AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Size-effect on Ni electrocatalyst: The case of electrochemical benzyl alcohol oxidation

Jian Zhong1,§Yongli Shen2,§Pei Zhu2Shuang Yao1( )Changhua An1,2( )
Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

§ Jian Zhong and Yongli Shen contributed equally to this work.

Show Author Information

Graphical Abstract

The size effect of nickel nanoparticles on the electrooxidation of benzyl alcohol was investigated. The experimental and theoretical results show that varying the size of Ni-NPs can dramatically change the properties of surface sites and control the catalytic performance by affecting the bonding mode between reactant molecules and nickel species in the electrocatalytic process.

Abstract

The nanoparticles (NPs) of Ni with different sizes endows its distinctive physical and chemical properties, which represents a typical strategy for the development of high-performance catalysts. However, the size effect of metallic Ni-NPs on electrocatalytic performance remains ambiguous. Herein, the Ni-NPs with different sizes supported on nitrogen doped carbon (NC) has been synthesized by controlling the pyrolysis temperature, leading to the synthesis of Ni@NC-500 (8.3 nm), Ni@NC-280 (1.9 nm) and Ni@NC-200 (1.0 nm). The electrooxidation of benzyl alcohol (BA) over these nanocatalysts shows the yield of benzoic acid was 99%, 82%, 55% on Ni@NC-280, Ni@NC-200 and Ni@NC-500, respectively. The experimental and theoretical simulation demonstrate that the difference in the adsorption strength of reactant molecules by Ni-NPs is responsible for their different performance, where the Ni@NC-280 exhibits an optimal adsorption configuration between Ni@NC-280 electrode and BA. This work provides a new angle for designing and synthesizing efficient electrocatalysts, which may be extended to the exploration of various promising electrocatalytic systems.

Electronic Supplementary Material

Download File(s)
12274_2022_4679_MOESM1_ESM.pdf (1 MB)

References

[1]

Olivier-Bourbigou, H.; Breuil, P. A. R.; Magna, L.; Michel, T.; Espada Pastor, M. F.; Delcroix, D. Nickel catalyzed olefin oligomerization and dimerization. Chem. Rev. 2020, 120, 7919–7983.

[2]

De, S.; Zhang, J. G.; Luque, R.; Yan, N. Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ. Sci. 2016, 9, 3314–3347.

[3]

Ariki, Z. T.; Maekawa, Y.; Nambo, M.; Crudden, C. M. Preparation of quaternary centers via nickel-catalyzed suzuki-miyaura cross-coupling of tertiary sulfones. J. Am. Chem. Soc. 2018, 140, 78–81.

[4]

Li, S. R.; Gong, J. L. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions. Chem. Soc. Rev. 2014, 43, 7245–7256.

[5]

Rönsch, S.; Schneider, J.; Matthischke, S.; Schlüter, M.; Götz, M.; Lefebvre, J.; Prabhakaran, P.; Bajohr, S. Review on methanation-from fundamentals to current projects. Fuel 2016, 166, 276–296.

[6]

Meng, X. Y.; Yang, Y. S.; Chen, L. F.; Xu, M.; Zhang, X.; Wei, M. A control over hydrogenation selectivity of furfural via tuning exposed facet of Ni catalysts. ACS Catal. 2019, 9, 4226–4235.

[7]

Yang, Y. D.; Li, S. P.; Xie, C.; Liu, H. Y.; Wang, Y. Y.; Mei, Q. Q.; Liu, H. Z.; Han, B. X. Ethylenediamine promoted the hydrogenative coupling of nitroarenes over Ni/C catalyst. Chin. Chem. Lett. 2019, 30, 203–206.

[8]

Xu, Y.; Xu, R. Nickel-based cocatalysts for photocatalytic hydrogen production. Appl. Surf. Sci. 2015, 351, 779–793.

[9]

Spanu, D.; Recchia, S.; Mohajernia, S.; Tomanec, O.; Kment, Š.; Zboril, R.; Schmuki, P.; Altomare, M. Templated dewetting-alloying of NiCu bilayers on TiO2 nanotubes enables efficient noble-metal-free photocatalytic H2 evolution. ACS. Catal. 2018, 8, 5298–5305.

[10]

Wang, Y.; Qu, Y.; Qu, B.; Bai, L.; Liu, Y.; Yang, Z. D.; Zhang, W.; Jing, L.; Fu, H. Construction of six-oxygen-coordinated single Ni sites on g-C3N4 with boron-oxo species for photocatalytic water-activation-induced CO2 reduction. Adv. Mater. 2021, 33, 2105482.

[11]

Han, L.; Dong, S. J.; Wang, E. K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 2016, 28, 9266–9291.

[12]

Gong, M.; Wang, D. Y.; Chen, C. C.; Hwang, B. J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28–46.

[13]

Yu, M. Q.; Budiyanto, E.; Tüysüz, H. Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction. Angew. Chem. , Int. Ed. 2022, 61, e202103824.

[14]

Csernica, P. M.; McKone, J. R.; Mulzer, C. R.; Dichtel, W. R.; Abruña, H. D.; DiSalvo, F. J. Electrochemical hydrogen evolution at ordered Mo7Ni7. ACS Catal. 2017, 7, 3375–3383.

[15]

Cui, X.; Chen, M. L.; Xiong, R.; Sun, J.; Liu, X. W.; Geng, B. Y. Ultrastable and efficient H2 production via membrane-free hybrid water electrolysis over a bifunctional catalyst of hierarchical Mo-Ni alloy nanoparticles. J. Mater. Chem. A 2019, 7, 16501–16507.

[16]

Li, W. L.; Li, F. S.; Yang, H.; Wu, X. J.; Zhang, P. L.; Shan, Y.; Sun, L. C. A bio-inspired coordination polymer as outstanding water oxidation catalyst via second coordination sphere engineering. Nat. Commun. 2019, 10, 5074.

[17]

Yang, H. C.; Wang, C. H.; Zhang, Y. J.; Wang, Q. B. Green synthesis of NiFe LDH/Ni foam at room temperature for highly efficient electrocatalytic oxygen evolution reaction. Sci. China Mater. 2019, 62, 681–689.

[18]

Wu, G. Q.; Liang, X. Y.; Zhang, H. L.; Zhang, L. J.; Yue, F.; Wang, J. D.; Su, X. T. Highly stable and sub-3 nm Ni nanoparticles coated with carbon nanosheets as a highly active heterogeneous hydrogenation catalyst. Catal. Commun. 2016, 79, 63–67.

[19]

Li, J. B.; Li, J. L.; Ding, Z. B.; Zhang, X. L.; Li, Y. Q.; Lu, T.; Yao, Y. F.; Mai, W.; Pan, L. K. In-situ encapsulation of Ni3S2 nanoparticles into N-doped interconnected carbon networks for efficient lithium storage. Chem. Eng. J. 2019, 378, 122108.

[20]

Zou, X.; Liu, Y. P.; Li, G. D.; Wu, Y. Y.; Liu, D. P.; Li, W.; Li, H. W.; Wang, D. J.; Zhang, Y.; Zou, X. X. Ultrafast formation of amorphous bimetallic hydroxide films on 3d conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater. 2017, 29, 1700404.

[21]

Yan, W. X.; Shen, Y. L.; An, C.; Li, L. N.; Si, R.; An, C. H. FeOx clusters decorated hcp Ni nanosheets as inverse electrocatalyst to stimulate excellent oxygen evolution performance. Appl. Catal. B:Environ. 2021, 284, 119687.

[22]

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

[23]

Choi, H.; Oh, S.; Trung Tran, S. B.; Park, J. Y. Size-controlled model Ni catalysts on Ga2O3 for CO2 hydrogenation to methanol. J. Catal. 2019, 376, 68–76.

[24]

Han, J. W.; Park, J. S.; Choi, M. S.; Lee, H. Uncoupling the size and support effects of Ni catalysts for dry reforming of methane. Appl. Catal. B:Environ. 2017, 203, 625–632.

[25]

Dou, S.; Wang, X.; Wang, S. Y. Rational design of transition metal-based materials for highly efficient electrocatalysis. Small Methods 2019, 3, 1800211.

[26]

Qu, X. D.; Hu, Q.; Song, Z. Q.; Sun, Z. H.; Zhang, B. H.; Zhong, J. L.; Cao, X. Y.; Liu, Y. J.; Zhao, B. L.; Liu, Z. B. et al. Adsorption and desorption mechanisms on graphene oxide nanosheets: Kinetics and tuning. Innovation 2021, 2, 100137.

[27]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[28]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[29]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996, 54, 11169–11186.

[30]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[31]

Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B. 1976, 13, 5188–5192.

[32]

Bader, R. F. W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928.

[33]

Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

[34]

Liang, C.; Chen, Y.; Wu, M.; Wang, K.; Zhang, W. K.; Gan, Y. P.; Huang, H.; Chen, J.; Xia, Y.; Zhang, J. et al. Green synthesis of graphite from CO2 without graphitization process of amorphous carbon. Nat. Commun. 2021, 12, 119.

[35]

Zhang, H. B.; Liu, Y. Y.; Chen, T.; Zhang, J. T.; Zhang, J.; Lou, X. W. Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix. Adv. Mater. 2019, 31, 1904548.

[36]

Li, Z. D.; He, D.; Yan, X. X.; Dai, S.; Younan, S.; Ke, Z. J.; Pan, X. Q.; Xiao, X. H.; Wu, H. J.; Gu, J. Size-dependent nickel-based electrocatalysts for selective CO2 reduction. Angew. Chem. , Int. Ed. 2020, 59, 18572–18577.

[37]
Venezia, A. M. ; Bertoncello, R. ; Deganello, G. X-ray photoelectron spectroscopy investigation of pumice-supported nickel catalysts. Surf. Interface Anal. 1995, 23, 239–247.
[38]

Zhao, S. L.; Li, M.; Han, M.; Xu, D. D.; Yang, J.; Lin, Y.; Shi, N. E.; Lu, Y. N.; Yang, R.; Liu, B. T. et al. Defect-rich Ni3FeN nanocrystals anchored on N-doped graphene for enhanced electrocatalytic oxygen evolution. Adv. Funct. Mater. 2018, 28, 1706018.

[39]

Ren, J. W.; Antonietti, M.; Fellinger, T. P. Efficient water splitting using a simple Ni/N/C paper electrocatalyst. Adv. Energy Mater. 2015, 5, 1401660.

[40]

Yang, H. Z.; Shang, L.; Zhang, Q. H.; Shi, R.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 2019, 10, 4585.

[41]

Chen, J. Y.; Li, H.; Fan, C.; Meng, Q. W.; Tang, Y. W.; Qiu, X. Y.; Fu, G. T.; Ma, T. Y. Dual single-atomic Ni-N4 and Fe-N4 sites constructing Janus hollow Graphene for selective oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003134.

[42]

Liu, G. Q.; Zhang, X.; Zhao, C. J.; Xiong, Q. Z.; Gong, W. B.; Wang, G. Z.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J. Electrocatalytic oxidation of benzyl alcohol for simultaneously promoting H2 evolution by a Co0.83Ni0.17/activated carbon electrocatalyst. New J. Chem. 2018, 42, 6381–6388.

[43]

Zhu, P.; Shen, Y. L.; Dai, L. X.; Yu, Q. Y.; Zhang, Z. M.; An, C. H. Accelerating anode reaction with electro-oxidation of alcohols over Ru nanoparticles to reduce the potential for water splitting. ACS Appl. Mater. Interfaces 2022, 14, 1452–1459.

Nano Research
Pages 202-208
Cite this article:
Zhong J, Shen Y, Zhu P, et al. Size-effect on Ni electrocatalyst: The case of electrochemical benzyl alcohol oxidation. Nano Research, 2023, 16(1): 202-208. https://doi.org/10.1007/s12274-022-4679-6
Topics:

858

Views

16

Crossref

15

Web of Science

14

Scopus

1

CSCD

Altmetrics

Received: 18 April 2022
Revised: 14 June 2022
Accepted: 18 June 2022
Published: 12 July 2022
© Tsinghua University Press 2022
Return