AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Modulator-directed assembly of hybrid composites based on metal-organic frameworks and upconversion nanoparticles

Yanhui Feng1,2Xingjun Li1,2( )Shan Lu1Renfu Li1Zhongliang Gong1Xiaoying Shang1Yifan Pei1,4Wei Zheng1Datao Tu1Xueyuan Chen1,2,3,4( )
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
College of chemistry, Fuzhou university, Fuzhou 350108, China
Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
Show Author Information

Graphical Abstract

A strategy has been developed to synthesize a series of zeolitic imidazolate framework-8@upconversion nanoparticle (ZIF-8@UCNP) composites via a modulator-directed in situ assembly. Ethylenediamine was firstly used as a modulator to fine-tune the predominant metal-organic frameworks (MOFs) facets and realize distinct morphologies of the composites.

Abstract

Hybrid composites made of metal-organic frameworks (MOFs) and lanthanide-doped upconversion nanoparticles (UCNPs) have attracted considerable interest for their synergistically enhanced functions in various applications such as chemical sensing, photocatalysis, anticounterfeiting and nanomedicine. However, precise assembly of MOF/UCNP hybrid composites with tunable morphologies remains a challenge due to the lack of effective synthetic methods and fundamental understanding of the growth mechanisms. Herein, we propose a modulator-directed assembly strategy to synthesize a series of ZIF-8@UCNP composites (ZIF-8 = zeolitic imidazolate framework-8). The UCNPs densely paved on the surface of ZIF-8 microcrystals and endowed the composites with intense upconversion blue emission, which were verified by steady-state/transient photoluminescence (PL) spectroscopy and single-particle imaging. Ethylenediamine (EDA) was firstly used as a modulator to fine-tune the predominant MOF facets and realized distinct morphologies of the composites. By adjusting the concentration of EDA from 0 to 25 mmol/L, the morphology of the ZIF-8@UCNP composites was tuned from rhombic dodecahedron (RD) to truncated rhombic dodecahedron (TRD), cube with truncated edges (CTE), cube, and finally a unique form of interpenetration twins (IT). The nucleation and growth process of the ZIF-8@UCNP composites was monitored by time-dependent scanning electron microscopy (SEM) images and the formation mechanism was thoroughly revealed. Furthermore, we demonstrated that the strategy for assembly of morphology-controllable ZIF-8@UCNP composites was generally applicable to various UCNPs with different sizes and shapes. The proposed strategy is expected to open up new avenues for the controllable synthesis of MOF/UCNP composites toward diverse applications.

Electronic Supplementary Material

Video
12274_2022_4684_MOESM2.mp4
Download File(s)
12274_2022_4684_MOESM1_ESM.pdf (5.6 MB)

References

[1]

Kitagawa, S.; Matsuda, R. Chemistry of coordination space of porous coordination polymers. Coord. Chem. Rev. 2007, 251, 2490–2509.

[2]

Yaghi, O. M.; Li, G. M.; Li, H. L. Selective binding and removal of guests in a microporous metal-organic framework. Nature 1995, 378, 703–706.

[3]

Jaramillo, D. E.; Reed, D. A.; Jiang, H. Z. H.; Oktawiec, J.; Mara, M. W.; Forse, A. C.; Lussier, D. J.; Murphy, R. A.; Cunningham, M.; Colombo, V. et al. Selective nitrogen adsorption via backbonding in a metal-organic framework with exposed vanadium sites. Nat. Mater. 2020, 19, 517–521.

[4]

Adil, K.; Belmabkhout, Y.; Pillai, R. S.; Cadiau, A.; Bhatt, P. M.; Assen, A. H.; Maurin, G.; Eddaoudi, M. Gas/vapour separation using ultra-microporous metal-organic frameworks: Insights into the structure/separation relationship. Chem. Soc. Rev. 2017, 46, 3402–3430.

[5]

Chen, Z. J.; Li, P. H.; Anderson, R.; Wang, X. J.; Zhang, X.; Robison, L.; Redfern, L. R.; Moribe, S.; Islamoglu, T.; Gómez-Gualdrón, D. A. et al. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 2020, 368, 297–303.

[6]

Hu, Y. H.; Zhang, L. Hydrogen storage in metal-organic frameworks. Adv. Mater. 2010, 22, E117–E130.

[7]

Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663.

[8]

Li, R.; Zhang, W.; Zhou, K. Metal-organic-framework-based catalysts for photoreduction of CO2. Adv. Mater. 2018, 30, e1705512.

[9]

Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126–1162.

[10]

Chen, L.; Ye, J. W.; Wang, H. P.; Pan, M.; Yin, S. Y.; Wei, Z. W.; Zhang, L. Y.; Wu, K.; Fan, Y. N.; Su, C. Y. Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence. Nat. Commun. 2017, 8, 15985.

[11]

Wu, M. X.; Yang, Y. W. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 2017, 29, 1606134.

[12]

Sun, Y. J.; Zheng, L. W.; Yang, Y.; Qian, X.; Fu, T.; Li, X. W.; Yang, Z. Y.; Yan, H.; Cui, C.; Tan, W. H. Metal-organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett. 2020, 12, 103.

[13]

Sindoro, M.; Yanai, N.; Jee, A. Y.; Granick, S. Colloidal-sized metal-organic frameworks: Synthesis and applications. Acc. Chem. Res. 2014, 47, 459–469.

[14]

Feng, L.; Wang, K. Y.; Powell, J.; Zhou, H. C. Controllable synthesis of metal-organic frameworks and their hierarchical assemblies. Matter 2019, 1, 801–824.

[15]

Park, J.; Jiang, Q.; Feng, D. W.; Mao, L. Q.; Zhou, H. C. Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. J. Am. Chem. Soc. 2016, 138, 3518–3525.

[16]

Yanai, N.; Sindoro, M.; Yan, J.; Granick, S. Electric field-induced assembly of monodisperse polyhedral metal-organic framework crystals. J. Am. Chem. Soc. 2013, 135, 34–37.

[17]

Pham, M. H.; Vuong, G. T.; Vu, A. T.; Do, T. O. Novel route to size-controlled Fe-MIL-88B-NH2 metal-organic framework nanocrystals. Langmuir 2011, 27, 15261–15267.

[18]

Pan, Y. C.; Heryadi, D.; Zhou, F.; Zhao, L.; Lestari, G.; Su, H. B.; Lai, Z. P. Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. CrystEngComm 2011, 13, 6937–6940.

[19]

Tsai, H.; Shrestha, S.; Vilá, R. A.; Huang, W. X.; Liu, C. M.; Hou, C. H.; Huang, H. H.; Wen, X. W.; Li, M. X.; Wiederrecht, G. et al. Bright and stable light-emitting diodes made with perovskite nanocrystals stabilized in metal-organic frameworks. Nat. Photon. 2021, 15, 843–849.

[20]

Zhang, M. Y.; Li, J. K.; Wang, R.; Zhao, S. N.; Zang, S. Q.; Mak, T. C. W. Construction of core–shell MOF@COF hybrids with controllable morphology adjustment of COF shell as a novel platform for photocatalytic cascade reactions. Adv. Sci. (Weinh) 2021, 8, 2101884.

[21]

Wang, Z.; Zhu, C. Y.; Mo, J. T.; Fu, P. Y.; Zhao, Y. W.; Yin, S. Y.; Jiang, J. J.; Pan, M.; Su, C. Y. White-light emission from dual-way photon energy conversion in a dye-encapsulated metal-organic framework. Angew. Chem. , Int. Ed. 2019, 58, 9752–9757.

[22]

Goldschmidt, J. C.; Fischer, S. Upconversion for photovoltaics—A review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 2015, 3, 510–535.

[23]

Wen, S. H.; Zhou, J. J.; Zheng, K. Z.; Bednarkiewicz, A.; Liu, X. G.; Jin, D. Y. Advances in highly doped upconversion nanoparticles. Nat. Commun. 2018, 9, 2415.

[24]

Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065.

[25]

Zhu, X. H.; Zhang, J.; Liu, J. L.; Zhang, Y. Recent progress of rare-earth doped upconversion nanoparticles: Synthesis, optimization, and applications. Adv. Sci. 2019, 6, 1901358.

[26]

Liu, Y. J.; Lu, Y. Q.; Yang, X. S.; Zheng, X. L.; Wen, S. H.; Wang, F.; Vidal, X.; Zhao, J. B.; Liu, D. M.; Zhou, Z. G. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 2017, 543, 229–233.

[27]

Zhan, Q. Q.; Liu, H. C.; Wang, B. J.; Wu, Q. S.; Pu, R.; Zhou, C.; Huang, B. R.; Peng, X. Y.; Ågren, H.; He, S. L. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles. Nat. Commun. 2017, 8, 1058.

[28]

Ke, J. X.; Lu, S.; Li, Z.; Shang, X. Y.; Li, X. J.; Li, R. F.; Tu, D. T.; Chen, Z.; Chen, X. Y. Multiplexed intracellular detection based on dual-excitation/dual-emission upconversion nanoprobes. Nano Res. 2020, 13, 1955–1961.

[29]

Lu, S.; Tu, D. T.; Li, X. J.; Li, R. F.; Chen, X. Y. A facile "ship-in-a-bottle" approach to construct nanorattles based on upconverting lanthanide-doped fluorides. Nano Res. 2016, 9, 187–197.

[30]

Li, Y. T.; Tang, J. L.; He, L. C.; Liu, Y.; Liu, Y. L.; Chen, C. Y.; Tang, Z. Y. Core–shell upconversion nanoparticle@metal-organic framework nanoprobes for luminescent/magnetic dual-mode targeted imaging. Adv. Mater. 2015, 27, 4075–4080.

[31]

Li, Y. F.; Di, Z. H.; Gao, J. H.; Cheng, P.; Di, C. Z.; Zhang, G.; Liu, B.; Shi, X. H.; Sun, L. D.; Li, L. L. et al. Heterodimers made of upconversion nanoparticles and metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 13804–13810.

[32]

Li, D. D.; Yu, S. H.; Jiang, H. L. From UV to near-infrared light-responsive metal-organic framework composites: Plasmon and upconversion enhanced photocatalysis. Adv. Mater. 2018, 30, 1707377.

[33]

Li, Z. H.; Gao, H. J.; Shen, R. C.; Zhang, C. X.; Li, L. S.; Lv, Y. W.; Tang, L. M.; Du, Y. P.; Yuan, Q. Facet selectivity guided assembly of nanoarchitectures onto two-dimensional metal-organic framework nanosheets. Angew. Chem. , Int. Ed. 2021, 60, 17564–17569.

[34]

Deng, K. R.; Hou, Z. Y.; Li, X. J.; Li, C. X.; Zhang, Y. X.; Deng, X. R.; Cheng, Z. Y.; Lin, J. Aptamer-mediated up-conversion core/MOF shell nanocomposites for targeted drug delivery and cell imaging. Sci. Rep. 2015, 5, 7851.

[35]

Hao, C. L.; Wu, X. L.; Sun, M. Z.; Zhang, H. Y.; Yuan, A. M.; Xu, L. G.; Xu, C. L.; Kuang, H. Chiral core–shell upconversion nanoparticle@MOF nanoassemblies for quantification and bioimaging of reactive oxygen species in vivo. J. Am. Chem. Soc. 2019, 141, 19373–19378.

[36]
He, L. C. ; Brasino, M. ; Mao, C. C. ; Cho, S. ; Park, W. ; Goodwin, A. P. ; Cha, J. N. DNA-assembled core–satellite upconverting-metal-organic framework nanoparticle superstructures for efficient photodynamic therapy. Small 2017, 13, 1700504.
[37]

Shao, Y. L.; Liu, B.; Di, Z. H.; Zhang, G.; Sun, L. D.; Li, L. L.; Yan, C. H. Engineering of upconverted metal-organic frameworks for near-infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors. J. Am. Chem. Soc. 2020, 142, 3939–3946.

[38]

Liu, Q.; Wu, B.; Li, M. Y.; Huang, Y. Y.; Li, L. L. Heterostructures made of upconversion nanoparticles and metal-organic frameworks for biomedical applications. Adv. Sci. (Weinh. ) 2022, 9, 2103911.

[39]

Jena, H. S.; Rijckaert, H.; Krishnaraj, C.; Van Driessche, I.; Van Der Voort, P.; Kaczmarek, A. M. Hybrid nanocomposites formed by lanthanide nanoparticles in Zr-MOF for local temperature measurements during catalytic reactions. Chem. Mater. 2021, 33, 8007–8017.

[40]

Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316.

[41]

Li, Y. T.; Liu, J. M.; Wang, Z. C.; Jin, J.; Liu, Y. L.; Chen, C. Y.; Tang, Z. Y. Optimizing energy transfer in nanostructures enables in vivo cancer lesion tracking via near-infrared excited hypoxia imaging. Adv. Mater. 2020, 32, 1907718.

[42]

Liu, Y.; Yang, Y.; Sun, Y. J.; Song, J. B.; Rudawski, N. G.; Chen, X. Y.; Tan, W. H. Ostwald ripening-mediated grafting of metal-organic frameworks on a single colloidal nanocrystal to form uniform and controllable MXF. J. Am. Chem. Soc. 2019, 141, 7407–7413.

[43]

Yuan, Z.; Zhang, L.; Li, S. Z.; Zhang, W. N.; Lu, M.; Pan, Y.; Xie, X. J.; Huang, L.; Huang, W. Paving metal-organic frameworks with upconversion nanoparticles via self-assembly. J. Am. Chem. Soc. 2018, 140, 15507–15515.

[44]

He, L. C.; Ni, Q. Q.; Mu, J.; Fan, W. P.; Liu, L.; Wang, Z. T.; Li, L.; Tang, W.; Liu, Y. J.; Cheng, Y. Y. et al. Solvent-assisted self-assembly of a metal-organic framework based biocatalyst for cascade reaction driven photodynamic therapy. J. Am. Chem. Soc. 2020, 142, 6822–6832.

[45]

Cravillon, J.; Münzer, S.; Lohmeier, S. J.; Feldhoff, A.; Huber, K.; Wiebcke, M. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem. Mater. 2009, 21, 1410–1412.

[46]

You, W. W.; Tu, D. T.; Zheng, W.; Shang, X. Y.; Song, X. R.; Zhou, S. Y.; Liu, Y.; Li, R. F.; Chen, X. Y. Large-scale synthesis of uniform lanthanide-doped NaREF4 upconversion/downshifting nanoprobes for bioapplications. Nanoscale 2018, 10, 11477–11484.

[47]

He, H. L.; Liu, J. X.; Li, K.; Yin, Z.; Wang, J. W.; Luo, D.; Liu, Y. J. Linearly polarized emission from shear-induced nematic phase upconversion nanorods. Nano Lett. 2020, 20, 4204–4210.

[48]

Ling, D. P.; Li, H. H.; Xi, W. S.; Wang, Z.; Bednarkiewicz, A.; Dibaba, S. T.; Shi, L. Y.; Sun, L. N. Heterodimers made of metal-organic frameworks and upconversion nanoparticles for bioimaging and pH-responsive dual-drug delivery. J. Mater. Chem. B 2020, 8, 1316–1325.

[49]

Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

[50]

Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O'Keeffe, M.; Yaghi, O. M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 2010, 43, 58–67.

[51]

Zhou, W.; Wu, H.; Udovic, T. J.; Rush, J. J.; Yildirim, T. Quasi-free methyl rotation in zeolitic imidazolate framework-8. J. Phys. Chem. A 2008, 112, 12602–12606.

[52]

Zhao, X. J.; Fang, X. L.; Wu, B. H.; Zheng, L. S.; Zheng, N. F. Facile synthesis of size-tunable ZIF-8 nanocrystals using reverse micelles as nanoreactors. Sci. China Chem. 2014, 57, 141–146.

[53]

Cravillon, J.; Schröder, C. A.; Bux, H.; Rothkirch, A.; Caro, J.; Wiebcke, M. Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm 2012, 14, 492–498.

[54]

Cravillon, J.; Nayuk, R.; Springer, S.; Feldhoff, A.; Huber, K.; Wiebcke, M. Controlling zeolitic imidazolate framework nano- and microcrystal formation: Insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 2011, 23, 2130–2141.

[55]

Yang, F.; Mu, H.; Wang, C. Q.; Xiang, L.; Yao, K. X.; Liu, L. M.; Yang, Y.; Han, Y.; Li, Y. S.; Pan, Y. C. Morphological map of ZIF-8 crystals with five distinctive shapes: Feature of filler in mixed-matrix membranes on C3H6/C3H8 separation. Chem. Mater. 2018, 30, 3467–3473.

[56]

Xu, J. T.; Yang, P. P.; Sun, M. D.; Bi, H. T.; Liu, B.; Yang, D.; Gai, S. L.; He, F.; Lin, J. Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging. ACS Nano 2017, 11, 4133–4144.

[57]

Li, Z. K.; Qiao, X.; He, G. H.; Sun, X.; Feng, D. H.; Hu, L. F.; Xu, H.; Xu, H. B.; Ma, S. Q.; Tian, J. Core–satellite metal-organic framework@upconversion nanoparticle superstructures via electrostatic self-assembly for efficient photodynamic theranostics. Nano Res. 2020, 13, 3377–3386.

[58]

Zhang, D. L.; Peng, R. Z.; Liu, W. F.; Donovan, M. J.; Wang, L. L.; Ismail, I.; Li, J.; Li, J.; Qu, F. L.; Tan, W. H. Engineering DNA on the surface of upconversion nanoparticles for bioanalysis and therapeutics. ACS Nano 2021, 15, 17257–17274.

[59]

Qiao, C. Q.; Zhang, R. L.; Wang, Y. D.; Jia, Q.; Wang, X. F.; Yang, Z.; Xie, T. F.; Ji, R. C.; Cui, X. F.; Wang, Z. L. Rabies virus-inspired metal-organic frameworks (MOFs) for targeted imaging and chemotherapy of Glioma. Angew. Chem. , Int. Ed. 2020, 59, 16982–16988.

[60]

Zhu, W. J.; Yang, Y.; Jin, Q. T.; Chao, Y.; Tian, L. L.; Liu, J. J.; Dong, Z. L.; Liu, Z. Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy. Nano Res. 2019, 12, 1307–1312.

[61]

Liu, X. Y.; Lo, W. S.; Wu, C. H.; Williams, B. P.; Luo, L. S.; Li, Y.; Chou, L. Y.; Lee, Y.; Tsung, C. K. Tuning metal-organic framework nanocrystal shape through facet-dependent coordination. Nano Lett. 2020, 20, 1774–1780.

[62]

Liang, Z. Z.; Zhang, C. C.; Yuan, H. T.; Zhang, W.; Zheng, H. Q.; Cao, R. PVP-assisted transformation of a metal-organic framework into Co-embedded N-enriched meso/microporous carbon materials as bifunctional electrocatalysts. Chem. Commun. 2018, 54, 7519–7522.

[63]

Graf, C.; Dembski, S.; Hofmann, A.; Rühl, E. A general method for the controlled embedding of nanoparticles in silica colloids. Langmuir 2006, 22, 5604–5610.

[64]

Al-Saidi, W. A.; Feng, H. J.; Fichthorn, K. A. Adsorption of polyvinylpyrrolidone on Ag surfaces: Insight into a structure-directing agent. Nano Lett. 2012, 12, 997–1001.

Nano Research
Pages 1482-1490
Cite this article:
Feng Y, Li X, Lu S, et al. Modulator-directed assembly of hybrid composites based on metal-organic frameworks and upconversion nanoparticles. Nano Research, 2023, 16(1): 1482-1490. https://doi.org/10.1007/s12274-022-4684-9
Topics:

1307

Views

6

Crossref

5

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 17 March 2022
Revised: 17 May 2022
Accepted: 21 June 2022
Published: 06 August 2022
© Tsinghua University Press 2022
Return