AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Electrospinning fabrication and ultra-wideband electromagnetic wave absorption properties of CeO2/N-doped carbon nanofibers

Pei-Yan Zhao1Hui-Ya Wang1Bo Cai1Xiao-Bo Sun1Zhi-Ling Hou3Jun-Tao Wu1( )Ming Bai2( )Guang-Sheng Wang1( )
School of Chemistry, Beihang University, Beijing 100191, China
School of Electronics and Information Engineering, Beihang University, Beijing 100191, China
College of Mathematics and Physics & Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China
Show Author Information

Graphical Abstract

The novel CeO2/nitrogen-doped carbon (CeO2/N-C) nanofiber was prepared by electrospinning and sintering. The CeO2/N-C nanofiber exhibits ultra-wideband (8.48 GHz) at 2.5 mm and value of reflection loss (RL) (−42.59 dB) at 3 wt.% filler content.

Abstract

The impedance mismatch of carbon materials is a key factor limiting their widespread use in electromagnetic (EM) wave absorption. In this work, the novel CeO2/nitrogen-doped carbon (CeO2/N-C) nanofiber was prepared to solve the problem by electrospinning and sintering. X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) analyses demonstrated CeO2 was successfully loaded onto the surface of partially graphitized carbon fibers. Different sintering temperatures change the graphitization degree of material, and the oxygen vacancy structure of CeO2 and defects from N doping optimize the impedance matching of the material. When the sintering temperature reaches 950 °C, CeO2/N-C fiber possesses the minimum reflection loss (RLmin) value of −42.59 dB at 2.5 mm with a filler loading of only 3 wt.% in polyvinylidene difluoride (PVDF). Meanwhile, the CeO2/N-C fiber achieves a surprising wideband (8.48 GHz) at a thickness of 2.5 mm, covering the whole Ku-band as well as 63% of the X-band at the sintering temperature of 650 °C. This work provides the research basis for widely commercial applications of carbon-based nanofiber absorbers.

Electronic Supplementary Material

Download File(s)
12274_2022_4675_MOESM1_ESM.pdf (1,009.1 KB)

References

1

Wang, C. X.; Wang, B. B.; Cao, X.; Zhao, J. W.; Chen, L.; Shan, L. G.; Wang, H. N.; Wu, G. L. 3D flower-like Co-based oxide composites with excellent wideband electromagnetic microwave absorption. Compos. Part B: Eng. 2021, 205, 108529.

2

Xiang, Z.; Xiong, J.; Deng, B. W.; Cui, E. B.; Yu, L. Z.; Zeng, Q. W.; Pei, K.; Che, R. C.; Lu, W. Rational design of 2D hierarchically laminated Fe3O4@nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. J. Mater. Chem. C 2020, 8, 2123–2134.

3

Lv, H. L.; Yang, Z. H.; Wang, P. L.; Ji, G. B.; Song, J. Z.; Zheng, L. R.; Zeng, H. B.; Xu, Z. J. A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 2018, 30, 1706343.

4

Xu, H. X.; Zhang, G. Z.; Wang, Y.; Ning, M. Q.; Ouyang, B.; Zhao, Y.; Huang, Y.; Liu, P. B. Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption. Nano-Micro Lett. 2022, 14, 102.

5

Zhao, J.; Zhang, J. L.; Wang, L.; Lyu, S. S.; Ye, W. L.; Xu, B. B.; Qiu, H.; Chen, L. X.; Gu, J. W. Fabrication and investigation on ternary heterogeneous MWCNT@TiO2-C fillers and their silicone rubber wave-absorbing composites. Compos. Part A: Appl. Sci. Manuf. 2020, 129, 105714.

6

Jia, Z. R.; Gao, Z. G.; Feng, A. L.; Zhang, Y.; Zhang, C. H.; Nie, G. Z.; Wang, K. K.; Wu, G. L. Laminated microwave absorbers of A-site cation deficiency perovskite La0.8FeO3 doped at hybrid RGO carbon. Compos. Part B: Eng. 2019, 176, 107246.

7
Liu Z. J. Zhao Z. H. Wang Y. Y. Dou S. Yan D. F. Liu D. D. Xia Z. H. Wang S. Y. In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis Adv. Mater. 2017 29 1606207 10.1002/adma.201606207

Liu, Z. J.; Zhao, Z. H.; Wang, Y. Y.; Dou, S.; Yan, D. F.; Liu, D. D.; Xia, Z. H.; Wang, S. Y. In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv. Mater. 2017, 29, 1606207.

8

Kong, D. Y.; Li, J.; Guo, A. R.; Xiao, X. L. High temperature electromagnetic shielding shape memory polymer composite. Chem. Eng. J. 2021, 408, 127365.

9

Huang, Y. C.; Yang, H.; Xiong, T. Z.; Adekoya, D.; Qiu, W. T.; Wang, Z. M.; Zhang, S. Q.; Balogun, M. S. Adsorption energy engineering of nickel oxide hybrid nanosheets for high areal capacity flexible lithium-ion batteries. Energy Storage Mater. 2020, 25, 41–51.

10

Zhao, J. X.; Lu, H. Y.; Zhang, Y.; Yu, S. X.; Malyi, O. I.; Zhao, X. X.; Wang, L. T.; Wang, H. B.; Peng, J. H.; Li, X. F. et al. Direct coherent multi-ink printing of fabric supercapacitors. Sci. Adv. 2021, 7, eabd6978.

11

Guo, Y. Q.; Qiu, H.; Ruan, K. P.; Zhang, Y. L.; Gu, J. W. Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 2022, 14, 26.

12

Zhang, W. D.; Zhang, X.; Zhu, Q.; Zheng, Y.; Liotta, L. F.; Wu, H. J. High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber. J. Colloid Interface Sci. 2021, 586, 457–468.

13

Zhang, Y. N.; Zhao, Y. J.; Chen, Q.; Hou, Y.; Zhang, Q.; Cheng, L. F.; Zheng, L. X. Flexible SiC-CNTs hybrid fiber mats for tunable and broadband microwave absorption. Ceram. Int. 2021, 47, 8123–8132.

14

Li, X.; Li, M. H.; Lu, X. K.; Zhu, W. J.; Xu, H. L.; Xue, J. M.; Ye, F.; Liu, Y. S.; Fan, X. M.; Cheng, L. F. A sheath-core shaped ZrO2-SiC/SiO2 fiber felt with continuously distributed SiC for broad-band electromagnetic absorption. Chem. Eng. J. 2021, 419, 129414.

15

Zhou, W.; Long, L.; Xiao, P.; Li, Y.; Luo, H.; Hu, W. D.; Yin, R. M. Silicon carbide nano-fibers in-situ grown on carbon fibers for enhanced microwave absorption properties. Ceram. Int. 2017, 43, 5628–5634.

16

Zhao, Y. J.; Zhang, Y. N.; Yang, C. R.; Cheng, L. F. Ultralight and flexible SiC nanoparticle-decorated carbon nanofiber mats for broad-band microwave absorption. Carbon 2021, 171, 474–483.

17

Gu, J. W.; Zhang, Q. Y.; Zhang, J. P.; Wang, W. W. Studies on the preparation of polystyrene thermal conductivity composites. Polym. -Plast. Technol. Eng. 2010, 49, 1385–1389.

18

Yuan, X. Y.; Wang, R. Q.; Huang, W. R.; Kong, L.; Guo, S. W.; Cheng, L. F. Morphology design of Co-electrospinning MnO-VN/C nanofibers for enhancing the microwave absorption performances. ACS Appl. Mater. Interfaces 2020, 12, 13208–13216.

19

Wu, H. J.; Qu, S. H.; Lin, K. J.; Qing, Y. C.; Wang, L. D.; Fan, Y. C.; Fu, Q. H.; Zhang, F. L. Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technol. 2018, 333, 153–159.

20

Zhang, X.; Qiao, J.; Wang, F. L.; Lv, L. F.; Xu, D. M.; Jiang, Y. Y.; Cui, P.; Wang, Q.; Liu, W.; Liu, J. R. Tailoring electromagnetic absorption performances of TiO2/Co/carbon nanofibers through tuning graphitization degrees. Ceram. Int. 2020, 46, 4754–4761.

21

Liang, H. S.; Liu, J. L.; Zhang, Y.; Luo, L.; Wu, H. J. Ultra-thin broccoli-like SCFs@TiO2 one-dimensional electromagnetic wave absorbing material. Compos. Part B: Eng. 2019, 178, 107507.

22

Ye, R. P.; Li, Q. H.; Gong, W. B.; Wang, T. T.; Razink, J. J.; Lin, L.; Qin, Y. Y.; Zhou, Z. F.; Adidharma, H.; Tang, J. K. et al. High-performance of nanostructured Ni/CeO2 catalyst on CO2 methanation. Appl. Catal. B: Environ. 2020, 268, 118474.

23

Chen, X.; Chen, X.; Yu, E. Q.; Cai, S. C.; Jia, H. P.; Chen, J.; Liang, P. In situ pyrolysis of Ce-MOF to prepare CeO2 catalyst with obviously improved catalytic performance for toluene combustion. Chem. Eng. J. 2018, 344, 469–479.

24

Zeng, M.; Li, Y. Z.; Mao, M. Y.; Bai, J. L.; Ren, L.; Zhao, X. J. Synergetic effect between photocatalysis on TiO2 and thermocatalysis on CeO2 for gas-phase oxidation of benzene on TiO2/CeO2 nanocomposites. ACS Catal. 2015, 5, 3278–3286.

25

Li, Q. Q.; Zhao, Y. H.; Wang, L.; Zhang, J.; Li, X.; Che, R. C. 3D conductive network wrapped CeO2−x yolk@shell hybrid microspheres for selective-frequency microwave absorption. Carbon 2020, 162, 86–94.

26

Li, X. H.; Shu, R. W.; Wu, Y.; Zhang, J. B.; Wan, Z. L. Fabrication of hexagonal cerium oxide nanoparticles decorated nitrogen-doped reduced graphene oxide hybrid nanocomposite as high-performance microwave absorbers in the Ku band. Ceram. Int. 2021, 47, 12111–12121.

27

Wang, Z. Q.; Zhao, P. F.; Li, P. W.; Li, S. D.; Liao, L. S.; Luo, Y. Y.; Peng, Z.; He, D. N.; Cheng, Y. Hierarchical cerium oxide anchored multi-walled carbon nanotube hybrid with synergistic effect for microwave attenuation. Compos. Part B: Eng. 2019, 167, 477–486.

28

Bokobza, L. Multiwall carbon nanotube elastomeric composites: A review. Polymer 2007, 48, 4907–4920.

29

Wu, L. Z.; Shu, R. W.; Zhang, J. B.; Chen, X. T. Synthesis of three-dimensional porous netlike nitrogen-doped reduced graphene oxide/cerium oxide composite aerogels towards high-efficiency microwave absorption. J. Colloid Interface Sci. 2022, 608, 1212–1221.

30

Gao, S.; Wang, G. S.; Guo, L.; Yu, S. H. Tunable and ultraefficient microwave absorption properties of trace N-doped two-dimensional carbon-based nanocomposites loaded with multi-rare earth oxides. Small 2020, 16, 1906668.

31

Inagaki, M.; Yang, Y.; Kang, F. Y. Carbon nanofibers prepared via electrospinning. Adv. Mater. 2012, 24, 2547–2566.

32

Han, C.; Zhang, M.; Cao, W. Q.; Cao, M. S. Electrospinning and in-situ hierarchical thermal treatment to tailor C-NiCo2O4 nanofibers for tunable microwave absorption. Carbon 2021, 171, 953–962.

33

Wang, F. Y.; Sun, Y. Q.; Li, D. R.; Zhong, B.; Wu, Z. G.; Zuo, S. Y.; Yan, D.; Zhuo, R. F.; Feng, J. J.; Yan, P. X. Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning. Carbon 2018, 134, 264–273.

34

Li, T.; Zhi, D. D.; Chen, Y.; Li, B.; Zhou, Z. W.; Meng, F. B. Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption. Nano Res. 2020, 13, 477–484.

35

Thamer, B. M.; Aldalbahi, A.; Moydeen, A. M.; Rahaman, M.; El-Newehy, M. H. Modified electrospun polymeric nanofibers and their nanocomposites as nanoadsorbents for toxic dye removal from contaminated waters: A review. Polymers 2021, 13, 20.

36

Wen, J. W.; Li, X. X.; Chen, G.; Wang, Z. N.; Zhou, X. J.; Wu, H. J. Controllable adjustment of cavity of core−shelled Co3O4@NiCo2O4 composites via facile etching and deposition for electromagnetic wave absorption. J. Colloid Interface Sci. 2021, 594, 424–434.

37

Liang, M. F.; Borjigin, T.; Zhang, Y. H.; Liu, B. H.; Liu, H.; Guo, H. Controlled assemble of hollow heterostructured g-C3N4@CeO2 with rich oxygen vacancies for enhanced photocatalytic CO2 reduction. Appl. Catal. B:Environ. 2019, 243, 566–575.

38

Li, Y. X.; Liao, Y. J.; Ji, L. Z.; Hu, C. L.; Zhang, Z. H.; Zhang, Z. Y.; Zhao, R. Z.; Rong, H. W.; Qin, G. W.; Zhang, X. F. Quinary high-entropy-alloy@graphite nanocapsules with tunable interfacial impedance matching for optimizing microwave absorption. Small 2022, 18, 2107265.

39

Lei, L.; Yao, Z. J.; Zhou, J. T.; Zheng, W. J.; Wei, B.; Zu, J. Q.; Yan, K. Y. Hydrangea-like Ni/NiO/C composites derived from metal-organic frameworks with superior microwave absorption. Carbon 2021, 173, 69–79.

40

Long, X. D.; Li, Z. L.; Gao, G.; Sun, P.; Wang, J.; Zhang, B. S.; Zhong, J.; Jiang, Z.; Li, F. W. Graphitic phosphorus coordinated single Fe atoms for hydrogenative transformations. Nat. Commun. 2020, 11, 4074.

41

Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

42

Hazan, M. A.; Chan, K. F.; Jofri, K. A.; Mamat, M. S.; Endot, N. A.; Liza, S.; Ismail, I.; Hussein, M. Z.; Tanemura, M.; Yaakob, Y. Waste NR latex based-precursors as carbon source for CNTs eco-fabrications. Polymers 2021, 13, 3409.

43

Xie, C.; Lin, L. F.; Huang, L.; Wang, Z. X.; Jiang, Z. W.; Zhang, Z. H.; Han, B. X. Zn-Nx sites on N-doped carbon for aerobic oxidative cleavage and esterification of C(CO)-C bonds. Nat. Commun. 2021, 12, 4823.

44

Liu, G. H.; Wang, H. Y.; Chen, D. H.; Dai, C. C.; Zhang, Z. H.; Feng, Y. J. Photodegradation performances and transformation mechanism of sulfamethoxazole with CeO2/CN heterojunction as photocatalyst. Sep. Purif. Technol. 2020, 237, 116329.

45

Chen, Y. F.; Huang, W. X.; He, D. L.; Situ, Y.; Huang, H. Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation. ACS Appl. Mater. Interfaces 2014, 6, 14405–14414.

46

Yang, S. J.; Cho, J. H.; Oh, G. H.; Nahm, K. S.; Park, C. R. Easy synthesis of highly nitrogen-enriched graphitic carbon with a high hydrogen storage capacity at room temperature. Carbon 2009, 47, 1585–1591.

47

Mao, Z. Y.; Chen, J. J.; Yang, Y. F.; Wang, D. J.; Bie, L. J.; Fahlman, B. D. Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution. ACS Appl. Mater. Interfaces 2017, 9, 12427–12435.

48

Huang, L. Y.; Li, Y. P.; Xu, H.; Xu, Y. G.; Xia, J. X.; Wang, K.; Li, H. M.; Cheng, X. N. Synthesis and characterization of CeO2/g-C3N4 composites with enhanced visible-light photocatatalytic activity. RSC Adv. 2013, 3, 22269–22279.

49

Su, Y. F.; Tang, Z. C.; Han, W. L.; Zhang, P.; Song, Y.; Lu, G. X. Influence of the pore structure of CeO2 supports on the surface texture and catalytic activity for CO oxidation. CrystEngComm 2014, 16, 5189–5197.

50

Guo, A. P.; Zhang, X. J.; Wang, S. W.; Zhu, J. Q.; Yang, L.; Wang, G. S. Excellent microwave absorption and electromagnetic interference shielding based on reduced graphene oxide@MoS2/poly(vinylidene fluoride) composites. ChemPlusChem 2016, 81, 1305–1311.

51

Wen, C. Y.; Li, X.; Zhang, R. X.; Xu, C. Y.; You, W. B.; Liu, Z. W.; Zhao, B.; Che, R. C. High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano 2022, 16, 1150–1159.

52

Song, Q.; Ye, F.; Kong, L.; Shen, Q. L.; Han, L. Y.; Feng, L.; Yu, G. J.; Pan, Y. N.; Li, H. J. Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 2020, 30, 2000475.

53

Huang, M. Q.; Wang, L.; Pei, K.; You, W. B.; Yu, X. F.; Wu, Z. C.; Che, R. C. Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 2020, 16, 2000158.

54

Xue, W.; Yang, G.; Bi, S.; Zhang, J. Y.; Hou, Z. L. Construction of caterpillar-like hierarchically structured Co/MnO/CNTs derived from MnO2/ZIF-8@ZIF-67 for electromagnetic wave absorption. Carbon 2021, 173, 521–527.

55

Ding, D.; Wang, Y.; Li, X. D.; Qiang, R.; Xu, P.; Chu, W. L.; Han, X. J.; Du, Y. C. Rational design of core−shell Co@C microspheres for high-performance microwave absorption. Carbon 2017, 111, 722–732.

56

Zhang, T.; Xiao, B.; Zhou, P. Y.; Xia, L.; Wen, G. W.; Zhang, H. B. Porous-carbon-nanotube decorated carbon nanofibers with effective microwave absorption properties. Nanotechnology 2017, 28, 355708.

57

Sun, Y.; Wang, Y. J.; Ma, H. J.; Zhou, Y.; Xing, H. N.; Feng, W.; Feng, J.; Shi, Z. H.; Zong, Y.; Li, X. H. et al. Fe3C nanocrystals encapsulated in N-doped carbon nanofibers as high-efficient microwave absorbers with superior oxidation/corrosion resistance. Carbon 2021, 178, 515–527.

58

Chen, J. B.; Zheng, J.; Wang, F.; Huang, Q. Q.; Ji, G. B. Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption. Carbon 2021, 174, 509–517.

59

Wei, Y. P.; Zhong, K. Y.; Jiang, T. T.; Zhang, J. W.; Bi, K. Q.; Li, L. Q.; Peng, Y. Gumdrop-cake-like CuNi/C nanofibers with tunable microstructure for microwave absorbing application. Ceram. Int. 2020, 46, 11406–11415.

60

Zuo, X. D.; Xu, P.; Zhang, C. Y.; Li, M. Z.; Jiang, X. Y.; Yue, X. G. Porous magnetic carbon nanofibers (P-CNF/Fe) for low-frequency electromagnetic wave absorption synthesized by electrospinning. Ceram. Int. 2019, 45, 4474–4481.

Nano Research
Pages 7788-7796
Cite this article:
Zhao P-Y, Wang H-Y, Cai B, et al. Electrospinning fabrication and ultra-wideband electromagnetic wave absorption properties of CeO2/N-doped carbon nanofibers. Nano Research, 2022, 15(9): 7788-7796. https://doi.org/10.1007/s12274-022-4675-x
Topics:
Part of a topical collection:

912

Views

63

Crossref

59

Web of Science

62

Scopus

5

CSCD

Altmetrics

Received: 25 May 2022
Revised: 10 June 2022
Accepted: 17 June 2022
Published: 14 July 2022
© Tsinghua University Press 2022
Return