AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Silk-derived peptide nanospirals assembled by self-propelled worm-like filaments

Huijuan Wen1Jinrong Yao1Xin Chen1Shengjie Ling2( )Zhengzhong Shao1( )
State Key Laboratory of Molecular Engineering of Polymers, Advanced Material Laboratory, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
Show Author Information

Graphical Abstract

An amphiphilic peptide fused with a silk-derived peptide GAGAGAGY and a hydrophobic, photoresponsive molecule azobenzene was assembled into self-propelled worm-like filaments, which further formed swirl-like nanospirals.

Abstract

Swirl-like nanospiral is a common structure found in free-swimming biological systems, such as microtubules and actin filaments or slender bacteria. It is desired for artificially designed dynamic nanomaterials. However, the spiral formation has rarely been reported in both engineered peptides and regenerated proteins. Herein, we report that such a unique assembly behavior can be achieved by using a fusion peptide consisting of a silk-derived peptide (i.e., GAGAGAGY) and a hydrophobic, photoresponsive azobenzene (Azo) segment. In this fusion structure, GAGAGAGY acts as a domain that spontaneously forms an elongated filament in an aqueous solution, while Azo acts as a "light-operated switch" that can undergo photoinduced isomerization to modulate the self-propulsion forces and assembly behavior. With this design, the critical factors that affect the assembly of Azo-GAGAGAGY filament, including (i) length and flexibility of filaments; (ii) propulsion, and (iii) excluded volume interactions force the tip of the filament to wind up, can be regulated to realize the spiral formation. In addition, the configurations of Azo-GAGAGAGY filaments, such as straight nanoribbons, wavy nanoribbons, single-circle spiral, and multiple-circle spiral, can be facilely mediated by changing the preparation procedure, concentration, and pH value of Azo-GAGAGAGY solution, as these changes have significant influences on self-propulsion forces. Our findings can help in the better understanding of non-equilibrium thermodynamics and collective behavior of biological systems. The findings can be used as a guideline for the designs of nanoactuators, microswimmers, transformable microrobots, and intelligent drug carriers.

Electronic Supplementary Material

Download File(s)
12274_2022_4671_MOESM1_ESM.pdf (2.1 MB)

References

[1]
Cook, T. A. The Curves of Life; Constable and Company Limited: London, 1914.
[2]

Lin, S. N.; Lo, W. C.; Lo, C. J. Dynamics of self-organized rotating spiral-coils in bacterial swarms. Soft Matter 2014, 10, 760–766.

[3]

Rodriguez, O. C.; Schaefer, A. W.; Mandato, C. A., Forscher, P.; Bement, W. M.; Waterman-Storer, C. M. Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat. Cell Biol. 2003, 5, 599–609.

[4]

Li, H. B.; Liu, Q. T.; Qin, L. D.; Xu, M.; Lin, X. K.; Yin, S. Y.; Wu, L. X.; Su, Z. M.; Shen, J. C. Self-assembling structures and thin-film microscopic morphologies of amphiphilic rod-coil block oligomers. J. Colloid Interface Sci. 2005, 289, 488–497.

[5]

Sasaki, N.; Mabesoone, M. F. J.; Kikkawa, J.; Fukui, T.; Shioya, N.; Shimoaka, T.; Hasegawa, T.; Takagi, H.; Haruki, R.; Shimizu, N. et al. Supramolecular double-stranded Archimedean spirals and concentric toroids. Nat. Commun. 2020, 11, 578.

[6]

Hong, D. J.; Lee, E.; Choi, M. G.; Lee, M. Self-organized spiral columns in laterally grafted rods. Chem. Commun. 2010, 46, 4896–4898.

[7]

Yan, Z.; Zhang, F.; Liu, F.; Han, M. D.; Ou, D. P.; Liu, Y. H.; Lin, Q.; Guo, X. L.; Fu, H. R.; Xie, Z. Q. et al. Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. Sci. Adv. 2016, 2, e1601014.

[8]

Yang, H.; Coombs, N.; Ozin, G. A. Morphogenesis of shapes and surface patterns in mesoporous silica. Nature 1997, 386, 692–695.

[9]

Choi, H. K.; Chang, J. B.; Hannon, A. F.; Yang, J. K. W.; Berggren, K. K.; Alexander-Katz, A.; Ross, C. A. Nanoscale spirals by directed self-assembly. Nano Futures 2017, 1, 015001.

[10]

Chai, J.; Buriak, J. M. Using cylindrical domains of block copolymers to self-assemble and align metallic nanowires. ACS Nano 2008, 2, 489–501.

[11]

Huang, X.; Li, C.; Jiang, S. G.; Wang, X. S.; Zhang, B. W.; Liu, M. H. Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir–Blodgett films of an achiral amphiphilic barbituric acid. J. Am. Chem. Soc. 2004, 126, 1322–1323.

[12]

Zhang, Y. Q.; Chen, P. L.; Jiang, L.; Hu, W. P.; Liu, M. H. Controllable fabrication of supramolecular nanocoils and nanoribbons and their morphology-dependent photoswitching. J. Am. Chem. Soc. 2009, 131, 2756–2757.

[13]

Gopal, A.; Varghese, R.; Ajayaghosh, A. Oligo(p-phenylene-ethynylene)-derived super-π-gelators with tunable emission and self-assembled polymorphic structures. Chem. Asian J. 2012, 7, 2061–2067.

[14]

Cui, H. G.; Webber, M. J.; Stupp, S. I. Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials. Biopolymers 2010, 94, 1–18.

[15]

Ulijn, R. V.; Smith, A. M. Designing peptide based nanomaterials. Chem. Soc. Rev. 2008, 37, 664–675.

[16]

Zhao, X. B.; Pan, F.; Xu, H.; Yaseen, M.; Shan, H. H.; Hauser, C. A. E.; Zhang, S. G.; Lu, J. R. Molecular self-assembly and applications of designer peptide amphiphiles. Chem. Soc. Rev. 2010, 39, 3480–3498.

[17]

Tian, M. T.; Shen, L. Self-coiling of single-stranded protofibrils into rings: A pathway of alzheimer's β-peptide amyloidosis on lipid membranes. ACS Macro Lett. 2020, 9, 813–818.

[18]

Aili, D.; Tai, F. I.; Enander, K.; Baltzer, L.; Liedberg, B. Self-assembly of fibers and nanorings from disulfide-linked helix-loop-helix polypeptides. Angew. Chem. , Int. Ed. 2008, 47, 5554–5556.

[19]

Kim, Y.; Li, W.; Shin, S.; Lee, M. Development of toroidal nanostructures by self-assembly: Rational designs and applications. Acc. Chem. Res. 2013, 46, 2888–2897.

[20]

Isele-Holder, R. E.; Elgeti, J.; Gompper, G. Self-propelled worm-like filaments: Spontaneous spiral formation, structure, and dynamics. Soft Matter 2015, 11, 7181–7190.

[21]

Zhang, J. M.; Hao, R. W.; Huang, L.; Yao, J. R.; Chen, X.; Shao, Z. Z. Self-assembly of a peptide amphiphile based on hydrolysed Bombyx mori silk fibroin. Chem. Commun. 2011, 47, 10296–10298.

[22]

Guo, H.; Zhang, J. M.; Porter, D.; Peng, H. S.; Löwik, D. W. P. M.; Wang, Y.; Zhang, Z. D.; Chen, X.; Shao, Z. Z. Ultrafast and reversible thermochromism of a conjugated polymer material based on the assembly of peptide amphiphiles. Chem. Sci. 2014, 5, 4189–4195.

[23]

Li, L. S.; Jiang, H. Z.; Messmore, B. W.; Bull, S. R.; Stupp, S. I. A torsional strain mechanism to tune pitch in supramolecular helices. Angew. Chem. , Int. Ed. 2007, 46, 5873–5876.

[24]

Beharry, A. A.; Woolley, G. A. Azobenzene photoswitches for biomolecules. Chem. Soc. Rev. 2011, 40, 4422–4437.

[25]

Fleming, S.; Ulijn, R. V. Design of nanostructures based on aromatic peptide amphiphiles. Chem. Soc. Rev. 2014, 43, 8150–8177.

[26]

Chen, Z. H.; Lv, Z. Y.; Qing, G. Y.; Sun, T. L. Exploring the role of molecular chirality in the photo-responsiveness of dipeptide-based gels. J. Mater. Chem. B 2017, 5, 3163–3171.

[27]

Lin, Y. Y.; Qiao, Y.; Tang, P. F.; Li, Z. B.; Huang, J. B. Controllable self-assembled laminated nanoribbons from dipeptide-amphiphile bearing azobenzene moiety. Soft Matter 2011, 7, 2762–2769.

[28]

Adhikari, B.; Yamada, Y.; Yamauchi, M.; Wakita, K.; Lin, X.; Aratsu, K.; Ohba, T.; Karatsu, T.; Hollamby, M. J.; Shimizu, N. et al. Light-induced unfolding and refolding of supramolecular polymer nanofibres. Nat. Commun. 2017, 8, 15254.

[29]

Zhang, F.; Du, H. N.; Zhang, Z. X.; Ji, L. N.; Li, H. T.; Tang, L.; Wang, H. B.; Fan, C. H.; Xu, H. J.; Zhang, Y. et al. Epitaxial growth of peptide nanofilaments on inorganic surfaces: Effects of interfacial hydrophobicity/hydrophilicity. Angew. Chem. , Int. Ed. 2006, 45, 3611–3613.

[30]

Cherny, I.; Gazit, E. Amyloids: Not only pathological agents but also ordered nanomaterials. Angew. Chem. , Int. Ed. 2008, 47, 4062–4069.

[31]

Deng, M. L.; Yu, D. F.; Hou, Y. B.; Wang, Y. L. Self-assembly of peptide-amphiphile C12-Aβ(11-17) into nanofibrils. J. Phys. Chem. B 2009, 113, 8539–8544.

[32]

Nyrkova, I. A.; Semenov, A. N.; Aggeli, A.; Boden, N. Fibril stability in solutions of twisted-sheet peptides: A new kind of micellization in chiral systems. Eur. Phys. J. B 2000, 17, 481–497.

[33]

Picu, R. C. Mechanics of random fiber networks—A review. Soft Matter 2011, 7, 6768–6785.

[34]

Adamcik, J.; Jung, J. M.; Flakowski, J.; De Los Rios, P.; Dietler, G.; Mezzenga, R. Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nat. Nanotechnol. 2010, 5, 423–428.

[35]

Lin, Y. C.; Petersson, E. J.; Fakhraai, Z. Surface effects mediate self-assembly of amyloid-β peptides. ACS Nano 2014, 8, 10178–10186.

[36]

Jordens, S.; Riley, E. E.; Usov, I.; Isa, L.; Olmsted, P. D.; Mezzenga, R. Adsorption at liquid interfaces induces amyloid fibril bending and ring formation. ACS Nano 2014, 8, 11071–11079.

[37]

Chaudhuri, O.; Cooper-White, J.; Janmey, P. A.; Mooney, D. J.; Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 2020, 584, 535–546.

[38]

Hao, R. W.; Zhang, J. M.; Xu, T.; Huang, L.; Yao, J. R.; Chen, X.; Shao, Z. Z. Characterization and assembly investigation of a dodecapeptide hydrolyzed from the crystalline domain of Bombyx mori silk fibroin. Polym. Chem. 2013, 4, 3005–3011.

Nano Research
Pages 1414-1420
Cite this article:
Wen H, Yao J, Chen X, et al. Silk-derived peptide nanospirals assembled by self-propelled worm-like filaments. Nano Research, 2023, 16(1): 1414-1420. https://doi.org/10.1007/s12274-022-4671-1
Topics:

765

Views

2

Crossref

23

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 11 May 2022
Revised: 13 June 2022
Accepted: 16 June 2022
Published: 26 July 2022
© Tsinghua University Press 2022
Return