Surf. Sci. 2005, 595, 223–232.

[88]

Wu, Z. L.; Li, M. J.; Overbury, S. H. On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes. J. Catal. 2012, 285, 61–73.

[89]

Cargnello, M.; Doan-Nguyen, V. V. T.; Gordon, T. R.; Diaz, R. E.; Stach, E. A.; Gorte, R. J.; Fornasiero, P.; Murray, C. B. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 2013, 341, 771–773.

[90]

Mai, H. X.; Sun, L. D.; Zhang, Y. W.; Si, R.; Feng, W.; Zhang, H. P.; Liu, H. C.; Yan, C. H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J. Phys. Chem. B 2005, 109, 24380–24385.

[91]

Lin, F.; Hoang, D. T.; Tsung, C. K.; Huang, W. Y.; Lo. S. H. Y.; Wood, J. B.; Wang, H.; Tang, J. Y.; Yang, P. D. Catalytic properties of Pt cluster-decorated CeO2 nanostructures. Nano Res. 2011, 4, 61–71.

[92]

Ji, Z. X.; Wang, X.; Zhang, H. Y.; Lin, S. J.; Meng, H.; Sun, B. B.; George, S.; Xia, T.; Nel, A. E.; Zink, J. I. Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. ACS Nano 2012, 6, 5366–5380.

[93]

Gao, W.; Li, J.; Zhou, X. M.; Zhang, Z. Y.; Ma, Y. Y.; Qu, Y. Q. Repeatable fluorescence switcher of Eu3+-doped CeO2 nanorods by L(+)-ascorbic acid and hydrogen peroxide. J. Mater. Chem. C 2014, 2, 8729–8735.

[94]

Li, J.; Zhang, Z. Y.; Gao, W.; Zhang, S.; Ma, Y. Y.; Qu Y. Q. Pressure regulations on the surface properties of CeO2 nanorods and their catalytic activity for CO oxidation and nitrile hydrolysis reactions. ACS Appl. Mater. Interfaces 2016, 8, 22988–22996.

[95]

Tan, Z. C.; Wu, T. S.; Soo, Y. L.; Peng, Y. K. Unravelling the true active site for CeO2-catalyzed dephosphorylation. Appl. Catal. B Environ. 2020, 264, 118508.

[96]

Zhang, J. R.; Tan, Z. C.; Leng, W. Y.; Chen, Y. C.; Zhang, S. Q.; Lo, B. T. W.; Yung, K. K. L.; Peng, Y. K. Chemical state tuning of surface Ce species on pristine CeO2 with 2400% boosting in peroxidase-like activity for glucose detection. Chem. Commun. 2020, 56, 7897–7900.

[97]

Wang, Z. Z.; Shen, X. M.; Gao, X. F. Density functional theory mechanistic insight into the peroxidase- and oxidase-like activities of nanoceria. J. Phys. Chem. C 2021, 125, 23098–23104.

[98]

Nguyen, P. T.; Lee, J.; Cho, A.; Kim, M. S.; Choi, D.; Han, J. W.; Kim, M. I.; Lee, J. Rational development of Co-doped mesoporous ceria with high peroxidase-mimicking activity at neutral pH for paper-based colorimetric detection of multiple biomarkers. Adv. Funct. Mater. 2022, 32, 2112428.

[99]

Dong, S. M.; Dong, Y. S.; Liu, B.; Liu, J.; Liu, S. K.; Zhao, Z. Y.; Li, W. T.; Tian, B. S.; Zhao, R. X.; He, F. et al. Guiding transition metal-doped hollow cerium tandem nanozymes with elaborately regulated multi-enzymatic activities for intensive chemodynamic therapy. Adv. Mater. 2022, 34, 2107054.

[100]

Cheng, F.; Wang, S. Q.; Zheng, H.; Yang, S. W.; Zhou, L.; Liu, K. K.; Zhang, Q. Y.; Zhang, H. P. Cu-doped cerium oxide-based nanomedicine for tumor microenvironment-stimulative chemo-chemodynamic therapy with minimal side effects. Colloids Surf. B Biointerfaces 2021, 205, 111878.

[101]

Tan, Z. C.; Zhang, J. R.; Chen, Y. C.; Chou, J. P.; Peng, Y. K. Unravelling the role of structural geometry and chemical state of well-defined oxygen vacancies on pristine CeO2 for H2O2 activation. J. Phys. Chem. Lett. 2020, 11, 5390–5396.

[102]

Wang, Y. H.; Wang, F.; Song, Q.; Xin, Q.; Xu, S. T.; Xu, J. Heterogeneous ceria catalyst with water-tolerant Lewis acidic sites for one-pot synthesis of 1, 3-diols via Prins condensation and hydrolysis reactions. J. Am. Chem. Soc. 2013, 135, 1506–1515.

[103]

Baldim, V.; Yadav, N.; Bia, N.; Graillot, A.; Loubat, C.; Singh, S.; Karakoti, A. S.; Berret, J. F. Polymer-coated cerium oxide nanoparticles as oxidoreductase-like catalysts. ACS Appl. Mater. Interfaces 2020, 12, 42056–42066.

[104]

Zhao, Y. L.; Wang, Y. W.; Mathur, A.; Wang, Y. Q.; Maheshwari, V.; Su, H. J.; Liu, J. W. Fluoride-capped nanoceria as a highly efficient oxidase-mimicking nanozyme: Inhibiting product adsorption and increasing oxygen vacancies. Nanoscale 2019, 11, 17841–17850.

[105]

Celardo, I.; De Nicola, M.; Mandoli, C.; Pedersen, J. Z.; Traversa, E.; Ghibelli, L. Ce3+ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles. ACS Nano 2011, 5, 4537–4549.

[106]

Heckert, E. G.; Karakoti, A. S.; Seal, S.; Self, W. T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 2008, 29, 2705–2709.

[107]

Korsvik, C.; Patil, S.; Seal, S.; Self, W. T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 2007, 1056–1058.

[108]

Wang, Z. Z.; Shen, X. M.; Gao, X. F.; Zhao, Y. L. Simultaneous enzyme mimicking and chemical reduction mechanisms for nanoceria as a bio-antioxidant: A catalytic model bridging computations and experiments for nanozymes. Nanoscale 2019, 11, 13289–13299.

[109]

Pirmohamed, T.; Dowding, J. M.; Singh, S.; Wasserman, B.; Heckert, E.; Karakoti, A. S.; King, J. E. S.; Seal, S.; Self, W. T. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 2010, 46, 2736–2738.

[110]

Yao, C.; Wang, W. X.; Wang, P. Y.; Zhao, M. Y.; Li, X. M.; Zhang, F. Near-infrared upconversion mesoporous cerium oxide hollow biophotocatalyst for concurrent pH-/H2O2-responsive O2-evolving synergetic cancer therapy. Adv. Mater. 2018, 30, 1704833.

[111]

Weng, Q. J.; Sun, H.; Fang, C. Y.; Xia, F.; Liao, H. W.; Lee, J.; Wang, J. C.; Xie, A.; Ren, J. F.; Guo, X. et al. Catalytic activity tunable ceria nanoparticles prevent chemotherapy-induced acute kidney injury without interference with chemotherapeutics. Nat. Commun. 2021, 12, 1436.

[112]

Ni, D. L.; Wei, H.; Chen, W. Y.; Bao, Q. Q.; Rosenkrans, Z. T.; Barnhart T. E.; Ferreira, C. A.; Wang, Y. P.; Yao, H. L.; Sun, T. W. et al. Ceria Nanoparticles meet hepatic ischemia-reperfusion injury: The perfect imperfection. Adv. Mater. 2019, 31, 1902956.

[113]

Soh, M.; Kang, D. W.; Jeong, H. G.; Kim, D.; Kim, D. Y.; Yang, W.; Song, C.; Baik, S.; Choi, I. Y.; Ki, S. K. et al. Ceria-zirconia nanoparticles as an enhanced multi-antioxidant for sepsis treatment. Angew. Chem., Int. Ed. 2017, 56, 11399–11403.

[114]

Sancar, A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 2003, 103, 2203–2238.

[115]

Thiagarajan, V.; Byrdin, M.; Eker, A. P. M.; Müller, P.; Brettel, K. Kinetics of cyclobutane thymine dimer splitting by DNA photolyase directly monitored in the UV. Proc. Natl. Acad. Sci. USA 2011, 108, 9402–9407.

[116]

Bucher, D. B.; Kufner, C. L.; Schlueter, A.; Carell, T.; Zinth, W. UV-induced charge transfer states in DNA promote sequence selective self-repair. J. Am. Chem. Soc. 2016, 138, 186–190.

[117]

Rousseau, B. J. G.; Shafei, S.; Migliore, A.; Stanley, R. J.; Beratan, D. N. Determinants of photolyase’s DNA repair mechanism in mesophiles and extremophiles. J. Am. Chem. Soc. 2018, 140, 2853–2861.

[118]

Manto, M. J.; Xie, P. F.; Wang, C. Catalytic dephosphorylation using ceria nanocrystals. ACS Catal. 2017, 7, 1931–1938.

[119]

Liu, H. Y.; Liu, J. W. Self-limited phosphatase-mimicking CeO2 nanozymes. ChemNanoMat 2020, 6, 947–952.

[120]

Kuchma, M. H.; Komanski, C. B.; Colon, J.; Teblum, A.; Masunov, A. E.; Alvarado, B.; Babu, S.; Seal, S.; Summy, J.; Baker, C. H. Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles. Nanomedicine 2010, 6, 738–744.

[121]

Zhao, C. L.; Xu, Y. Theoretical investigation of dephosphorylation of phosphate monoesters on CeO2 (111). Catal. Today 2018, 312, 141–148.

[122]

Janoš, P.; Ederer, J.; Došek, M.; Štojdl, J.; Henych, J.; Tolasz, J.; Kormunda, M.; Mazanec, K. Can cerium oxide serve as a phosphodiesterase-mimetic nanozyme? Environ. Sci. Nano 2019, 6, 3684–3698.

[123]

Butler, A.; Sandy, M. Mechanistic considerations of halogenating enzymes. Nature 2009, 460, 848–854.

[124]

Frerichs, H.; Pütz, E.; Pfitzner, F.; Reich, T.; Gazanis, A.; Panthöfer, M.; Hartmann, J.; Jegel, O.; Heermann, R.; Tremel, W. Nanocomposite antimicrobials prevent bacterial growth through the enzyme-like activity of Bi-doped cerium dioxide (Ce1−xBixO2−δ). Nanoscale 2020, 12, 21344–21358.

[125]

Hu, M. H.; Korschelt, K.; Viel, M.; Wiesmann, N.; Kappl, M.; Brieger, J.; Landfester, K.; Thérien-Aubin, H.; Tremel, W. Nanozymes in nanofibrous mats with haloperoxidase-like activity to combat biofouling. ACS Appl. Mater. Interfaces 2018, 10, 44722–44730.

[126]

Lang, J. Y.; Ma, X. J.; Chen, P. Y.; Serota, M. D.; Andre, N. M.; Whittaker, G. R.; Yang, R. Haloperoxidase-mimicking CeO2−x nanorods for the deactivation of human coronavirus OC43. Nanoscale 2022, 14, 3731–3737.

[127]

Xu, F.; Lu, Q. W.; Huang, P. J. J.; Liu, J. W. Nanoceria as a DNase I mimicking nanozyme. Chem. Commun. 2019, 55, 13215–13218.

[128]

Korschelt, K.; Schwidetzky, R.; Pfitzner, F.; Strugatchi, J.; Schilling, C.; von der Au, M.; Kirchhoff, K.; Panthöfer, M.; Lieberwirth, I.; Tahir, M. N. et al. CeO2−x nanorods with intrinsic urease-like activity. Nanoscale 2018, 10, 13074–13082.

Nano Research
Pages 10328-10342
Cite this article:
Ma Y, Tian Z, Zhai W, et al. Insights on catalytic mechanism of CeO2 as multiple nanozymes. Nano Research, 2022, 15(12): 10328-10342. https://doi.org/10.1007/s12274-022-4666-y
Topics:
Part of a topical collection:

1990

Views

105

Crossref

102

Web of Science

107

Scopus

3

CSCD

Altmetrics

Received: 28 April 2022
Revised: 14 June 2022
Accepted: 14 June 2022
Published: 11 July 2022
© Tsinghua University Press 2022
Return