Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The correlation of surface impurity states with the antiferromagnetic ground states is crucial for understanding the formation of the topological surface state in the antiferromagnetic topological insulators MnBi2Te4. By using low-temperature scanning tunneling microscopy and spectroscopy, we observed a localized bound state around the Mn-Bi antisite defect at the Te-terminated surface of the antiferromagnetic topological insulator MnBi2Te4. When applying a magnetic field perpendicular to the surface (Bz) from –1.5 to 3.0 T, the bound state shifts linearly to a lower energy with increasing Bz, which is attributed to the Zeeman effect. Remarkably, when applying a large range of Bz from –8.0 to 8.0 T, the magnetic field induced reorientation of surface magnetic moments results in an abrupt jump in the local density of states (LDOS), which is characterized by LDOS-change-ratio
Tokura, Y.; Yasuda, K.; Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 2019, 1, 126–143.
Li, J. H.; Li, Y.; Du, S. Q.; Wang, Z.; Gu, B. L.; Zhang, S. C.; He, K.; Duan, W. H.; Xu, Y. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 2019, 5, eaaw5685.
Otrokov, M. M.; Klimovskikh, I. I.; Bentmann, H.; Estyunin, D.; Zeugner, A.; Aliev, Z. S.; Gaß, S.; Wolter, A. U. B.; Koroleva, A. V.; Shikin, A. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 2019, 576, 416–422.
Yan, J. Q.; Zhang, Q.; Heitmann, T.; Huang, Z. L.; Chen, K. Y.; Cheng, J. G.; Wu, W. D.; Vaknin, D.; Sales, B. C.; McQueeney, R. J. Crystal growth and magnetic structure of MnBi2Te4. Phys. Rev. Mater. 2019, 3, 064202.
Rienks, E. D. L.; Wimmer, S.; Sánchez-Barriga, J.; Caha, O.; Mandal, P. S.; Růžička, J.; Ney, A.; Steiner, H.; Volobuev, V. V.; Groiss, H. et al. Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures. Nature 2019, 576, 423–428.
Lee, D. S.; Kim, T. H.; Park, C. H.; Chung, C. Y.; Lim, Y. S.; Seo, W. S.; Park, H. H. Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi2MnTe4. CrystEngComm 2013, 15, 5532–5538.
Zhang, D. Q.; Shi, M. J.; Zhu, T. S.; Xing, D. Y.; Zhang, H. J.; Wang, J. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett. 2019, 122, 206401.
Mong, R. S. K.; Essin, A. M.; Moore, J. E. Antiferromagnetic topological insulators. Phys. Rev. B 2010, 81, 245209.
Fang, C.; Gilbert, M. J.; Bernevig, B. A. Topological insulators with commensurate antiferromagnetism. Phys. Rev. B 2013, 88, 085406.
Otrokov, M. M.; Rusinov, I. P.; Blanco-Rey, M.; Hoffmann, M.; Vyazovskaya, A. Y.; Eremeev, S. V.; Ernst, A.; Echenique, P. M.; Arnau, A.; Chulkov, E. V. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett. 2019, 122, 107202.
Shikin, A. M.; Estyunin, D. A.; Zaitsev, N. L.; Glazkova, D.; Klimovskikh, I. I.; Filnov, S. O.; Rybkin, A. G.; Schwier, E. F.; Kumar, S.; Kimura, A. et al. Sample-dependent Dirac-point gap in MnBi2Te4 and its response to applied surface charge: A combined photoemission and ab initio study. Phys. Rev. B 2021, 104, 115168.
Qi, X. L.; Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110.
He, K. MnBi2Te4-family intrinsic magnetic topological materials. npj Quantum Mater. 2020, 5, 90.
Qi, X. L.; Hughes, T. L.; Zhang, S. C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 2008, 78, 195424.
Wilczek, F. Two applications of axion electrodynamics. Phys. Rev. Lett. 1987, 58, 1799–1802.
Essin, A. M.; Moore, J. E.; Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 2009, 102, 146805.
Liu, C. X.; Zhang, S. C.; Qi, X. L. The quantum anomalous hall effect: Theory and experiment. Annu. Rev. Condens. Matter Phys. 2016, 7, 301–321.
Yu, R.; Zhang, W.; Zhang, H. J.; Zhang, S. C.; Dai, X.; Fang, Z. Quantized anomalous hall effect in magnetic topological insulators. Science 2010, 329, 61–64.
Deng, Y. J.; Yu, Y. J.; Shi, M. Z.; Guo, Z. X.; Xu, Z. H.; Wang, J.; Chen, X. H.; Zhang, Y. B. Quantum anomalous hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 2020, 367, 895–900.
Liu, C.; Wang, Y. C.; Li, H.; Wu, Y.; Li, Y. X.; Li, J. H.; He, K.; Xu, Y.; Zhang, J. S.; Wang, Y. Y. Robust Axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 2020, 19, 522–527.
Ge, J.; Liu, Y. Z.; Li, J. H.; Li, H.; Luo, T. C.; Wu, Y.; Xu, Y.; Wang, J. High-Chern-number and high-temperature quantum hall effect without landau levels. Natl. Sci. Rev. 2020, 7, 1280–1287.
Li, J. H.; Wang, C.; Zhang, Z. T.; Gu, B. L.; Duan, W. H.; Xu, Y. Magnetically controllable topological quantum phase transitions in the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B 2019, 100, 121103.
Klimovskikh, I. I.; Otrokov, M. M.; Estyunin, D.; Eremeev, S. V.; Filnov, S. O.; Koroleva, A.; Shevchenko, E.; Voroshnin, V.; Rybkin, A. G.; Rusinov, I. P. et al. Tunable 3D/2D magnetism in the (MnBi2Te4) (Bi2Te3)m topological insulators family. npj Quantum Mater. 2020, 5, 54.
Lee, S. H.; Graf, D.; Min, L. J.; Zhu, Y. L.; Yi, H. M.; Ciocys, S.; Wang, Y. X.; Choi, E. S.; Basnet, R.; Fereidouni, A. et al. Evidence for a magnetic-field-induced ideal type-II Weyl state in antiferromagnetic topological insulator Mn(Bi1−x Sbx)2Te4. Phys. Rev. X 2021, 11, 031032.
Li, H.; Gao, S. Y.; Duan, S. F.; Xu, Y. F.; Zhu, K. J.; Tian, S. J.; Gao, J. C.; Fan, W. H.; Rao, Z. C.; Huang, J. R. et al. Dirac surface states in intrinsic magnetic topological insulators EuSn2As2 and MnBi2nTe3n+1. Phys. Rev. X 2019, 9, 041039.
Swatek, P.; Wu, Y.; Wang, L. L.; Lee, K.; Schrunk, B.; Yan, J. Q.; Kaminski, A. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B 2020, 101, 161109.
Yan, C. H.; Sebastian F.-M.; Mei, R. B.; Lee, S. H.; Nikola P.; Rikuto F.; Yan, B. H.; Liu, C. X.; Mao, Z. Q.; Yang, S. L. Origins of electronic bands in the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B 2021, 104, L041102.
Hao, Y. J.; Liu, P. F.; Feng, Y.; Ma, X. M.; Schwier, E. F.; Arita, M.; Kumar, S.; Hu, C. W.; Lu, R.; Zeng, M. et al. Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X 2019, 9, 041038.
Chen, Y. J.; Xu, L. X.; Li, J. H.; Li, Y. W.; Wang, H. Y.; Zhang, C. F.; Li, H.; Wu, Y.; Liang, A. J.; Chen, C. et al. Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X 2019, 9, 041040.
Wu, X. F.; Li, J. Y.; Ma, X. M.; Zhang, Y.; Liu, Y. T.; Zhou, C. S.; Shao, J. F.; Wang, Q. M.; Hao, Y. J.; Feng, Y. et al. Distinct topological surface states on the two terminations of MnBi4Te7. Phys. Rev. X 2020, 10, 031013.
Yuan, Y. H.; Wang, X. T.; Li, H.; Li, J. H.; Ji, Y.; Hao, Z. Q.; Wu, Y.; He, K.; Wang, Y. Y.; Xu, Y. et al. Electronic states and magnetic response of MnBi2Te4 by scanning tunneling microscopy and spectroscopy. Nano Lett. 2020, 20, 3271–3277.
Ko, W.; Kolmer, M.; Yan, J. Q.; Pham, A. D.; Fu, M. M.; Lüpke, F.; Okamoto, S.; Gai, Z.; Ganesh, P.; Li, A. P. Realizing gapped surface states in the magnetic topological insulator MnBi2−xSbxTe4. Phys. Rev. B 2020, 102, 115402.
Sass, P. M.; Ge, W. B.; Yan, J. Q.; Obeysekera, D.; Yang, J. J.; Wu, W. D. Magnetic imaging of domain walls in the antiferromagnetic topological insulator MnBi2Te4. Nano Lett. 2020, 20, 2609–2614.
Sass, P. M.; Kim, J.; Vanderbilt, D.; Yan, J. Q.; Wu, W. D. Robust A-type order and spin-flop transition on the surface of the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. Lett. 2020, 125, 037201.
Cui, J. H.; Shi, M. Z.; Wang, H. H.; Yu, F. H.; Wu, T.; Luo, X. G.; Ying, J. J.; Chen, X. H. Transport properties of thin flakes of the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B 2019, 99, 155125.
Zeugner, A.; Nietschke, F.; Wolter, A. U. B.; Gaß, S.; Vidal, R. C.; Peixoto, T. R. F.; Pohl, D.; Damm, C.; Lubk, A.; Hentrich, R. et al. Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4. Chem. Mater. 2019, 31, 2795–2806.
Netsou, A. M.; Muzychenko, D. A.; Dausy, H.; Chen, T. S.; Song, F. Q.; Schouteden, K.; Van Bael, M. J.; Van Haesendonck, C. Identifying native point defects in the topological insulator Bi2Te3. ACS Nano 2020, 14, 13172–13179.
Jeon, S.; Kim, S.; Kuk, Y. Zero-bias anomaly and role of electronic correlations in a disordered metal film. New J. Phys. 2020, 22, 083045.
Madhavan, V.; Chen, W.; Jamneala, T.; Crommie, M. F.; Wingreen, N. S. Local spectroscopy of a Kondo impurity: Co on Au(111). Phys. Rev. B 2001, 64, 165412.
Nagaoka, K.; Jamneala, T.; Grobis, M.; Crommie, M. F. Temperature dependence of a single Kondo impurity. Phys. Rev. Lett. 2002, 88, 077205.
Mills, D. L. Surface spin-flop state in a simple antiferromagnet. Phys. Rev. Lett. 1968, 20, 18–21.
Rößler, U. K.; Bogdanov, A. N. Reorientation in antiferromagnetic multilayers: Spin‐flop transition and surface effects. Phys. Stat. Sol. (c) 2004, 1, 3297–3305.
Bogdanov, A. N.; Rößler, U. K. Magnetic-field-induced reorientation in thin antiferromagnetic films: Spin-flop transition and surface-induced twist effects. Phys. Rev. B 2003, 68, 012407.