Graphical Abstract

The nanoparticles (NPs) of Ni with different sizes endows its distinctive physical and chemical properties, which represents a typical strategy for the development of high-performance catalysts. However, the size effect of metallic Ni-NPs on electrocatalytic performance remains ambiguous. Herein, the Ni-NPs with different sizes supported on nitrogen doped carbon (NC) has been synthesized by controlling the pyrolysis temperature, leading to the synthesis of Ni@NC-500 (8.3 nm), Ni@NC-280 (1.9 nm) and Ni@NC-200 (1.0 nm). The electrooxidation of benzyl alcohol (BA) over these nanocatalysts shows the yield of benzoic acid was 99%, 82%, 55% on Ni@NC-280, Ni@NC-200 and Ni@NC-500, respectively. The experimental and theoretical simulation demonstrate that the difference in the adsorption strength of reactant molecules by Ni-NPs is responsible for their different performance, where the Ni@NC-280 exhibits an optimal adsorption configuration between Ni@NC-280 electrode and BA. This work provides a new angle for designing and synthesizing efficient electrocatalysts, which may be extended to the exploration of various promising electrocatalytic systems.
Olivier-Bourbigou, H.; Breuil, P. A. R.; Magna, L.; Michel, T.; Espada Pastor, M. F.; Delcroix, D. Nickel catalyzed olefin oligomerization and dimerization. Chem. Rev. 2020, 120, 7919–7983.
De, S.; Zhang, J. G.; Luque, R.; Yan, N. Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ. Sci. 2016, 9, 3314–3347.
Ariki, Z. T.; Maekawa, Y.; Nambo, M.; Crudden, C. M. Preparation of quaternary centers via nickel-catalyzed suzuki-miyaura cross-coupling of tertiary sulfones. J. Am. Chem. Soc. 2018, 140, 78–81.
Li, S. R.; Gong, J. L. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions. Chem. Soc. Rev. 2014, 43, 7245–7256.
Rönsch, S.; Schneider, J.; Matthischke, S.; Schlüter, M.; Götz, M.; Lefebvre, J.; Prabhakaran, P.; Bajohr, S. Review on methanation-from fundamentals to current projects. Fuel 2016, 166, 276–296.
Meng, X. Y.; Yang, Y. S.; Chen, L. F.; Xu, M.; Zhang, X.; Wei, M. A control over hydrogenation selectivity of furfural via tuning exposed facet of Ni catalysts. ACS Catal. 2019, 9, 4226–4235.
Yang, Y. D.; Li, S. P.; Xie, C.; Liu, H. Y.; Wang, Y. Y.; Mei, Q. Q.; Liu, H. Z.; Han, B. X. Ethylenediamine promoted the hydrogenative coupling of nitroarenes over Ni/C catalyst. Chin. Chem. Lett. 2019, 30, 203–206.
Xu, Y.; Xu, R. Nickel-based cocatalysts for photocatalytic hydrogen production. Appl. Surf. Sci. 2015, 351, 779–793.
Spanu, D.; Recchia, S.; Mohajernia, S.; Tomanec, O.; Kment, Š.; Zboril, R.; Schmuki, P.; Altomare, M. Templated dewetting-alloying of NiCu bilayers on TiO2 nanotubes enables efficient noble-metal-free photocatalytic H2 evolution. ACS. Catal. 2018, 8, 5298–5305.
Wang, Y.; Qu, Y.; Qu, B.; Bai, L.; Liu, Y.; Yang, Z. D.; Zhang, W.; Jing, L.; Fu, H. Construction of six-oxygen-coordinated single Ni sites on g-C3N4 with boron-oxo species for photocatalytic water-activation-induced CO2 reduction. Adv. Mater. 2021, 33, 2105482.
Han, L.; Dong, S. J.; Wang, E. K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 2016, 28, 9266–9291.
Gong, M.; Wang, D. Y.; Chen, C. C.; Hwang, B. J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28–46.
Yu, M. Q.; Budiyanto, E.; Tüysüz, H. Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction. Angew. Chem. , Int. Ed. 2022, 61, e202103824.
Csernica, P. M.; McKone, J. R.; Mulzer, C. R.; Dichtel, W. R.; Abruña, H. D.; DiSalvo, F. J. Electrochemical hydrogen evolution at ordered Mo7Ni7. ACS Catal. 2017, 7, 3375–3383.
Cui, X.; Chen, M. L.; Xiong, R.; Sun, J.; Liu, X. W.; Geng, B. Y. Ultrastable and efficient H2 production via membrane-free hybrid water electrolysis over a bifunctional catalyst of hierarchical Mo-Ni alloy nanoparticles. J. Mater. Chem. A 2019, 7, 16501–16507.
Li, W. L.; Li, F. S.; Yang, H.; Wu, X. J.; Zhang, P. L.; Shan, Y.; Sun, L. C. A bio-inspired coordination polymer as outstanding water oxidation catalyst via second coordination sphere engineering. Nat. Commun. 2019, 10, 5074.
Yang, H. C.; Wang, C. H.; Zhang, Y. J.; Wang, Q. B. Green synthesis of NiFe LDH/Ni foam at room temperature for highly efficient electrocatalytic oxygen evolution reaction. Sci. China Mater. 2019, 62, 681–689.
Wu, G. Q.; Liang, X. Y.; Zhang, H. L.; Zhang, L. J.; Yue, F.; Wang, J. D.; Su, X. T. Highly stable and sub-3 nm Ni nanoparticles coated with carbon nanosheets as a highly active heterogeneous hydrogenation catalyst. Catal. Commun. 2016, 79, 63–67.
Li, J. B.; Li, J. L.; Ding, Z. B.; Zhang, X. L.; Li, Y. Q.; Lu, T.; Yao, Y. F.; Mai, W.; Pan, L. K. In-situ encapsulation of Ni3S2 nanoparticles into N-doped interconnected carbon networks for efficient lithium storage. Chem. Eng. J. 2019, 378, 122108.
Zou, X.; Liu, Y. P.; Li, G. D.; Wu, Y. Y.; Liu, D. P.; Li, W.; Li, H. W.; Wang, D. J.; Zhang, Y.; Zou, X. X. Ultrafast formation of amorphous bimetallic hydroxide films on 3d conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater. 2017, 29, 1700404.
Yan, W. X.; Shen, Y. L.; An, C.; Li, L. N.; Si, R.; An, C. H. FeOx clusters decorated hcp Ni nanosheets as inverse electrocatalyst to stimulate excellent oxygen evolution performance. Appl. Catal. B:Environ. 2021, 284, 119687.
Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.
Choi, H.; Oh, S.; Trung Tran, S. B.; Park, J. Y. Size-controlled model Ni catalysts on Ga2O3 for CO2 hydrogenation to methanol. J. Catal. 2019, 376, 68–76.
Han, J. W.; Park, J. S.; Choi, M. S.; Lee, H. Uncoupling the size and support effects of Ni catalysts for dry reforming of methane. Appl. Catal. B:Environ. 2017, 203, 625–632.
Dou, S.; Wang, X.; Wang, S. Y. Rational design of transition metal-based materials for highly efficient electrocatalysis. Small Methods 2019, 3, 1800211.
Qu, X. D.; Hu, Q.; Song, Z. Q.; Sun, Z. H.; Zhang, B. H.; Zhong, J. L.; Cao, X. Y.; Liu, Y. J.; Zhao, B. L.; Liu, Z. B. et al. Adsorption and desorption mechanisms on graphene oxide nanosheets: Kinetics and tuning. Innovation 2021, 2, 100137.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996, 54, 11169–11186.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B. 1976, 13, 5188–5192.
Bader, R. F. W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928.
Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.
Liang, C.; Chen, Y.; Wu, M.; Wang, K.; Zhang, W. K.; Gan, Y. P.; Huang, H.; Chen, J.; Xia, Y.; Zhang, J. et al. Green synthesis of graphite from CO2 without graphitization process of amorphous carbon. Nat. Commun. 2021, 12, 119.
Zhang, H. B.; Liu, Y. Y.; Chen, T.; Zhang, J. T.; Zhang, J.; Lou, X. W. Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix. Adv. Mater. 2019, 31, 1904548.
Li, Z. D.; He, D.; Yan, X. X.; Dai, S.; Younan, S.; Ke, Z. J.; Pan, X. Q.; Xiao, X. H.; Wu, H. J.; Gu, J. Size-dependent nickel-based electrocatalysts for selective CO2 reduction. Angew. Chem. , Int. Ed. 2020, 59, 18572–18577.
Zhao, S. L.; Li, M.; Han, M.; Xu, D. D.; Yang, J.; Lin, Y.; Shi, N. E.; Lu, Y. N.; Yang, R.; Liu, B. T. et al. Defect-rich Ni3FeN nanocrystals anchored on N-doped graphene for enhanced electrocatalytic oxygen evolution. Adv. Funct. Mater. 2018, 28, 1706018.
Ren, J. W.; Antonietti, M.; Fellinger, T. P. Efficient water splitting using a simple Ni/N/C paper electrocatalyst. Adv. Energy Mater. 2015, 5, 1401660.
Yang, H. Z.; Shang, L.; Zhang, Q. H.; Shi, R.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 2019, 10, 4585.
Chen, J. Y.; Li, H.; Fan, C.; Meng, Q. W.; Tang, Y. W.; Qiu, X. Y.; Fu, G. T.; Ma, T. Y. Dual single-atomic Ni-N4 and Fe-N4 sites constructing Janus hollow Graphene for selective oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003134.
Liu, G. Q.; Zhang, X.; Zhao, C. J.; Xiong, Q. Z.; Gong, W. B.; Wang, G. Z.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J. Electrocatalytic oxidation of benzyl alcohol for simultaneously promoting H2 evolution by a Co0.83Ni0.17/activated carbon electrocatalyst. New J. Chem. 2018, 42, 6381–6388.
Zhu, P.; Shen, Y. L.; Dai, L. X.; Yu, Q. Y.; Zhang, Z. M.; An, C. H. Accelerating anode reaction with electro-oxidation of alcohols over Ru nanoparticles to reduce the potential for water splitting. ACS Appl. Mater. Interfaces 2022, 14, 1452–1459.