AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Scorpion-inspired dual-bionic, microcrack-assisted wrinkle based laser induced graphene-silver strain sensor with high sensitivity and broad working range for wireless health monitoring system

Wentao WangLongsheng LuXiaoyu LuZhanbo LiangHonghao LinZehong LiXiaohua WuLihui LinYingxi Xie( )
School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641, China
Show Author Information

Graphical Abstract

Using the scorpion-inspired dual-bionic strategy, a highly sensitive and stretchable microcrack-assisted wrinkle strain sensor is assembled for flexible, all-in-one, and wireless health monitoring system.

Abstract

Scorpions, through ruthless survival of the fittest, evolve the unique ability to quickly locate and hunt prey with slit receptors near the leg joints and a sharp sting on the multi-freedom tail. Inspired by this fantastic creature, we herein report a dual-bionic strategy to fabricate microcrack-assisted wrinkle strain sensor with both high sensitivity and stretchability. Specifically, laser-induced graphene (LIG) is transferred from polyimide film to Ecoflex and then coated with silver paste using the casting-and-peeling and prestretch-and-release methods. The shape-adaptive and long-range ordered geometry (e.g., amplitude and wavelength) of dual-bionic structure is prestrain-tuned to optimize the superfast response time (~ 76 ms), high sensitivity (gauge factor = 223.6), broad working range (70%–100%), and good reliability (> 800 cycles) of scorpion-inspired strain sensor, outperforming many LIG-based materials and other bionic sensors. The alternate reconnect/disconnect behaviors of slit-organ-like microcracks in the mechanical weak areas initiate tremendous resistance changes, whereas the scorpion-tail-like wrinkles act as a “bridge” connecting the adjacent LIG resistor units, enabling reversible resilience and unimpeded electrical linkages over a wide strain range. Combined with the self-developed miniaturized, flexible, and all-in-one wireless transmission system, a variety of scenarios such as large body movements, tiny pulse, and heartbeat are real-time monitored via bluetooth and displayed in the client-sides, revealing a huge promise in future wearable electronics.

Electronic Supplementary Material

Video
12274_2022_4680_MOESM2_ESM.mp4
Download File(s)
12274_2022_4680_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Moin, A.; Zhou, A.; Rahimi, A.; Menon, A.; Benatti, S.; Alexandrov, G.; Tamakloe, S.; Ting, J.; Yamamoto, N.; Khan, Y.; et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 2021, 4, 54–63.

[2]

Kim, K. K.; Ha, I.; Kim, M.; Choi, J.; Won, P.; Jo, S.; Ko, S. H. A deep-learned skin sensor decoding the epicentral human motions. Nat. Commun. 2020, 11, 2149.

[3]

Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

[4]

Baldo, T. A.; de Lima, L. F.; Mendes, L. F.; de Araujo, W. R.; Paixão, T. R. L. C.; Coltro, W. K. T. Wearable and biodegradable sensors for clinical and environmental applications. ACS Appl. Electron. Mater. 2021, 3, 68–100.

[5]

Song, H. L.; Zhang, J. Q.; Chen, D. B.; Wang, K. J.; Niu, S. C.; Han, Z. W.; Ren, L. Q. Superfast and high-sensitivity printable strain sensors with bioinspired micron-scale cracks. Nanoscale 2017, 9, 1166–1173.

[6]

Rahimi, R.; Ochoa, M.; Yu, W. Y.; Ziaie, B. Highly stretchable and sensitive unidirectional strain sensor via laser carbonization. ACS Appl. Mater. Interfaces 2015, 7, 4463–4470.

[7]

Dallinger, A.; Keller, K.; Fitzek, H.; Greco, F. Stretchable and skin-conformable conductors based on polyurethane/laser-induced graphene. ACS Appl. Mater. Interfaces 2020, 12, 19855–19865.

[8]

Shin, J.; Ko, J.; Jeong, S.; Won, P.; Lee, Y.; Kim, J.; Hong, S.; Jeon, N. L.; Ko, S. H. Monolithic digital patterning of polydimethylsiloxane with successive laser pyrolysis. Nat. Mater. 2021, 20, 100–107.

[9]

Ma, J. H.; Wang, P.; Chen, H. Y.; Bao, S. J.; Chen, W.; Lu, H. B. Highly sensitive and large-range strain sensor with a self-compensated two-order structure for human motion detection. ACS Appl. Mater. Interfaces 2019, 11, 8527–8536.

[10]

Sha, Y.; Yang, W. M.; Li, S. Y.; Yao, L. B.; Li, H. Y.; Cheng, L. S.; Yan, H.; Cao, W. Y.; Tan, J. Laser induced graphitization of PAN-based carbon fibers. RSC Adv. 2018, 8, 11543–11550.

[11]
WangW. T.LuL. S.XieY. X.WuW. B.LiangR. X.LiZ. H. Controlling the laser induction and cutting process on polyimide films for kirigami-inspired supercapacitor applicationsSci. China Technol. Sci.20216465166110.1007/s11431-019-1543-y

Wang, W. T.; Lu, L. S.; Xie, Y. X.; Wu, W. B.; Liang, R. X.; Li, Z. H. Controlling the laser induction and cutting process on polyimide films for kirigami-inspired supercapacitor applications. Sci. China Technol. Sci. 2021, 64, 651–661.

[12]

Feng, B.; Jiang, X.; Zou, G. S.; Wang, W. G.; Sun, T. M.; Yang, H.; Zhao, G. L.; Dong, M. Y.; Xiao, Y.; Zhu, H. W. et al. Nacre-inspired, liquid metal-based ultrasensitive electronic skin by spatially regulated cracking strategy. Adv. Funct. Mater. 2021, 31, 2102359.

[13]

Kulyk, B.; Silva, B. F. R.; Carvalho, A. F.; Silvestre, S.; Fernandes, A. J. S.; Martins, R.; Fortunato, E.; Costa, F. M. Laser-induced graphene from paper for mechanical sensing. ACS Appl. Mater. Interfaces 2021, 13, 10210–10221.

[14]

Kedambaimoole, V.; Kumar, N.; Shirhatti, V.; Nuthalapati, S.; Sen, P.; Nayak, M. M.; Rajanna, K.; Kumar, S. Laser-induced direct patterning of free-standing Ti3C2-MXene films for skin conformal tattoo sensors. ACS Sens. 2020, 5, 2086–2095.

[15]

Carvalho, A. F.; Fernandes, A. J. S.; Leitão, C.; Deuermeier, J.; Marques, A. C.; Martins, R.; Fortunato, E.; Costa, F. M. Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide. Adv. Funct. Mater. 2018, 28, 1805271.

[16]

Groo, L.; Nasser, J.; Inman, D. J.; Sodano, H. A. Transfer printed laser induced graphene strain gauges for embedded sensing in fiberglass composites. Compos. Part B: Eng. 2021, 219, 108932.

[17]

Gao, Y.; Li, Q.; Wu, R. Y.; Sha, J.; Lu, Y. F.; Xuan, F. Z. Laser direct writing of ultrahigh sensitive SiC-based strain sensor arrays on elastomer toward electronic skins. Adv. Funct. Mater. 2019, 29, 1806786.

[18]
WangW. T.LuL. S.XieY. X.LiZ. H.WuW. B.LiangR. X.TangY. One-step laser induced conversion of a gelatin-coated polyimide film into graphene: Tunable morphology, surface wettability and microsupercapacitor applicationsSci. China Technol. Sci.2021641030104010.1007/s11431-020-1609-4

Wang, W. T.; Lu, L. S.; Xie, Y. X.; Li, Z. H.; Wu, W. B.; Liang, R. X.; Tang, Y. One-step laser induced conversion of a gelatin-coated polyimide film into graphene: Tunable morphology, surface wettability and microsupercapacitor applications. Sci. China Technol. Sci. 2021, 64, 1030–1040.

[19]

Qiao, Y. C.; Wang, Y. F.; Tian, H.; Li, M. R.; Jian, J. M.; Wei, Y. H.; Tian, Y.; Wang, D. Y.; Pang, Y.; Geng, X. S. et al. Multilayer graphene epidermal electronic skin. ACS Nano 2018, 12, 8839–8846.

[20]

Lin, J.; Peng, Z. W.; Liu, Y. Y.; Ruiz-Zepeda, F.; Ye, R. Q.; Samuel, E. L. G.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714.

[21]

Li, J. T.; Stanford, M. G.; Chen, W. Y.; Presutti, S. E.; Tour, J. M. Laminated laser-induced graphene composites. ACS Nano 2020, 14, 7911–7919.

[22]

Wang, W. T.; Lu, L. S.; Xie, Y. X.; Mei, X. K.; Tang, Y.; Wu, W. B.; Liang, R. X. Tailoring the surface morphology and nanoparticle distribution of laser-induced graphene/Co3O4 for high-performance flexible microsupercapacitors. Appl. Surf. Sci. 2020, 504, 144487.

[23]

Wang, H. M.; Wang, H. M.; Wang, Y. L.; Su, X. Y.; Wang, C. Y.; Zhang, M. C.; Jian, M. Q.; Xia, K. L.; Liang, X. P.; Lu, H. J. et al. Laser writing of Janus graphene/Kevlar textile for intelligent protective clothing. ACS Nano 2020, 14, 3219–3226.

[24]

Ye, R. Q.; Chyan, Y.; Zhang, J. B.; Li, Y. L.; Han, X.; Kittrell, C.; Tour, J. M. Laser-induced graphene formation on wood. Adv. Mater. 2017, 29, 1702211.

[25]

Chyan, Y.; Ye, R. Q.; Li, Y. L.; Singh, S. P.; Arnusch, C. J.; Tour, J. M. Laser-induced graphene by multiple lasing: Toward electronics on cloth, paper, and food. ACS Nano 2018, 12, 2176–2183.

[26]

Wang, Y. N.; Wang, Y.; Zhang, P. P.; Liu, F.; Luo, S. D. Laser-induced freestanding graphene papers: A new route of scalable fabrication with tunable morphologies and properties for multifunctional devices and structures. Small 2018, 14, 1802350.

[27]

Zang, X.; Jian, C.; Ingersoll, S.; Li, H. S.; Adams, J. J.; Lu, Z.; Ferralis, N.; Grossman, J. C. Laser-engineered heavy hydrocarbons: Old materials with new opportunities. Sci. Adv. 2020, 6, eaaz5231.

[28]

Zang, X. N.; Shen, C. W.; Chu, Y.; Li, B. X.; Wei, M. S.; Zhong, J. W.; Sanghadasa, M.; Lin, L. W. Laser-induced molybdenum carbide-graphene composites for 3D foldable paper electronics. Adv. Mater. 2018, 30, 1800062.

[29]

Wang, W. T.; Lu, L. S.; Xie, Y. X.; Yuan, W.; Wan, Z. P.; Tang, Y.; Teh, K. S. A highly stretchable microsupercapacitor using laser-induced graphene/NiO/Co3O4 electrodes on a biodegradable waterborne polyurethane substrate. Adv. Mater. Technol. 2020, 5, 1900903.

[30]

Jeong, S. Y.; Ma, Y. W.; Lee, J. U.; Je, G. J.; Shin, B. S. Flexible and highly sensitive strain sensor based on laser-induced graphene pattern fabricated by 355 nm pulsed laser. Sensors 2019, 19, 4867.

[31]

Sun, H. L.; Dai, K.; Zhai, W.; Zhou, Y. J.; Li, J. W.; Zheng, G. Q.; Li, B.; Liu, C. T.; Shen, C. Y. A highly sensitive and stretchable yarn strain sensor for human motion tracking utilizing a wrinkle-assisted crack structure. ACS Appl. Mater. Interfaces 2019, 11, 36052–36062.

[32]

Huang, L. X.; Wang, H.; Wu, P. X.; Huang, W. M.; Gao, W.; Fang, F. Y.; Cai, N.; Chen, R. X.; Zhu, Z. M. Wearable flexible strain sensor based on three-dimensional wavy laser-induced graphene and silicone rubber. Sensors 2020, 20, 4266.

[33]
Lu, L.; Zhang, D.; Xie, Y.; He, H.; Wang, W. Laser induced graphene/silicon carbide: Core–shell structure, multifield coupling effects, and pressure sensor applications. Adv. Mater. Technol., in press, https://doi.org/10.1002/admt.202200441.
[34]

Jiang, Y. G.; He, Q. P.; Cai, J.; Shen, D. W.; Hu, X. H.; Zhang, D. Y. Flexible strain sensor with tunable sensitivity via microscale electrical breakdown in graphene/polyimide thin films. ACS Appl. Mater. Interfaces 2020, 12, 58317–58325.

[35]

Sun, F. Q.; Tian, M. W.; Sun, X. T.; Xu, T. L.; Liu, X. Q.; Zhu, S. F.; Zhang, X. J.; Qu, L. J. Stretchable conductive fibers of ultrahigh tensile strain and stable conductance enabled by a worm-shaped graphene microlayer. Nano Lett. 2019, 19, 6592–6599.

[36]

Pang, Y.; Zhang, K. N.; Yang, Z.; Jiang, S.; Ju, Z. Y.; Li, Y. X.; Wang, X. F.; Wang, D. Y.; Jian, M. Q.; Zhang, Y. Y. et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 2018, 12, 2346–2354.

[37]

Han, Z. W.; Liu, L. P.; Zhang, J. Q.; Han, Q. G.; Wang, K. J.; Song, H. L.; Wang, Z.; Jiao, Z. B.; Niu, S. C.; Ren, L. Q. High-performance flexible strain sensor with bio-inspired crack arrays. Nanoscale 2018, 10, 15178–15186.

[38]

Fratzl, P.; Barth, F. G. Biomaterial systems for mechanosensing and actuation. Nature 2009, 462, 442–448.

[39]

Liu, L. P.; Jiao, Z. B.; Zhang, J. Q.; Wang, Y. C.; Zhang, C. C.; Meng, X. C.; Jiang, X. H.; Niu, S. C.; Han, Z. W.; Ren, L. Q. Bioinspired, superhydrophobic, and paper-based strain sensors for wearable and underwater applications. ACS Appl. Mater. Interfaces 2021, 13, 1967–1978.

[40]

Wang, D. K.; Zhang, J. Q.; Ma, G. L.; Fang, Y. Q.; Liu, L. P.; Wang, J. X.; Sun, T.; Zhang, C. C.; Meng, X. C.; Wang, K. J. et al. A selective-response bioinspired strain sensor using viscoelastic material as middle layer. ACS Nano 2021, 15, 19629–19639.

[41]

Chen, Z. M.; Liu, X. H.; Wang, S. M.; Zhang, X. X.; Luo, H. S. A bioinspired multilayer assembled microcrack architecture nanocomposite for highly sensitive strain sensing. Compos. Sci. Technol. 2018, 164, 51–58.

[42]

Yin, F. X.; Yang, J. Z.; Ji, P. G.; Peng, H. F.; Tang, Y. T.; Yuan, W. J. Bioinspired pretextured reduced graphene oxide patterns with multiscale topographies for high-performance mechanosensors. ACS Appl. Mater. Interfaces 2019, 11, 18645–18653.

[43]

Lu, L.; Li, Z.; He, H.; Xie, Y.; Wang, W. Bioinspired strain sensor using multiwalled carbon nanotube/polyvinyl butyral/nylon cloth for wireless sensing applications. IEEE Sens. J. 2022, 22, 12664–12672.

[44]

Dinh Le, T. S.; An, J. N.; Huang, Y.; Vo, Q.; Boonruangkan, J.; Tran, T.; Kim, S. W.; Sun, G. Z.; Kim, Y. J. Ultrasensitive anti-interference voice recognition by bio-inspired skin-attachable self-cleaning acoustic sensors. ACS Nano 2019, 13, 13293–13303.

[45]

Wang, H. Q.; Luo, H. S.; Zhou, H. K.; Zhou, X. D.; Zhang, X. X.; Lin, W. J.; Yi, G. B.; Zhang, Y. H. Dramatically enhanced strain- and moisture-sensitivity of bioinspired fragmentized carbon architectures regulated by cellulose nanocrystals. Chem. Eng. J. 2018, 345, 452–461.

[46]

Guo, X. H.; Zhao, Y. N.; Xu, X.; Chen, D. L.; Zhang, X. Y.; Yang, G.; Qiao, W.; Feng, R.; Zhang, X. Q.; Wu, J. et al. Biomimetic flexible strain sensor with high linearity using double conducting layers. Compos. Sci. Technol. 2021, 213, 108908.

[47]

Kang, D.; Pikhitsa, P. V.; Choi, Y. W.; Lee, C.; Shin, S. S.; Piao, L. F.; Park, B.; Suh, K. Y.; Kim, T. I.; Choi, M. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 2014, 516, 222–226.

[48]

Luo, C. Z.; Jia, J. J.; Gong, Y. N.; Wang, Z. C.; Fu, Q.; Pan, C. X. Highly sensitive, durable, and multifunctional sensor inspired by a spider. ACS Appl. Mater. Interfaces 2017, 9, 19955–19962.

[49]

Shafiei, A.; Pro, J. W.; Barthelat, F. Bioinspired buckling of scaled skins. Bioinspir. Biomim. 2021, 16, 045002.

[50]

Zou, Q.; Zheng, J.; Su, Q.; Wang, W. L.; Gao, W.; Ma, Z. M. A wave-inspired ultrastretchable strain sensor with predictable cracks. Sens. Actuators A: Phys. 2019, 300, 111658.

[51]

Shi, X. L.; Wang, H. K.; Xie, X. T.; Xue, Q. W.; Zhang, J. Y.; Kang, S. Q.; Wang, C. H.; Liang, J. J.; Chen, Y. S. Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture. ACS Nano 2019, 13, 649–659.

[52]

Miao, W. N.; Yao, Y. X.; Zhang, Z. W.; Ma, C. P.; Li, S. Z.; Tang, J. Y.; Liu, H.; Liu, Z. M.; Wang, D. Y.; Camburn, M. A. et al. Micro-/nano-voids guided two-stage film cracking on bioinspired assemblies for high-performance electronics. Nat. Commun. 2019, 10, 3862.

[53]

Tan, Y. L.; Hu, B. R.; Song, J.; Chu, Z. Y.; Wu, W. J. Bioinspired multiscale wrinkling patterns on curved substrates: An overview. Nano-Micro Lett. 2020, 12, 101.

[54]

Wang, K. J.; Zhang, J. Q.; Fang, Y. Q.; Chen, D. B.; Liu, L. P.; Han, Z. W.; Ren, L. Q. Micro/nano-scale characterization and fatigue fracture resistance of mechanoreceptor with crack-shaped slit arrays in scorpion. J. Bionic Eng. 2019, 16, 410–422.

[55]

Song, J.; Tan, Y. L.; Chu, Z. Y.; Xiao, M.; Li, G. Y.; Jiang, Z. H.; Wang, J.; Hu, T. J. Hierarchical reduced graphene oxide ridges for stretchable, wearable, and washable strain sensors. ACS Appl. Mater. Interfaces 2019, 11, 1283–1293.

[56]

Wang, W. T.; Lu, L. S.; Li, Z. H.; Lin, L. H.; Liang, Z. B.; Lu, X. Y.; Xie, Y. X. Fingerprint-inspired strain sensor with balanced sensitivity and strain range using laser-induced graphene. ACS Appl. Mater. Interfaces 2022, 14, 1315–1325.

[57]

Hua, Q. L.; Sun, J. L.; Liu, H. T.; Bao, R. R.; Yu, R. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244.

[58]

Jiang, B. L.; Liu, L. T.; Gao, Z. P.; Wang, W. S. A general and robust strategy for fabricating mechanoresponsive surface wrinkles with dynamic switchable transmittance. Adv. Opt. Mater. 2018, 6, 1800195.

[59]

Yang, S.; Khare, K.; Lin, P. C. Harnessing surface wrinkle patterns in soft matter. Adv. Funct. Mater. 2010, 20, 2550–2564.

[60]

Luo, S. D.; Hoang, P. T.; Liu, T. Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon 2016, 96, 522–531.

[61]

Liu, W.; Huang, Y. H.; Peng, Y. D.; Walczak, M.; Wang, D.; Chen, Q.; Liu, Z.; Li, L. Stable wearable strain sensors on textiles by direct laser writing of graphene. ACS Appl. Nano Mater. 2020, 3, 283–293.

[62]

Wang, G. T.; Wang, Y.; Luo, Y.; Luo, S. D. A self-converted strategy toward multifunctional composites with laser-induced graphitic structures. Compos. Sci. Technol. 2020, 199, 108334.

[63]

Wang, W. T.; Lu, L. S.; Li, Z. H.; Xie, Y. X. Laser induced 3D porous graphene dots: Bottom-up growth mechanism, multi-physics coupling effect and surface wettability. Appl. Surf. Sci. 2022, 592, 153242.

[64]

Park, B.; Kim, J.; Kang, D.; Jeong, C.; Kim, K. S.; Kim, J. U.; Yoo, P. J.; Kim, T. I. Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors: Effect of crack depth. Adv. Mater. 2016, 28, 8130–8137.

[65]

Yang, H. T.; Xiao, X.; Li, Z. P.; Li, K. R.; Cheng, N.; Li, S.; Low, J. H.; Jing, L.; Fu, X. M.; Achavananthadith, S. et al. Wireless Ti3C2Tx MXene strain sensor with ultrahigh sensitivity and designated working windows for soft exoskeletons. ACS Nano 2020, 14, 11860–11875.

Nano Research
Pages 1228-1241
Cite this article:
Wang W, Lu L, Lu X, et al. Scorpion-inspired dual-bionic, microcrack-assisted wrinkle based laser induced graphene-silver strain sensor with high sensitivity and broad working range for wireless health monitoring system. Nano Research, 2023, 16(1): 1228-1241. https://doi.org/10.1007/s12274-022-4680-0
Topics:

1505

Views

30

Crossref

28

Web of Science

32

Scopus

1

CSCD

Altmetrics

Received: 21 April 2022
Revised: 01 June 2022
Accepted: 20 June 2022
Published: 11 August 2022
© Tsinghua University Press 2022
Return