AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Advanced MOF-based electrode materials for supercapacitors and electrocatalytic oxygen reduction

Bolong Yang1,§Bingjie Li2,§( )Zhonghua Xiang1( )
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China

§ Bolong Yang and Bingjie Li contributed equally to this work.

Show Author Information

Graphical Abstract

We summarized the recent advances of metal-organic frameworks (MOFs), MOF composites, and their derivatives as electrode materials towards supercapacitors and electrocatalytic oxygen reduction reaction (ORR). Finally, this review summarizes the major current challenges along with some solutions and potential development trends of MOFs as electrode materials for supercapacitors and electrocatalytic ORR.

Abstract

Metal-organic frameworks (MOFs) have attracted a lot of attention due to their diverse structures, favorable porous properties, and tunable chemical compositions in the multiple fields. Notably, MOF-based materials (including pristine MOFs, MOF composites, and their derivatives) play the vital role in electrochemical energy storage and conversion systems, due to their ability for regulating chemical composition at the molecular level and their highly porous frameworks for facilitating the mass and charge transfer. Supercapacitors and fuel cells are used as one of energy storage and conversion systems respectively, and it is unstoppable to design and synthesize high-efficiency electrode materials for them. This review starts with the strategies for designing targeted MOF-based materials in electrochemical energy storage and conversion applications followed by the state-of-the-art MOF-based materials discussed as to their potential applications in supercapacitors and electrocatalytic oxygen reduction reaction (ORR). Finally, the challenges and perspectives of MOF-based materials applied for supercapacitors and electrocatalytic ORR are discussed.

References

[1]

Li, L.; Lu, F.; Xue, R.; Ma, B. L.; Li, Q.; Wu, N.; Liu, H.; Yao, W. Q.; Guo, H.; Yang, W. Ultrastable triazine-based covalent organic framework with an interlayer hydrogen bonding for supercapacitor applications. ACS Appl. Mater. Interfaces 2019, 11, 26355–26363.

[2]

Xu, P. P.; Liu, J. J.; Yan, P.; Miao, C. X.; Ye, K.; Cheng, K.; Yin, J. L.; Cao, D. X.; Li, K. F.; Wang, G. L. Preparation of porous cadmium sulphide on nickel foam: A novel electrode material with excellent supercapacitor performance. J. Mater. Chem. A 2016, 4, 4920–4928.

[3]

Samireddi, S.; Aishwarya, V.; Shown, I.; Muthusamy, S.; Unni, S. M.; Wong, K. T.; Chen, K. H.; Chen, L. C. Synergistic dual-atom molecular catalyst derived from low-temperature pyrolyzed heterobimetallic macrocycle-N4 corrole complex for oxygen reduction. Small 2021, 17, 2103823.

[4]

Amali, A. J.; Sun, J. K.; Xu, Q. From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage. Chem. Commun. 2014, 50, 1519–1522.

[5]

Jiang, M., Yang, J., Ju, J., Zhang W., He, L., Zhang, J., Fu, C., Sun, B. Space-confined synthesis of CoNi nanoalloy in N-doped porous carbon frameworks as efficient oxygen reduction catalyst for neutral and alkaline aluminum-air batteries. Energy Storage Materials 2020, 27, 96–108.

[6]

Pan, Y.; Zhao, Y. X.; Mu, S. J.; Wang, Y.; Jiang, C. M.; Liu, Q. Z.; Fang, Q. R.; Xue, M.; Qiu, S. L. Cation exchanged MOF-derived nitrogen-doped porous carbons for CO2 capture and supercapacitor electrode materials. J. Mater. Chem. A 2017, 5, 9544–9552.

[7]

Alaş, M. Ö.; Güngör, A.; Genç, R.; Erdem, E. Feeling the power: Robust supercapacitors from nanostructured conductive polymers fostered with Mn2+ and carbon dots. Nanoscale 2019, 11, 12804–12816.

[8]

Guo, J. N.; Li, B. J.; Zhang, Q. Y.; Liu, Q. T.; Wang, Z. L.; Zhao, Y. F.; Shui, J. L.; Xiang, Z. H. Highly accessible atomically dispersed Fe-Nx sites electrocatalyst for proton-exchange membrane fuel cell. Adv. Sci. 2021, 8, 2002249.

[9]

Zhang, H. G.; Chung, H. T.; Cullen, D. A.; Wagner, S.; Kramm, U. I.; More, K. L.; Zelenay, P.; Wu, G. High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy Environ. Sci. 2019, 12, 2548–2558.

[10]

Zhang, N.; Zhou, T. P.; Chen, M. L.; Feng, H.; Yuan, R. L.; Zhong, C. A.; Yan, W. S.; Tian, Y. C.; Wu, X. J.; Chu, W. S. et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy Environ. Sci. 2020, 13, 111–118.

[11]

Huang, Y. P.; Liu, K.; Kan, S. T.; Liu, P. G.; Hao, R.; Liu, W. F.; Wu, Y. F.; Liu, H. T.; Liu, M.; Liu, K. Y. Highly dispersed Fe-Nx active sites on Graphitic-N dominated porous carbon for synergetic catalysis of oxygen reduction reaction. Carbon 2021, 171, 1–9.

[12]

Sarkar, S.; Biswas, A.; Kamboj, N.; Dey, R. S. Unveiling the potential of an Fe bis(terpyridine) complex for precise development of an Fe-N-C electrocatalyst to promote the oxygen reduction reaction. Inorg. Chem. 2020, 59, 13453–13464.

[13]

Jayaramulu, K.; Dubal, D. P.; Nagar, B.; Ranc, V.; Tomanec, O.; Petr, M.; Datta, K. K. R.; Zboril, R.; Gómez-Romero, P.; Fischer, R. A. Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage. Adv. Mater. 2018, 30, 1705789.

[14]

Salunkhe, R. R.; Tang, J.; Kamachi, Y.; Nakato, T.; Kim, J. H.; Yamauchi, Y. Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework. ACS Nano 2015, 9, 6288–6296.

[15]

Chen, Y. Z.; Zhou, T. F.; Li, L.; Pang, W. K.; He, X. M.; Liu, Y. N.; Guo, Z. P. Interfacial engineering of nickel boride/metaborate and its effect on high energy density asymmetric supercapacitors. ACS Nano 2019, 13, 9376–9385.

[16]

Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.

[17]

Feng, C.; Lv, C. P.; Li, Z. Q.; Zhao, H.; Huang, H. H. A porous 2D Ni-MOF material with a high supercapacitive performance. J. Solid State Chem. 2018, 265, 244–247.

[18]

Li, Y. W.; Zhang, W. J.; Li, J.; Ma, H. Y.; Du, H. M.; Li, D. C.; Wang, S. N.; Zhao, J. S.; Dou, J. M.; Xu, L. Q. Fe-MOF-derived efficient ORR/OER bifunctional electrocatalyst for rechargeable Zinc-air batteries. ACS Appl. Mater. Interfaces 2020, 12, 44710–44719.

[19]

Zou, L. L.; Hou, C. C.; Liu, Z.; Pang, H.; Xu, Q. Superlong single-crystal metal-organic framework nanotubes. J. Am. Chem. Soc. 2018, 140, 15393–15401.

[20]

Zhan, G. W.; Zeng, H. C. Synthesis and functionalization of oriented metal-organic-framework nanosheets: Toward a series of 2D catalysts. Adv. Funct. Mater. 2016, 26, 3268–3281.

[21]

Zhang, T.; Manna, K.; Lin, W. B. Metal-organic frameworks stabilize solution-inaccessible cobalt catalysts for highly efficient broad-scope organic transformations. J. Am. Chem. Soc. 2016, 138, 3241–3249.

[22]

Li, Z. X.; Yang, B. L.; Zou, K. Y.; Kong, L. J.; Yue, M. L.; Duan, H. H. Novel porous carbon nanosheet derived from a 2D Cu-MOF: Ultrahigh porosity and excellent performances in the supercapacitor cell. Carbon 2019, 144, 540–548.

[23]

Sahoo, R.; Pham, D. T.; Lee, T. H.; Luu, T. H. T.; Seok, J.; Lee, Y. H. Redox-driven route for widening voltage window in asymmetric supercapacitor. ACS Nano 2018, 12, 8494–8505.

[24]

Mirhosseini, H.; Shamspur, T.; Mostafavi, A.; Sargazi, G. A novel ultrasonic reverse micelle-assisted electrospun efficient route for Eu-MOF and Eu-MOF/CA composite nanofibers: A high performance photocatalytic treatment for removal of BG pollutant. Environ. Sci. Pollut. Res. 2021, 28, 4317–4328.

[25]

Shen, C. H.; Chuang, C. H.; Gu, Y. J.; Ho, W. H.; Song, Y. D.; Chen, Y. C.; Wang, Y. C.; Kung, C. W. Cerium-based metal-organic framework nanocrystals interconnected by carbon nanotubes for boosting electrochemical capacitor performance. ACS Appl. Mater. Interfaces 2021, 13, 16418–16426.

[26]

Vo, T. K.; Nguyen, V. C.; Quang, D. T.; Park, B. J.; Kim, J. Formation of structural defects within UiO-66(Zr)-(OH)2 framework for enhanced CO2 adsorption using a microwave-assisted continuous-flow tubular reactor. Microporous Mesoporous Mater. 2021, 312, 110746.

[27]

Li, Z. X.; Yang, B. L.; Jiang, Y. F.; Yu, C. Y.; Zhang, L. Metal-directed assembly of five 4-connected MOFs: One-pot syntheses of MOF-derived MxSy@C composites for photocatalytic degradation and supercapacitors. Cryst. Growth Des. 2018, 18, 979–992.

[28]

Zou, K. Y.; Zou, Q.; Han, T.; Liu, Y. C.; Wang, J. J.; Zhang, X.; Li, Z. X. Anion-dependent construction of a series of fluorescent coordination polymers based on 1D zinc∩4, 4′-bis(imidazol-1-yl)-biphenyl substrates. J. Solid State Chem. 2016, 235, 85–92.

[29]

Furukawa, H.; Kim, J.; Ockwig, N. W.; O’Keeffe, M.; Yaghi, O. M. Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedra. J. Am. Chem. Soc. 2008, 130, 11650–11661.

[30]

Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.

[31]

Jeon, J. W.; Sharma, R.; Meduri, P.; Arey, B. W.; Schaef, H. T.; Lutkenhaus, J. L.; Lemmon, J. P.; Thallapally, P. K.; Nandasiri, M. I.; McGrail, B. P. et al. In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 7214–7222.

[32]

Young, C.; Salunkhe, R. R.; Tang, J.; Hu, C. C.; Shahabuddin, M.; Yanmaz, E.; Hossain, S. A.; Kim, J. H.; Yamauchi, Y. Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: The effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte. Phys. Chem. Chem. Phys. 2016, 18, 29308–29315.

[33]

An, C. H.; Wang, Y. J.; Jiao, L. F.; Yuan, H. T. Mesoporous Ni@C hybrids for a high energy aqueous asymmetric supercapacitor device. J. Mater. Chem. A 2016, 4, 9670–9676.

[34]

Liu, X. H.; Zhou, L.; Zhao, Y. Q.; Bian, L.; Feng, X. T.; Pu, Q. S. Hollow, spherical nitrogen-rich porous carbon shells obtained from a porous organic framework for the supercapacitor. ACS Appl. Mater. Interfaces 2013, 5, 10280–10287.

[35]

Şenocak, A.; Tümay, S. O.; Ömeroğlu, İ.; Şanko, V. Crosslinker polycarbazole supported magnetite MOF@CNT hybrid material for synergetic and selective voltammetric determination of adenine and guanine. J. Electroanal. Chem. 2022, 905, 115963.

[36]

Zhang, J.; Li, Z.; Zhang, L.; García Molleja, J.; Wang, D. Y. Bimetallic metal-organic frameworks and Graphene oxide nano-hybrids for enhanced fire retardant epoxy composites: A novel carbonization mechanism. Carbon 2019, 153, 407–416.

[37]

Dědek, I.; Kupka, V.; Jakubec, P.; Šedajová, V.; Jayaramulu, K.; Otyepka, M. Metal-organic framework/conductive polymer hybrid materials for supercapacitors. Appl. Mater. Today 2022, 26, 101387.

[38]

Wei, Y. S.; Zhang, M.; Zou, R. Q.; Xu, Q. Metal-organic framework-based catalysts with single metal sites. Chem. Rev. 2020, 120, 12089–12174.

[39]

Zou, L. L.; Hou, C. C.; Wang, Q. J.; Wei, Y. S.; Liu, Z.; Qin, J. S.; Pang, H.; Xu, Q. A honeycomb-like bulk superstructure of carbon nanosheets for electrocatalysis and energy storage. Angew. Chem., Int. Ed. 2020, 59, 19627–19632.

[40]

Salunkhe, R. R.; Kaneti, Y. V.; Kim, J.; Kim, J. H.; Yamauchi, Y. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc. Chem. Res. 2016, 49, 2796–2806.

[41]

Shao, Y. L.; El-Kady, M. F.; Sun, J. Y.; Li, Y. G.; Zhang, Q. H.; Zhu, M. F.; Wang, H. Z.; Dunn, B.; Kaner, R. B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2018, 118, 9233–9280.

[42]

Jian, S. L.; Hsiao, L. Y.; Yeh, M. H.; Ho, K. C. Designing a carbon nanotubes-interconnected ZIF-derived cobalt sulfide hybrid nanocage for supercapacitors. J. Mater. Chem. A 2019, 7, 1479–1490.

[43]

Gogotsi, Y.; Penner, R. M. Energy storage in nanomaterials-capacitive, pseudocapacitive, or battery-like? ACS Nano 2018, 12, 2081–2083.

[44]

Díaz, R.; Orcajo, M. G.; Botas, J. A.; Calleja, G.; Palma, J. Co8-MOF-5 as electrode for supercapacitors. Mater. Lett. 2012, 68, 126–128.

[45]

Liu, X. X.; Shi, C. D.; Zhai, C. W.; Cheng, M. L.; Liu, Q.; Wang, G. X. Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material. ACS Appl. Mater. Interfaces 2016, 8, 4585–4591.

[46]

Choi, K. M.; Jeong, H. M.; Park, J. H.; Zhang, Y. B.; Kang, J. K.; Yaghi, O. M. Supercapacitors of nanocrystalline metal-organic frameworks. ACS Nano 2014, 8, 7451–7457.

[47]

Yan, Y.; Luo, Y. Q.; Ma, J. Y.; Li, B.; Xue, H. G.; Pang, H. Facile synthesis of vanadium metal-organic frameworks for high-performance supercapacitors. Small 2018, 14, 1801815.

[48]

Jiao, Y.; Pei, J.; Chen, D. H.; Yan, C. H.; Hu, Y. Y.; Zhang, Q.; Chen, G. Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors. J. Mater. Chem. A 2017, 5, 1094–1102.

[49]

Gholipour-Ranjbar, H.; Soleimani, M.; Naderi, H. R. Application of Ni/Co-based metal-organic frameworks (MOFs) as an advanced electrode material for supercapacitors. New J. Chem. 2016, 40, 9187–9193.

[50]

Gao, W. M.; Chen, D. Z.; Quan, H. Y.; Zou, R.; Wang, W. X.; Luo, X. B.; Guo, L. Fabrication of hierarchical porous metal-organic framework electrode for aqueous asymmetric supercapacitor. ACS Sustainable Chem. Eng. 2017, 5, 4144–4153.

[51]

Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao-Horn, Y.; Dincǎ, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2017, 16, 220–224.

[52]

Li, W. H.; Ding, K.; Tian, H. R.; Yao, M. S.; Nath, B.; Deng, W. H.; Wang, Y. B.; Xu, G. Conductive metal-organic framework nanowire array electrodes for high-performance solid-state supercapacitors. Adv. Funct. Mater. 2017, 27, 1702067.

[53]

Ma, J. X.; Li, J.; Guo, R.; Xu, H.; Shi, F.; Dang, L. Q.; Liu, Z. H.; Sun, J.; Lei, Z. B. Direct growth of flake-like metal-organic framework on textile carbon cloth as high-performance supercapacitor electrode. J. Power Sources 2019, 428, 124–130.

[54]

Dai, F. N.; Wang, X. K.; Zheng, S. H.; Sun, J. P.; Huang, Z. D.; Xu, B.; Fan, L. L.; Wang, R. M.; Sun, D. F.; Wu, Z. S. Toward high-performance and flexible all-solid-state micro-supercapacitors: MOF bulk vs. MOF nanosheets. Chem. Eng. J. 2021, 413, 127520.

[55]

Rahmanifar, M. S.; Hesari, H.; Noori, A.; Masoomi, M. Y.; Morsali, A.; Mousavi, M. F. A dual Ni/Co-MOF-reduced graphene oxide nanocomposite as a high performance supercapacitor electrode material. Electrochim. Acta 2018, 275, 76–86.

[56]

Hong, J.; Park, S. J.; Kim, S. Synthesis and electrochemical characterization of nanostructured Ni-Co-MOF/graphene oxide composites as capacitor electrodes. Electrochim. Acta 2019, 311, 62–71.

[57]

Srimuk, P.; Luanwuthi, S.; Krittayavathananon, A.; Sawangphruk, M. Solid-type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper. Electrochim. Acta 2015, 157, 69–77.

[58]

Saraf, M.; Rajak, R.; Mobin, S. M. A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors. J. Mater. Chem. A 2016, 4, 16432–16445.

[59]

Wang, L.; Feng, X.; Ren, L. T.; Piao, Q. H.; Zhong, J. Q.; Wang, Y. B.; Li, H. W.; Chen, Y. F.; Wang, B. Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI. J. Am. Chem. Soc. 2015, 137, 4920–4923.

[60]
GuoS. N.ZhuY.YanY. Y.MinY. L.FanJ. C.XuQ. J.YunH. (Metal-Organic Framework)-Polyaniline sandwich structure composites as novel hybrid electrode materials for high-performance supercapacitorJ. Power Sources201631617618210.1016/j.jpowsour.2016.03.040

Guo, S. N.; Zhu, Y.; Yan, Y. Y.; Min, Y. L.; Fan, J. C.; Xu, Q. J.; Yun, H. (Metal-Organic Framework)-Polyaniline sandwich structure composites as novel hybrid electrode materials for high-performance supercapacitor. J. Power Sources 2016, 316, 176–182.

[61]

Jiao, Y.; Chen, G.; Chen, D. H.; Pei, J.; Hu, Y. Y. Bimetal-organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage. J. Mater. Chem. A 2017, 5, 23744–23752.

[62]

Tian, D.; Lu, X. F.; Zhu, Y.; Li, M. X.; Wang, C. Fabrication of two-dimensional metal-organic frameworks on electrospun nanofibers and their derived metal doped carbon nanofibers for an advanced asymmetric supercapacitor with a high energy density. J. Power Sources 2019, 413, 50–58.

[63]

Xu, X. T.; Tang, J.; Qian, H. Y.; Hou, S. J.; Bando, Y.; Hossain, S. A.; Pan, L. K.; Yamauchi, Y. Three-dimensional networked metal-organic frameworks with conductive polypyrrole tubes for flexible supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 38737–38744.

[64]

Xue, Y. Q.; Zheng, S. S.; Xue, H. G.; Pang, H. Metal-organic framework composites and their electrochemical applications. J. Mater. Chem. A 2019, 7, 7301–7327.

[65]

Xu, Y. X.; Li, Q.; Xue, H. G.; Pang, H. Metal-organic frameworks for direct electrochemical applications. Coord. Chem. Rev. 2018, 376, 292–318.

[66]

Zhou, S. Y.; Kong, X. Y.; Zheng, B.; Huo, F. W.; Strømme, M.; Xu, C. Cellulose nanofiber @ conductive metal-organic frameworks for high-performance flexible supercapacitors. ACS Nano 2019, 13, 9578–9586.

[67]

Song, C.; Yun, J.; Lee, H.; Park, H.; Jeong, Y. R.; Lee, G.; Kim, M. S.; Ha, J. S. A Shape memory high-voltage supercapacitor with asymmetric organic electrolytes for driving an integrated NO2 gas sensor. Adv. Funct. Mater. 2019, 29, 1901996.

[68]

Wu, X. M.; Huang, B.; Wang, Q. G.; Wang, Y. Wide potential and high energy density for an asymmetric aqueous supercapacitor. J. Mater. Chem. A 2019, 7, 19017–19025.

[69]

Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 2008, 130, 5390–5391.

[70]

Wang, L.; Wei, T.; Sheng, L. Z.; Jiang, L. L.; Wu, X. L.; Zhou, Q. H.; Yuan, B.; Yue, J. M.; Liu, Z.; Fan, Z. J. “Brick-and-mortar” sandwiched porous carbon building constructed by metal-organic framework and graphene: Ultrafast charge/discharge rate up to 2 V·S−1 for supercapacitors. Nano Energy 2016, 30, 84–92.

[71]

Salunkhe, R. R.; Kamachi, Y.; Torad, N. L.; Hwang, S. M.; Sun, Z. Q.; Dou, S. X.; Kim, J. H.; Yamauchi, Y. Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J. Mater. Chem. A 2014, 2, 19848–19854.

[72]

Jiang, H. L.; Liu, B.; Lan, Y. Q.; Kuratani, K.; Akita, T.; Shioyama, H.; Zong, F. Q.; Xu, Q. From metal-organic framework to nanoporous carbon: Toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 2011, 133, 11854–11857.

[73]

Xin, L. J.; Chen, R. R.; Liu, Q.; Liu, J. Y.; Li, Z. S.; Li, R. M.; Wang, J. Composites of hierarchical metal-organic framework derived nitrogen-doped porous carbon and interpenetrating 3D hollow carbon spheres from lotus pollen for high-performance supercapacitors. New J. Chem. 2017, 41, 12835–12842.

[74]

Yu, G. L.; Zou, X. Q.; Wang, A. F.; Sun, J.; Zhu, G. S. Generation of bimodal porosity via self-extra porogenes in nanoporous carbons for supercapacitor application. J. Mater. Chem. A 2014, 2, 15420–15427.

[75]

Kim, J.; Young, C.; Lee, J.; Heo, Y. U.; Park, M. S.; Hossain, S. A.; Yamauchi, Y.; Kim, J. H. Nanoarchitecture of MOF-derived nanoporous functional composites for hybrid supercapacitors. J. Mater. Chem. A 2017, 5, 15065–15072.

[76]

Tang, J.; Salunkhe, R. R.; Zhang, H. B.; Malgras, V.; Ahamad, T.; Alshehri, S. M.; Kobayashi, N.; Tominaka, S.; Ide, Y.; Kim, J. H. et al. Bimetallic metal-organic frameworks for controlled catalytic graphitization of nanoporous carbons. Sci. Rep. 2016, 6, 30295.

[77]

Zhu, Q. L.; Pachfule, P.; Strubel, P.; Li, Z. P.; Zou, R. Q.; Liu, Z.; Kaskel, S.; Xu, Q. Fabrication of nitrogen and sulfur co-doped hollow cellular carbon nanocapsules as efficient electrode materials for energy storage. Energy Storage Mater. 2018, 13, 72–79.

[78]

Pachfule, P.; Shinde, D.; Majumder, M.; Xu, Q. Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework. Nat. Chem. 2016, 8, 718–724.

[79]

Su, P. P.; Jiang, L.; Zhao, J.; Yan, J. W.; Li, C.; Yang, Q. H. Mesoporous graphitic carbon nanodisks fabricated via catalytic carbonization of coordination polymers. Chem. Commun. 2012, 48, 8769–8771.

[80]

Qu, C.; Jiao, Y.; Zhao, B. T.; Chen, D. C.; Zou, R. Q.; Walton, K. S.; Liu, M. L. Nickel-based pillared MOFs for high-performance supercapacitors: Design, synthesis and stability study. Nano Energy 2016, 26, 66–73.

[81]

Wei, X. J.; Peng, H. R.; Li, Y. H.; Yang, Y. B.; Xiao, S. H.; Peng, L.; Zhang, Y. H.; Xiao, P. In situ growth of zeolitic imidazolate framework-67-derived nanoporous carbon@K0.5Mn2O4 for high-performance 2.4 V aqueous asymmetric supercapacitors. ChemSusChem 2018, 11, 3167–3174.

[82]

Li, X.; Wu, H. J.; Elshahawy, A. M.; Wang, L.; Pennycook, S. J.; Guan, C.; Wang, J. Cactus-like NiCoP/NiCo-OH 3D architecture with tunable composition for high-performance electrochemical capacitors. Adv. Funct. Mater. 2018, 28, 1800036.

[83]

Wang, R. T.; Jin, D. D.; Zhang, Y. B.; Wang, S. J.; Lang, J. W.; Yan, X. B.; Zhang, L. Engineering metal organic framework derived 3D nanostructures for high performance hybrid supercapacitors. J. Mater. Chem. A 2017, 5, 292–302.

[84]

Qu, C.; Liang, Z. B.; Jiao, Y.; Zhao, B. T.; Zhu, B. J.; Dang, D.; Dai, S. G.; Chen, Y.; Zou, R. Q.; Liu, M. L. “One-for-all” strategy in fast energy storage: Production of pillared MOF nanorod-templated positive/negative electrodes for the application of high-performance hybrid supercapacitor. Small 2018, 14, 1800285.

[85]

Gu, Y. Y.; Miao, L.; Yin, Y.; Liu, M. X.; Gan, L. H.; Li, L. C. Highly N/O co-doped ultramicroporous carbons derived from nonporous metal-organic framework for high performance supercapacitors. Chin. Chem. Lett. 2021, 32, 1491–1496.

[86]

Gong, Y. J.; Chen, R. Y.; Xu, H. Y.; Yu, C. Y.; Zhao, X.; Sun, Y.; Hui, Z. Y.; Zhou, J. Y.; An, J. N.; Du, Z. Z. et al. Polarity-assisted formation of hollow-frame sheathed nitrogen-doped nanofibrous carbon for supercapacitors. Nanoscale 2019, 11, 2492–2500.

[87]

Zhang, W.; Li, R.; Zheng, H.; Bao, J. S.; Tang, Y. J.; Zhou, K. Laser-assisted printing of electrodes using metal-organic frameworks for micro-supercapacitors. Adv. Funct. Mater. 2021, 31, 2009057.

[88]

Tang, A. C.; Wan, C. B.; Hu, X. Y.; Ju, X. Metal-organic framework-derived Ni/ZnO nano-sponges with delicate surface vacancies as anode materials for high-performance supercapacitors. Nano Res. 2021, 14, 4063–4072.

[89]

Meng, F. L.; Fang, Z. G.; Li, Z. X.; Xu, W. W.; Wang, M. J.; Liu, Y. P.; Zhang, J.; Wang, W. R.; Zhao, D. Y.; Guo, X. H. Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors. J. Mater. Chem. A 2013, 1, 7235–7241.

[90]

Qu, C.; Zhao, B. T.; Jiao, Y.; Chen, D. C.; Dai, S. G.; Deglee, B. M.; Chen, Y.; Walton, K. S.; Zou, R. Q.; Liu, M. L. Functionalized bimetallic hydroxides derived from metal-organic frameworks for high-performance hybrid supercapacitor with exceptional cycling stability. ACS Energy Lett. 2017, 2, 1263–1269.

[91]

Wang, P. Y.; Li, Y. N.; Li, S. D.; Liao, X. Q.; Sun, S. M. Water-promoted zeolitic imidazolate framework-67 transformation to Ni-Co layered double hydroxide hollow microsphere for supercapacitor electrode material. J. Mater. Sci.: Mater. Electron. 2017, 28, 9221–9227.

[92]

Hu, H.; Guan, B. Y.; Lou, X. W. Construction of complex CoS hollow structures with enhanced electrochemical properties for hybrid supercapacitors. Chem 2016, 1, 102–113.

[93]

Ma, X.; Zhang, L.; Xu, G. C.; Zhang, C. Y.; Song, H. J.; He, Y. T.; Zhang, C.; Jia, D. Z. Facile synthesis of NiS hierarchical hollow cubes via Ni formate frameworks for high performance supercapacitors. Chem. Eng. J. 2017, 320, 22–28.

[94]

Liang, Z. B.; Qu, C.; Zhou, W. Y.; Zhao, R.; Zhang, H.; Zhu, B. J.; Guo, W. H.; Meng, W.; Wu, Y. X.; Aftab, W. et al. Synergistic effect of Co-Ni hybrid phosphide nanocages for ultrahigh capacity fast energy storage. Adv. Sci. 2019, 6, 1802005.

[95]

Lai, F. L.; Feng, J. R.; Heil, T.; Tian, Z. H.; Schmidt, J.; Wang, G. C.; Oschatz, M. Partially delocalized charge in Fe-doped NiCo2S4 nanosheet-mesoporous carbon-composites for high-voltage supercapacitors. J. Mater. Chem. A 2019, 7, 19342–19347.

[96]

Yu, X.; Yu, J. L.; Fautrelle, Y.; Gagnoud, A.; Ren, Z. M.; Lu, X. G.; Li, X. Strong magnetic field-dual-assisted fabrication of heterogeneous sulfide-based hollow nanochain electrodes for high-rate supercapacitors. J. Mater. Chem. A 2019, 7, 19733–19744.

[97]

Xia, Q. X.; Shinde, N. M.; Yun, J. M.; Zhang, T. F.; Mane, R. S.; Mathur, S.; Kim, K. H. Bismuth oxychloride/MXene symmetric supercapacitor with high volumetric energy density. Electrochim. Acta 2018, 271, 351–360.

[98]

Yi, H.; Wang, H. W.; Jing, Y. T.; Peng, T. Q.; Wang, X. F. Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core–shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life. J. Power Sources 2015, 285, 281–290.

[99]

Ji, D.; Zhou, H.; Zhang, J.; Dan, Y. Y.; Yang, H. X.; Yuan, A. H. Facile synthesis of a metal-organic framework-derived Mn2O3 nanowire coated three-dimensional graphene network for high-performance free-standing supercapacitor electrodes. J. Mater. Chem. A 2016, 4, 8283–8290.

[100]

Wang, Y. C.; Li, W. B.; Zhao, L.; Xu, B. Q. MOF-derived binary mixed metal/metal oxide @carbon nanoporous materials and their novel supercapacitive performances. Phys. Chem. Chem. Phys. 2016, 18, 17941–17948.

[101]

Tong, M. Y.; Liu, S. W.; Zhang, X.; Wu, T. X.; Zhang, H. M.; Wang, G. Z.; Zhang, Y. X.; Zhu, X. G.; Zhao, H. J. Two-dimensional CoNi nanoparticles@S,N-doped carbon composites derived from S, N-containing Co/Ni MOFs for high performance supercapacitors. J. Mater. Chem. A 2017, 5, 9873–9881.

[102]

Cai, C. L.; Zou, Y. J.; Xiang, C. L.; Chu, H. L.; Qiu, S. J.; Sui, Q. L.; Xu, F.; Sun, L. X.; Shah, A. Broccoli-like porous carbon nitride from ZIF-8 and melamine for high performance supercapacitors. Appl. Surf. Sci. 2018, 440, 47–54.

[103]

Liu, G. J.; Wang, B.; Wang, L.; Yuan, Y. H.; Wang, D. L. A facile hydrothermal synthesis of a reduced graphene oxide modified cobalt disulfide composite electrode for high-performance supercapacitors. RSC Adv. 2016, 6, 7129–7138.

[104]

Song, Z. X.; Zhu, Y. N.; Liu, H. S.; Banis, M. N.; Zhang, L.; Li, J. J.; Doyle-Davis, K.; Li, R. Y.; Sham, T. K.; Yang, L. J. et al. Engineering the low coordinated Pt single atom to achieve the superior electrocatalytic performance toward oxygen reduction. Small 2020, 16, 2003096.

[105]

Shao, C. F.; Zhuang, S. G.; Zhang, H. C.; Jiang, Q. K.; Xu, X. Y.; Ye, J. S.; Li, B. T.; Wang, X. J. Enhancement of mass transport for oxygen reduction reaction using petal-like porous Fe-NC nanosheet. Small 2021, 17, 2006178.

[106]

Lu, Z. Y.; Wang, B.; Hu, Y. F.; Liu, W.; Zhao, Y. F.; Yang, R. O.; Li, Z. P.; Luo, J.; Chi, B.; Jiang, Z. et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 2622–2626.

[107]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[108]

Usov, P. M.; Huffman, B.; Epley, C. C.; Kessinger, M. C.; Zhu, J.; Maza, W. A.; Morris, A. J. Study of electrocatalytic properties of metal-organic framework PCN-223 for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 2017, 9, 33539–33543.

[109]

Miner, E. M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.; Dincă, M. Electrochemical oxygen reduction catalysed by Ni3(Hexaiminotriphenylene)2. Nat. Commun. 2016, 7, 10942.

[110]

Jiang, M.; Li, L. J.; Zhu, D. D.; Zhang, H. Y.; Zhao, X. B. Oxygen reduction in the nanocage of metal-organic frameworks with an electron transfer mediator. J. Mater. Chem. A 2014, 2, 5323–5329.

[111]

Sohrabi, S.; Dehghanpour, S.; Ghalkhani, M. Three-dimensional metal-organic framework graphene nanocomposite as a highly efficient and stable electrocatalyst for the oxygen reduction reaction in acidic media. ChemCatChem 2016, 8, 2356–2366.

[112]

Jahan, M.; Bao, Q. L.; Loh, K. P. Electrocatalytically active graphene–porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 6707–6713.

[113]

Guo, J. N.; Li, Y.; Cheng, Y. H.; Dai, L. M.; Xiang, Z. H. Highly efficient oxygen reduction reaction electrocatalysts synthesized under nanospace confinement of metal-organic framework. ACS Nano 2017, 11, 8379–8386.

[114]

Zhong, H. X.; Ly, K. H.; Wang, M. C.; Krupskaya, Y.; Han, X. C.; Zhang, J. C.; Zhang, J.; Kataev, V.; Büchner, B.; Weidinger, I. M. et al. A phthalocyanine-based layered two-dimensional conjugated metal-organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 10677–10682.

[115]

He, X. B.; Yin, F. X.; Li, G. R. A Co/metal-organic-framework bifunctional electrocatalyst: The effect of the surface cobalt oxidation state on oxygen evolution/reduction reactions in an alkaline electrolyte. Int. J. Hydrogen Energy 2015, 40, 9713–9722.

[116]

Fu, S. F.; Zhu, C. Z.; Song, J. H.; Du, D.; Lin, Y. H. Metal-organic framework-derived non-precious metal nanocatalysts for oxygen reduction reaction. Adv. Energy Mater. 2017, 7, 1700363.

[117]

Delaporte, N.; Rivard, E.; Natarajan, S. K.; Benard, P.; Trudeau, M. L.; Zaghib, K. Synthesis and performance of MOF-based non-noble metal catalysts for the oxygen reduction reaction in proton-exchange membrane fuel cells: A review. Nanomaterials 2020, 10, 1947.

[118]

Sohrabi, S.; Ghalkhani, M. Metal-organic frameworks as electro-catalysts for oxygen reduction reaction in electrochemical technologies. J. Electron. Mater. 2019, 48, 4127–4137.

[119]

Lyu, X.; Jia, Y.; Mao, X.; Li, D. H.; Li, G.; Zhuang, L. Z.; Wang, X.; Yang, D. J.; Wang, Q.; Du, A. J. et al. Gradient-concentration design of stable core–shell nanostructure for acidic oxygen reduction electrocatalysis. Adv. Mater. 2020, 32, 2003493.

[120]

Wang, Y. Q.; Tao, L.; Xiao, Z. H.; Chen, R.; Jiang, Z. Q.; Wang, S. Y. 3D carbon electrocatalysts in situ constructed by defect-rich nanosheets and polyhedrons from NaCl-sealed zeolitic imidazolate frameworks. Adv. Funct. Mater. 2018, 28, 1705356.

[121]

Chai, L. L.; Zhang, L. J.; Wang, X.; Xu, L. Q.; Han, C.; Li, T. T.; Hu, Y.; Qian, J. J.; Huang, S. M. Bottom-up synthesis of MOF-derived hollow N-doped carbon materials for enhanced ORR performance. Carbon 2019, 146, 248–256.

[122]

Zhang, L. J.; Wang, X. Y.; Wang, R. H.; Hong, M. C. Structural evolution from metal-organic framework to hybrids of nitrogen-doped porous carbon and carbon nanotubes for enhanced oxygen reduction activity. Chem. Mater. 2015, 27, 7610–7618.

[123]

Huang, P. M.; Li, H. D.; Huang, X. Y.; Chen, D. Y. Multiheteroatom-doped porous carbon catalyst for oxygen reduction reaction prepared using 3D network of ZIF-8/polymeric nanofiber as a facile-doping template. ACS Appl. Mater. Interfaces 2017, 9, 21083–21088.

[124]

Liu, M. L.; Zhao, Z. P.; Duan, X. F.; Huang, Y. Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv. Mater. 2019, 31, 1802234.

[125]

Li, W. Y.; Zou, S. Z. PtNi nanoparticles encapsulated in few carbon layers as high-performance catalysts for oxygen reduction reaction. ACS Appl. Energy Mater. 2019, 2, 2769–2778.

[126]

Wang, X. X.; Hwang, S.; Pan, Y. T.; Chen, K. T.; He, Y. H.; Karakalos, S.; Zhang, H. G.; Spendelow, J. S.; Su, D.; Wu, G. Ordered Pt3Co intermetallic nanoparticles derived from metal-organic frameworks for oxygen reduction. Nano Lett. 2018, 18, 4163–4171.

[127]

Xia, Z. X.; Fang, J.; Zhang, X. M.; Fan, L. P.; Barlow, A. J.; Lin, T.; Wang, S. L.; Wallace, G. G.; Sun, G. Q.; Wang, X. G. Pt nanoparticles embedded metal-organic framework nanosheets: A synergistic strategy towards bifunctional oxygen electrocatalysis. Appl. Catal. B Environ. 2019, 245, 389–398.

[128]

Du, C.; Gao, X. H.; Cheng, C. F.; Zhuang, Z. H.; Li, X. K.; Chen, W. Metal organic framework for the fabrication of mutually interacted Pt-CeO2-C ternary nanostructure: Advanced electrocatalyst for oxygen reduction reaction. Electrochim. Acta 2018, 266, 348–356.

[129]

Li, H. C.; Zhang, Y. J.; Hu, X.; Liu, W. J.; Chen, J. J.; Yu, H. Q. Metal-organic framework templated Pd@PdO-Co3O4 nanocubes as an efficient bifunctional oxygen electrocatalyst. Adv. Energy Mater. 2018, 8, 1702734.

[130]

Liang, Z. B.; Qu, C.; Xia, D. G.; Zou, R. Q.; Xu, Q. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem., Int. Ed. 2018, 57, 9604–9633.

[131]
Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res., in press, https://doi.org/10.1007/s12274-022-4265-y.
[132]

Xu, H.; Wang, D.; Yang, P. X.; Liu, A. M.; Li, R. P.; Li, Y.; Xiao, L. H.; Ren, X. F.; Zhang, J. Q.; An, M. Z. Atomically dispersed M-N-C catalysts for the oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 23187–23201.

[133]

Gawande, M. B.; Ariga, K.; Yamauchi, Y. Single-atom catalysts. Small 2021, 17, 2101584.

[134]

Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

[135]

Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.

[136]

Zhang, H. G.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Karakalos, S.; Luo, L. L.; Qiao, Z.; Xie, X. H.; Wang, C. M.; Su, D. et al. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143–14149.

[137]

Ye, H.; Li, L. J.; Liu, D. D.; Fu, Q. J.; Zhang, F. Z.; Dai, P. C.; Gu, X.; Zhao, X. B. Sustained-release method for the directed synthesis of ZIF-derived ultrafine Co-N-C ORR catalysts with embedded Co quantum dots. ACS Appl. Mater. Interfaces 2020, 12, 57847–57858.

[138]

Chen, M. J.; Li, X.; Yang, F.; Li, B. Y.; Stracensky, T.; Karakalos, S.; Mukerjee, S.; Jia, Q. Y.; Su, D.; Wang, G. F. et al. Atomically dispersed MnN4 catalysts via environmentally benign aqueous synthesis for oxygen reduction: Mechanistic understanding of activity and stability improvements. ACS Catal. 2020, 10, 10523–10534.

[139]

Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

[140]

Lu, X. F.; Chen, Y.; Wang, S. B.; Gao, S. Y.; Lou, X. W. Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn-air batteries. Adv. Mater. 2019, 31, 1902339.

[141]

Ding, D. N.; Shen, K.; Chen, X. D.; Chen, H. R.; Chen, J. Y.; Fan, T.; Wu, R. F.; Li, Y. W. Multi-level architecture optimization of MOF-templated Co-based nanoparticles embedded in hollow N-doped carbon polyhedra for efficient OER and ORR. ACS Catal. 2018, 8, 7879–7888.

[142]

Guan, B. Y.; Yu, L.; Lou, X. W. A dual-metal-organic-framework derived electrocatalyst for oxygen reduction. Energy Environ. Sci. 2016, 9, 3092–3096.

[143]

Mao, J. J.; Yang, L. F.; Yu, P.; Wei, X. W.; Mao, L. Q. Electrocatalytic four-electron reduction of oxygen with copper (II)-based metal-organic frameworks. Electrochem. Commun. 2012, 19, 29–31.

[144]

Cho, K.; Han, S. H.; Suh, M. P. Copper-organic framework fabricated with CuS nanoparticles: Synthesis, electrical conductivity, and electrocatalytic activities for oxygen reduction reaction. Angew. Chem., Int. Ed. 2016, 128, 15527–15531.

[145]

Ma, X.; Zhao, X.; Sun, J.; Li, D. H.; Yang, X. R. A versatile strategy to fabricate MOFs/carbon material integrations and their derivatives for enhanced electrocatalysis. RSC Adv. 2016, 6, 7728–7735.

[146]

Fu, Y. A.; Huang, Y.; Xiang, Z. H.; Liu, G. Q.; Cao, D. P. Phosphorous-nitrogen-codoped carbon materials derived from metal-organic frameworks as efficient electrocatalysts for oxygen reduction reactions. Eur. J. Inorg. Chem. 2016, 2016, 2100–2105.

[147]

Hu, H.; Han, L.; Yu, M. Z.; Wang, Z. Y.; Lou, X. W. Metal-organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction. Energy Environ. Sci. 2016, 9, 107–111.

[148]

Aijaz, A.; Masa, J.; Rösler, C.; Xia, W.; Weide, P.; Botz, A. J. R.; Fischer, R. A.; Schuhmann, W.; Muhler, M. Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. Angew. Chem., Int. Ed. 2016, 55, 4087–4091.

[149]

Ma, S. Q.; Goenaga, G. A.; Call, A. V; Liu, D. J. Cobalt imidazolate framework as precursor for oxygen reduction reaction electrocatalysts. Chem. —Eur. J. 2011, 17, 2063–2067.

[150]

You, B.; Jiang, N.; Sheng, M. L.; Drisdell, W. S.; Yano, J.; Sun, Y. J. Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. ACS Catal. 2015, 5, 7068–7076.

[151]

Xiao, M. L.; Chen, Y. T.; Zhu, J. B.; Zhang, H.; Zhao, X.; Gao, L. Q.; Wang, X.; Zhao, J.; Ge, J. J.; Jiang, Z. et al. Climbing the apex of the ORR volcano plot via binuclear site construction: Electronic and geometric engineering. J. Am. Chem. Soc. 2019, 141, 17763–17770.

[152]

Yang, G. G.; Zhu, J. W.; Yuan, P. F.; Hu, Y. F.; Qu, G.; Lu, B. A.; Xue, X. Y.; Yin, H. B.; Cheng, W. Z.; Cheng, J. Q. et al. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 2021, 12, 1734.

[153]

Zhang, S.; Xue, H.; Li, W. L.; Sun, J.; Guo, N. K.; Song, T. S.; Dong, H. L.; Zhang, J. W.; Ge, X.; Zhang, W. et al. Constructing precise coordination of nickel active sites on hierarchical porous carbon framework for superior oxygen reduction. Small 2021, 17, 2102125.

[154]

Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

Nano Research
Pages 1338-1361
Cite this article:
Yang B, Li B, Xiang Z. Advanced MOF-based electrode materials for supercapacitors and electrocatalytic oxygen reduction. Nano Research, 2023, 16(1): 1338-1361. https://doi.org/10.1007/s12274-022-4682-y
Topics:

1710

Views

46

Crossref

43

Web of Science

43

Scopus

1

CSCD

Altmetrics

Received: 13 May 2022
Revised: 12 June 2022
Accepted: 20 June 2022
Published: 03 September 2022
© Tsinghua University Press 2022
Return