Graphical Abstract

Scorpions, through ruthless survival of the fittest, evolve the unique ability to quickly locate and hunt prey with slit receptors near the leg joints and a sharp sting on the multi-freedom tail. Inspired by this fantastic creature, we herein report a dual-bionic strategy to fabricate microcrack-assisted wrinkle strain sensor with both high sensitivity and stretchability. Specifically, laser-induced graphene (LIG) is transferred from polyimide film to Ecoflex and then coated with silver paste using the casting-and-peeling and prestretch-and-release methods. The shape-adaptive and long-range ordered geometry (e.g., amplitude and wavelength) of dual-bionic structure is prestrain-tuned to optimize the superfast response time (~ 76 ms), high sensitivity (gauge factor = 223.6), broad working range (70%–100%), and good reliability (> 800 cycles) of scorpion-inspired strain sensor, outperforming many LIG-based materials and other bionic sensors. The alternate reconnect/disconnect behaviors of slit-organ-like microcracks in the mechanical weak areas initiate tremendous resistance changes, whereas the scorpion-tail-like wrinkles act as a “bridge” connecting the adjacent LIG resistor units, enabling reversible resilience and unimpeded electrical linkages over a wide strain range. Combined with the self-developed miniaturized, flexible, and all-in-one wireless transmission system, a variety of scenarios such as large body movements, tiny pulse, and heartbeat are real-time monitored via bluetooth and displayed in the client-sides, revealing a huge promise in future wearable electronics.
Moin, A.; Zhou, A.; Rahimi, A.; Menon, A.; Benatti, S.; Alexandrov, G.; Tamakloe, S.; Ting, J.; Yamamoto, N.; Khan, Y.; et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 2021, 4, 54–63.
Kim, K. K.; Ha, I.; Kim, M.; Choi, J.; Won, P.; Jo, S.; Ko, S. H. A deep-learned skin sensor decoding the epicentral human motions. Nat. Commun. 2020, 11, 2149.
Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.
Baldo, T. A.; de Lima, L. F.; Mendes, L. F.; de Araujo, W. R.; Paixão, T. R. L. C.; Coltro, W. K. T. Wearable and biodegradable sensors for clinical and environmental applications. ACS Appl. Electron. Mater. 2021, 3, 68–100.
Song, H. L.; Zhang, J. Q.; Chen, D. B.; Wang, K. J.; Niu, S. C.; Han, Z. W.; Ren, L. Q. Superfast and high-sensitivity printable strain sensors with bioinspired micron-scale cracks. Nanoscale 2017, 9, 1166–1173.
Rahimi, R.; Ochoa, M.; Yu, W. Y.; Ziaie, B. Highly stretchable and sensitive unidirectional strain sensor via laser carbonization. ACS Appl. Mater. Interfaces 2015, 7, 4463–4470.
Dallinger, A.; Keller, K.; Fitzek, H.; Greco, F. Stretchable and skin-conformable conductors based on polyurethane/laser-induced graphene. ACS Appl. Mater. Interfaces 2020, 12, 19855–19865.
Shin, J.; Ko, J.; Jeong, S.; Won, P.; Lee, Y.; Kim, J.; Hong, S.; Jeon, N. L.; Ko, S. H. Monolithic digital patterning of polydimethylsiloxane with successive laser pyrolysis. Nat. Mater. 2021, 20, 100–107.
Ma, J. H.; Wang, P.; Chen, H. Y.; Bao, S. J.; Chen, W.; Lu, H. B. Highly sensitive and large-range strain sensor with a self-compensated two-order structure for human motion detection. ACS Appl. Mater. Interfaces 2019, 11, 8527–8536.
Sha, Y.; Yang, W. M.; Li, S. Y.; Yao, L. B.; Li, H. Y.; Cheng, L. S.; Yan, H.; Cao, W. Y.; Tan, J. Laser induced graphitization of PAN-based carbon fibers. RSC Adv. 2018, 8, 11543–11550.
Wang, W. T.; Lu, L. S.; Xie, Y. X.; Wu, W. B.; Liang, R. X.; Li, Z. H. Controlling the laser induction and cutting process on polyimide films for kirigami-inspired supercapacitor applications.
Feng, B.; Jiang, X.; Zou, G. S.; Wang, W. G.; Sun, T. M.; Yang, H.; Zhao, G. L.; Dong, M. Y.; Xiao, Y.; Zhu, H. W. et al. Nacre-inspired, liquid metal-based ultrasensitive electronic skin by spatially regulated cracking strategy. Adv. Funct. Mater. 2021, 31, 2102359.
Kulyk, B.; Silva, B. F. R.; Carvalho, A. F.; Silvestre, S.; Fernandes, A. J. S.; Martins, R.; Fortunato, E.; Costa, F. M. Laser-induced graphene from paper for mechanical sensing. ACS Appl. Mater. Interfaces 2021, 13, 10210–10221.
Kedambaimoole, V.; Kumar, N.; Shirhatti, V.; Nuthalapati, S.; Sen, P.; Nayak, M. M.; Rajanna, K.; Kumar, S. Laser-induced direct patterning of free-standing Ti3C2-MXene films for skin conformal tattoo sensors. ACS Sens. 2020, 5, 2086–2095.
Carvalho, A. F.; Fernandes, A. J. S.; Leitão, C.; Deuermeier, J.; Marques, A. C.; Martins, R.; Fortunato, E.; Costa, F. M. Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide. Adv. Funct. Mater. 2018, 28, 1805271.
Groo, L.; Nasser, J.; Inman, D. J.; Sodano, H. A. Transfer printed laser induced graphene strain gauges for embedded sensing in fiberglass composites. Compos. Part B: Eng. 2021, 219, 108932.
Gao, Y.; Li, Q.; Wu, R. Y.; Sha, J.; Lu, Y. F.; Xuan, F. Z. Laser direct writing of ultrahigh sensitive SiC-based strain sensor arrays on elastomer toward electronic skins. Adv. Funct. Mater. 2019, 29, 1806786.
Wang, W. T.; Lu, L. S.; Xie, Y. X.; Li, Z. H.; Wu, W. B.; Liang, R. X.; Tang, Y. One-step laser induced conversion of a gelatin-coated polyimide film into graphene: Tunable morphology, surface wettability and microsupercapacitor applications.
Qiao, Y. C.; Wang, Y. F.; Tian, H.; Li, M. R.; Jian, J. M.; Wei, Y. H.; Tian, Y.; Wang, D. Y.; Pang, Y.; Geng, X. S. et al. Multilayer graphene epidermal electronic skin. ACS Nano 2018, 12, 8839–8846.
Lin, J.; Peng, Z. W.; Liu, Y. Y.; Ruiz-Zepeda, F.; Ye, R. Q.; Samuel, E. L. G.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714.
Li, J. T.; Stanford, M. G.; Chen, W. Y.; Presutti, S. E.; Tour, J. M. Laminated laser-induced graphene composites. ACS Nano 2020, 14, 7911–7919.
Wang, W. T.; Lu, L. S.; Xie, Y. X.; Mei, X. K.; Tang, Y.; Wu, W. B.; Liang, R. X. Tailoring the surface morphology and nanoparticle distribution of laser-induced graphene/Co3O4 for high-performance flexible microsupercapacitors. Appl. Surf. Sci. 2020, 504, 144487.
Wang, H. M.; Wang, H. M.; Wang, Y. L.; Su, X. Y.; Wang, C. Y.; Zhang, M. C.; Jian, M. Q.; Xia, K. L.; Liang, X. P.; Lu, H. J. et al. Laser writing of Janus graphene/Kevlar textile for intelligent protective clothing. ACS Nano 2020, 14, 3219–3226.
Ye, R. Q.; Chyan, Y.; Zhang, J. B.; Li, Y. L.; Han, X.; Kittrell, C.; Tour, J. M. Laser-induced graphene formation on wood. Adv. Mater. 2017, 29, 1702211.
Chyan, Y.; Ye, R. Q.; Li, Y. L.; Singh, S. P.; Arnusch, C. J.; Tour, J. M. Laser-induced graphene by multiple lasing: Toward electronics on cloth, paper, and food. ACS Nano 2018, 12, 2176–2183.
Wang, Y. N.; Wang, Y.; Zhang, P. P.; Liu, F.; Luo, S. D. Laser-induced freestanding graphene papers: A new route of scalable fabrication with tunable morphologies and properties for multifunctional devices and structures. Small 2018, 14, 1802350.
Zang, X.; Jian, C.; Ingersoll, S.; Li, H. S.; Adams, J. J.; Lu, Z.; Ferralis, N.; Grossman, J. C. Laser-engineered heavy hydrocarbons: Old materials with new opportunities. Sci. Adv. 2020, 6, eaaz5231.
Zang, X. N.; Shen, C. W.; Chu, Y.; Li, B. X.; Wei, M. S.; Zhong, J. W.; Sanghadasa, M.; Lin, L. W. Laser-induced molybdenum carbide-graphene composites for 3D foldable paper electronics. Adv. Mater. 2018, 30, 1800062.
Wang, W. T.; Lu, L. S.; Xie, Y. X.; Yuan, W.; Wan, Z. P.; Tang, Y.; Teh, K. S. A highly stretchable microsupercapacitor using laser-induced graphene/NiO/Co3O4 electrodes on a biodegradable waterborne polyurethane substrate. Adv. Mater. Technol. 2020, 5, 1900903.
Jeong, S. Y.; Ma, Y. W.; Lee, J. U.; Je, G. J.; Shin, B. S. Flexible and highly sensitive strain sensor based on laser-induced graphene pattern fabricated by 355 nm pulsed laser. Sensors 2019, 19, 4867.
Sun, H. L.; Dai, K.; Zhai, W.; Zhou, Y. J.; Li, J. W.; Zheng, G. Q.; Li, B.; Liu, C. T.; Shen, C. Y. A highly sensitive and stretchable yarn strain sensor for human motion tracking utilizing a wrinkle-assisted crack structure. ACS Appl. Mater. Interfaces 2019, 11, 36052–36062.
Huang, L. X.; Wang, H.; Wu, P. X.; Huang, W. M.; Gao, W.; Fang, F. Y.; Cai, N.; Chen, R. X.; Zhu, Z. M. Wearable flexible strain sensor based on three-dimensional wavy laser-induced graphene and silicone rubber. Sensors 2020, 20, 4266.
Jiang, Y. G.; He, Q. P.; Cai, J.; Shen, D. W.; Hu, X. H.; Zhang, D. Y. Flexible strain sensor with tunable sensitivity via microscale electrical breakdown in graphene/polyimide thin films. ACS Appl. Mater. Interfaces 2020, 12, 58317–58325.
Sun, F. Q.; Tian, M. W.; Sun, X. T.; Xu, T. L.; Liu, X. Q.; Zhu, S. F.; Zhang, X. J.; Qu, L. J. Stretchable conductive fibers of ultrahigh tensile strain and stable conductance enabled by a worm-shaped graphene microlayer. Nano Lett. 2019, 19, 6592–6599.
Pang, Y.; Zhang, K. N.; Yang, Z.; Jiang, S.; Ju, Z. Y.; Li, Y. X.; Wang, X. F.; Wang, D. Y.; Jian, M. Q.; Zhang, Y. Y. et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 2018, 12, 2346–2354.
Han, Z. W.; Liu, L. P.; Zhang, J. Q.; Han, Q. G.; Wang, K. J.; Song, H. L.; Wang, Z.; Jiao, Z. B.; Niu, S. C.; Ren, L. Q. High-performance flexible strain sensor with bio-inspired crack arrays. Nanoscale 2018, 10, 15178–15186.
Fratzl, P.; Barth, F. G. Biomaterial systems for mechanosensing and actuation. Nature 2009, 462, 442–448.
Liu, L. P.; Jiao, Z. B.; Zhang, J. Q.; Wang, Y. C.; Zhang, C. C.; Meng, X. C.; Jiang, X. H.; Niu, S. C.; Han, Z. W.; Ren, L. Q. Bioinspired, superhydrophobic, and paper-based strain sensors for wearable and underwater applications. ACS Appl. Mater. Interfaces 2021, 13, 1967–1978.
Wang, D. K.; Zhang, J. Q.; Ma, G. L.; Fang, Y. Q.; Liu, L. P.; Wang, J. X.; Sun, T.; Zhang, C. C.; Meng, X. C.; Wang, K. J. et al. A selective-response bioinspired strain sensor using viscoelastic material as middle layer. ACS Nano 2021, 15, 19629–19639.
Chen, Z. M.; Liu, X. H.; Wang, S. M.; Zhang, X. X.; Luo, H. S. A bioinspired multilayer assembled microcrack architecture nanocomposite for highly sensitive strain sensing. Compos. Sci. Technol. 2018, 164, 51–58.
Yin, F. X.; Yang, J. Z.; Ji, P. G.; Peng, H. F.; Tang, Y. T.; Yuan, W. J. Bioinspired pretextured reduced graphene oxide patterns with multiscale topographies for high-performance mechanosensors. ACS Appl. Mater. Interfaces 2019, 11, 18645–18653.
Lu, L.; Li, Z.; He, H.; Xie, Y.; Wang, W. Bioinspired strain sensor using multiwalled carbon nanotube/polyvinyl butyral/nylon cloth for wireless sensing applications. IEEE Sens. J. 2022, 22, 12664–12672.
Dinh Le, T. S.; An, J. N.; Huang, Y.; Vo, Q.; Boonruangkan, J.; Tran, T.; Kim, S. W.; Sun, G. Z.; Kim, Y. J. Ultrasensitive anti-interference voice recognition by bio-inspired skin-attachable self-cleaning acoustic sensors. ACS Nano 2019, 13, 13293–13303.
Wang, H. Q.; Luo, H. S.; Zhou, H. K.; Zhou, X. D.; Zhang, X. X.; Lin, W. J.; Yi, G. B.; Zhang, Y. H. Dramatically enhanced strain- and moisture-sensitivity of bioinspired fragmentized carbon architectures regulated by cellulose nanocrystals. Chem. Eng. J. 2018, 345, 452–461.
Guo, X. H.; Zhao, Y. N.; Xu, X.; Chen, D. L.; Zhang, X. Y.; Yang, G.; Qiao, W.; Feng, R.; Zhang, X. Q.; Wu, J. et al. Biomimetic flexible strain sensor with high linearity using double conducting layers. Compos. Sci. Technol. 2021, 213, 108908.
Kang, D.; Pikhitsa, P. V.; Choi, Y. W.; Lee, C.; Shin, S. S.; Piao, L. F.; Park, B.; Suh, K. Y.; Kim, T. I.; Choi, M. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 2014, 516, 222–226.
Luo, C. Z.; Jia, J. J.; Gong, Y. N.; Wang, Z. C.; Fu, Q.; Pan, C. X. Highly sensitive, durable, and multifunctional sensor inspired by a spider. ACS Appl. Mater. Interfaces 2017, 9, 19955–19962.
Shafiei, A.; Pro, J. W.; Barthelat, F. Bioinspired buckling of scaled skins. Bioinspir. Biomim. 2021, 16, 045002.
Zou, Q.; Zheng, J.; Su, Q.; Wang, W. L.; Gao, W.; Ma, Z. M. A wave-inspired ultrastretchable strain sensor with predictable cracks. Sens. Actuators A: Phys. 2019, 300, 111658.
Shi, X. L.; Wang, H. K.; Xie, X. T.; Xue, Q. W.; Zhang, J. Y.; Kang, S. Q.; Wang, C. H.; Liang, J. J.; Chen, Y. S. Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture. ACS Nano 2019, 13, 649–659.
Miao, W. N.; Yao, Y. X.; Zhang, Z. W.; Ma, C. P.; Li, S. Z.; Tang, J. Y.; Liu, H.; Liu, Z. M.; Wang, D. Y.; Camburn, M. A. et al. Micro-/nano-voids guided two-stage film cracking on bioinspired assemblies for high-performance electronics. Nat. Commun. 2019, 10, 3862.
Tan, Y. L.; Hu, B. R.; Song, J.; Chu, Z. Y.; Wu, W. J. Bioinspired multiscale wrinkling patterns on curved substrates: An overview. Nano-Micro Lett. 2020, 12, 101.
Wang, K. J.; Zhang, J. Q.; Fang, Y. Q.; Chen, D. B.; Liu, L. P.; Han, Z. W.; Ren, L. Q. Micro/nano-scale characterization and fatigue fracture resistance of mechanoreceptor with crack-shaped slit arrays in scorpion. J. Bionic Eng. 2019, 16, 410–422.
Song, J.; Tan, Y. L.; Chu, Z. Y.; Xiao, M.; Li, G. Y.; Jiang, Z. H.; Wang, J.; Hu, T. J. Hierarchical reduced graphene oxide ridges for stretchable, wearable, and washable strain sensors. ACS Appl. Mater. Interfaces 2019, 11, 1283–1293.
Wang, W. T.; Lu, L. S.; Li, Z. H.; Lin, L. H.; Liang, Z. B.; Lu, X. Y.; Xie, Y. X. Fingerprint-inspired strain sensor with balanced sensitivity and strain range using laser-induced graphene. ACS Appl. Mater. Interfaces 2022, 14, 1315–1325.
Hua, Q. L.; Sun, J. L.; Liu, H. T.; Bao, R. R.; Yu, R. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244.
Jiang, B. L.; Liu, L. T.; Gao, Z. P.; Wang, W. S. A general and robust strategy for fabricating mechanoresponsive surface wrinkles with dynamic switchable transmittance. Adv. Opt. Mater. 2018, 6, 1800195.
Yang, S.; Khare, K.; Lin, P. C. Harnessing surface wrinkle patterns in soft matter. Adv. Funct. Mater. 2010, 20, 2550–2564.
Luo, S. D.; Hoang, P. T.; Liu, T. Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon 2016, 96, 522–531.
Liu, W.; Huang, Y. H.; Peng, Y. D.; Walczak, M.; Wang, D.; Chen, Q.; Liu, Z.; Li, L. Stable wearable strain sensors on textiles by direct laser writing of graphene. ACS Appl. Nano Mater. 2020, 3, 283–293.
Wang, G. T.; Wang, Y.; Luo, Y.; Luo, S. D. A self-converted strategy toward multifunctional composites with laser-induced graphitic structures. Compos. Sci. Technol. 2020, 199, 108334.
Wang, W. T.; Lu, L. S.; Li, Z. H.; Xie, Y. X. Laser induced 3D porous graphene dots: Bottom-up growth mechanism, multi-physics coupling effect and surface wettability. Appl. Surf. Sci. 2022, 592, 153242.
Park, B.; Kim, J.; Kang, D.; Jeong, C.; Kim, K. S.; Kim, J. U.; Yoo, P. J.; Kim, T. I. Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors: Effect of crack depth. Adv. Mater. 2016, 28, 8130–8137.
Yang, H. T.; Xiao, X.; Li, Z. P.; Li, K. R.; Cheng, N.; Li, S.; Low, J. H.; Jing, L.; Fu, X. M.; Achavananthadith, S. et al. Wireless Ti3C2Tx MXene strain sensor with ultrahigh sensitivity and designated working windows for soft exoskeletons. ACS Nano 2020, 14, 11860–11875.