AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Atomic engineering promoted electrooxidation kinetics of manganese-based cathode for stable aqueous zinc-ion batteries

Hao Luo1Lipeng Wang2Penghui Ren3Jiahuang Jian3Xiong Liu1Chaojiang Niu1( )Dongliang Chao2( )
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
Show Author Information

Graphical Abstract

Abstract

Rechargeable zinc-based batteries with near-neutral media are standing in the middle of the energy storage field by virtue of their high safety and low cost. However, it is still imperative for Mn-based cathode to improve rate capacity by facilitating ions/electron transfer and long-cycle stability by suppressing Mn dissolution. Herein, promoting electrooxidation kinetics is proposed and employed to construct advanced Mn-Zn battery. The formation of carbon-protected birnessite-MnO2 is promoted via inducing the electron-donating capability of the heterointerface between the N-C coating and the defective MnO. Moreover, density functional theory calculations also demonstrate that N-C protected birnessite-MnO2 is more hydrophobic than pure birnessite-MnO2, which is beneficial to prohibiting Mn dissolution and other side reactions. As a result, the elaborate design realizes effective transformation from low valence to high valence Mn for high capacity (291 mAh·g−1) and protective bamboos-like structure for rate capacity (126 mAh·g−1 at 5 A·g−1) and cycling stability (89% capacity retention after 2,000 cycles). The assembled flexible quasi-solid-state Mn-Zn pouch batteries display application prospects for wearable and implantable electronic devices. The atomic engineering promoting electrooxidation kinetics strategy will be instructive in activating other cathode materials and maximizing their capacity.

Electronic Supplementary Material

Video
12274_2022_4689_MOESM2_ESM.mp4
Download File(s)
12274_2022_4689_MOESM1_ESM.pdf (2.1 MB)

References

1

Zhang, N.; Chen, X. Y.; Yu, M.; Niu, Z. Q.; Cheng, F. Y.; Chen, J. Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 2020, 49, 4203–4219.

2
Guo, R. T.; Liu, X. ; Xia, F. J.; Jiang, Y. L.; Zhang, H. Z.; Huang, M.; Niu, C. J.; Wu, J. S.; Zhao, Y.; Wang, X. P. et al. Large-scale integration of a zinc metasilicate interface layer guiding well-regulated Zn deposition. Adv. Mater., in press, https://doi.org/ 10.1002/adma.202202188.
3

Liu, J. H.; Zhou, W. H.; Zhao, R. Z.; Yang, Z. D.; Li, W.; Chao, D. L.; Qiao, S. Z.; Zhao, D. Y. Sulfur-based aqueous batteries: Electrochemistry and strategies. J. Am. Chem. Soc. 2021, 143, 15475–15489.

4

Chao, D. L.; Zhou, W. H.; Xie, F. X.; Ye, C.; Li, H.; Jaroniec, M.; Qiao, S. Z. Roadmap for advanced aqueous batteries: From design of materials to applications. Sci. Adv. 2020, 6, eaba4098.

5

Liang, Y. L.; Dong, H.; Aurbach, D.; Yao, Y. Current status and future directions of multivalent metal-ion batteries. Nat. Energy 2020, 5, 646–656.

6

Chao, D. L.; Qiao, S. Z. Toward high-voltage aqueous batteries: Super- or low-concentrated electrolyte? Joule 2020, 4, 1846–1851.

7

Liu, Z. X.; Huang, Y.; Huang, Y.; Yang, Q.; Li, X. L.; Huang, Z. D.; Zhi, C. Y. Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 2020, 49, 180–232.

8

Parker, J. F.; Ko, J. S.; Rolison, D. R.; Long, J. W. Translating materials-level performance into device-relevant metrics for zinc-based batteries. Joule 2018, 2, 2519–2527.

9

Du, W. C.; Ang, E. H.; Yang, Y.; Zhang, Y. F.; Ye, M. H.; Li, C. C. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 2020, 13, 3330–3360.

10

Li, M.; Li, Z. L.; Wang, X. P.; Meng, J. S.; Liu, X.; Wu, B. K.; Han, C. H.; Mai, L. Q. Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: From electrolytes to electrode materials. Energy Environ. Sci. 2021, 14, 3796–3839.

11

Song, M.; Tan, H.; Chao, D. L.; Fan, H. J. Recent advances in Zn-ion batteries. Adv. Funct. Mater. 2018, 28, 1802564.

12

Shi, Y. C.; Chen, Y.; Shi, L.; Wang, K.; Wang, B.; Li, L.; Ma, Y. M.; Li, Y. H.; Sun, Z. H.; Ali, W. et al. An overview and future perspectives of rechargeable zinc batteries. Small 2020, 16, 2000730.

13

Chen, H.; Shen, Z. H.; Pan, Z. H.; Kou, Z. K.; Liu, X. M.; Zhang, H.; Gu, Q. L.; Guan, C.; Wang, J. Hierarchical micro-nano sheet arrays of nickel-cobalt double hydroxides for high-rate Ni-Zn batteries. Adv. Sci. 2019, 6, 1802002.

14

Zhou, W. H.; Zhu, D.; He, J.; Li, J. C.; Chen, H.; Chen, Y. G.; Chao, D. L. A scalable top-down strategy toward practical metrics of Ni-Zn aqueous batteries with total energy densities of 165 W h kg-1 and 506 W h L-1. Energy Environ. Sci. 2020, 13, 4157–4167.

15

Wang, X.; Zhang, Z. C. Y.; Xi, B. J.; Chen, W. H.; Jia, Y. X.; Feng, J. K.; Xiong, S. L. Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries. ACS Nano 2021, 15, 9244–9272.

16

Tang, B. Y.; Shan, L. T.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 3288–3304.

17

Chao, D. L.; Ye, C.; Xie, F. X.; Zhou, W. H.; Zhang, Q. H.; Gu, Q. F.; Davey, K.; Gu, L.; Qiao, S. Z. Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density. Adv. Mater. 2020, 32, 2001894.

18

Zhao, Y. L.; Zhu, Y. H.; Zhang, X. B. Challenges and perspectives for manganese‐based oxides for advanced aqueous zinc‐ion batteries. InfoMat 2020, 2, 237–260.

19

Luo, H.; Wang, B.; Jian, J. H.; Wu, F. D.; Peng, L.; Wang, D. L. Stress-release design for high-capacity and long-time lifespan aqueous zinc-ion batteries. Mater. Today Energy 2021, 21, 100799.

20

Ding, S. X.; Zhang, M. Z.; Qin, R. Z.; Fang, J. J.; Ren, H. Y.; Yi, H. C.; Liu, L. L.; Zhao, W. G.; Li, Y.; Yao, L. et al. Oxygen-deficient β-MnO2@graphene oxide cathode for high-rate and long-life aqueous zinc ion batteries. Nano-Micro Lett. 2021, 13, 173.

21

Zhang, Y. N.; Liu, Y. P.; Liu, Z. H.; Wu, X. G.; Wen, Y. X.; Chen, H. D.; Ni, X.; Liu, G. H.; Huang, J. J.; Peng, S. L. MnO2 cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries. J. Energy Chem. 2022, 64, 23–32.

22

Jiang, Y. Q.; Ba, D. L.; Li, Y. Y.; Liu, J. P. Noninterference revealing of "layered to layered" zinc storage mechanism of δ-MnO2 toward neutral Zn-Mn batteries with superior performance. Adv. Sci. 2020, 7, 1902795.

23
Liu W. B. Zhang X. Y. Huang Y. F. Jiang B. Z. Chang Z. W. Xu C. J. Kang F. Y. β-MnO2 with proton conversion mechanism in rechargeable zinc ion battery J. Energy Chem. 2021 56 365 373 10.1016/j.jechem.2020.07.027

Liu, W. B.; Zhang, X. Y.; Huang, Y. F.; Jiang, B. Z.; Chang, Z. W.; Xu, C. J.; Kang, F. Y. β-MnO2 with proton conversion mechanism in rechargeable zinc ion battery. J. Energy Chem. 2021, 56, 365–373.

24

Guo, S.; Liang, S. Q.; Zhang, B. S.; Fang, G. Z.; Ma, D.; Zhou, J. Cathode interfacial layer formation via in situ electrochemically charging in aqueous zinc-ion battery. ACS Nano 2019, 13, 13456–13464.

25

Liang, G. J.; Li, X. L.; Wang, Y. B.; Yang, S.; Huang, Z. D.; Yang, Q.; Wang, D. H.; Dong, B. B.; Zhu, M. S.; Zhi, C. Y. Building durable aqueous K-ion capacitors based on MXene family. Nano Res. Energy 2022, 1, e9120002.

26

Zhu, X. D.; Cao, Z. Y.; Wang, W. J.; Li, H. J.; Dong, J. C.; Gao, S. P.; Xu, D. X.; Li, L.; Shen, J. F.; Ye, M. X. Superior-performance aqueous zinc-ion batteries based on the in situ growth of MnO2 nanosheets on V2CTX MXene. ACS Nano 2021, 15, 2971–2983.

27

Jiang, L. W.; Dong, D. J.; Lu, Y. C. Design strategies for low temperature aqueous electrolytes. Nano Res. Energy 2022, 1, e9120003.

28

Guo, C.; Tian, S.; Chen, B. L.; Liu, H. M.; Li, J. F. Constructing α-MnO2@PPy core−shell nanorods towards enhancing electrochemical behaviors in aqueous zinc ion battery. Mater. Lett. 2020, 262, 127180.

29

Gou, L.; Xue, D.; Mou, K. L.; Zhao, S. P.; Wang, Y.; Fan, X. Y.; Li, D. L. α-MnO2@In2O3 nanotubes as cathode material for aqueous rechargeable Zn-ion battery with high electrochemical performance. J. Electrochem. Soc. 2019, 166, A3362–A3368.

30

Wu, B. K.; Zhang, G. B.; Yan, M. Y.; Xiong, T. F.; He, P.; He, L.; Xu, X.; Mai, L. Q. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 2018, 14, 1703850.

31

Tan, Q. Y.; Li, X. T.; Zhang, B.; Chen, X.; Tian, Y. W.; Wan, H. Z.; Zhang, L. S.; Miao, L.; Wang, C.; Gan, Y. et al. Valence engineering via in situ carbon reduction on octahedron sites Mn3O4 for ultra‐long cycle life aqueous Zn‐ion battery. Adv. Energy Mater. 2020, 10, 2001050.

32

Li, W. J.; Gao, X. Y.; Chen, Z. Y.; Guo, R. T.; Zou, G. Q.; Hou, H. S.; Deng, W. T.; Ji, X. B.; Zhao, J. Electrochemically activated MnO cathodes for high performance aqueous zinc-ion battery. Chem. Eng. J. 2020, 402, 125509.

33

Tang, F.; Gao, J. Y.; Ruan, Q. Y.; Wu, X. W.; Wu, X. S.; Zhang, T.; Liu, Z. X.; Xiang, Y. H.; He, Z. Q.; Wu, X. M. Graphene-wrapped MnO/C composites by MOFs-derived as cathode material for aqueous zinc ion batteries. Electrochim. Acta 2020, 353, 136570.

34

Zhang, R. Z.; Ma, Q. C.; Chen, S.; Huang, J. D.; Zhu, L. Z.; Liu, J. Reaction mechanism and electrochemical performance of manganese (II) oxide in zinc ion batteries. Solid State Ionics 2020, 356, 115439.

35

Cheng, L.; Chen, J. W.; Yan, Y.; Zhang, J.; Hu, H.; Zhang, J.; Luo, Y.; Chen, Y. H.; Wang, G.; Wang, R. L. Metal organic frameworks derived active functional groups decorated manganese monoxide for aqueous zinc ion battery. Chem. Phys. Lett. 2021, 778, 138772.

36

Yu, P. F.; Zhou, J. X.; Zheng, M. T.; Li, M. R.; Hu, H.; Xiao, Y.; Liu, Y. L.; Liang, Y. R. Boosting zinc ion energy storage capability of inert MnO cathode by defect engineering. J. Colloid Interface Sci. 2021, 594, 540–549.

37

Zhang, Y.; Deng, S. J.; Luo, M.; Pan, G. X.; Zeng, Y. X.; Lu, X. H.; Ai, C. Z.; Liu, Q.; Xiong, Q. Q.; Wang, X. L. et al. Defect promoted capacity and durability of N-MnO2-x branch arrays via low-temperature NH3 treatment for advanced aqueous zinc ion batteries. Small 2020, 16, 2005923.

38

Zhao, Q.; Huang, X.; Zhou, M.; Ju, Z.; Sun, X.; Sun, Y.; Huang, Z.; Li, H.; Ma, T. Proton insertion promoted a polyfurfural/MnO2 nanocomposite cathode for a rechargeable aqueous Zn-MnO2 battery. ACS Appl. Mater. Inter. 2020, 12, 36072–36081.

39

Zhang, X. T.; Li, J. X.; Ao, H. S.; Liu, D. Y.; Shi, L.; Wang, C. M.; Zhu, Y. C.; Qian, Y. T. Appropriately hydrophilic/hydrophobic cathode enables high-performance aqueous zinc-ion batteries. Energy Storage Mater. 2020, 30, 337–345.

40

You, Z. Y.; Liu, H. Y.; Wang, J. J.; Ren, L. B.; Wang, J. G. Activation of MnO hexagonal nanoplates via in situ electrochemical charging toward high-capacity and durable Zn-ion batteries. Appl. Surf. Sci. 2020, 514, 145949.

41

Yang, B.; Cao, X. W.; Wang, S. H.; Wang, N.; Sun, C. L. Manganese oxides hierarchical microspheres as cathode material for high-performance aqueous zinc-ion batteries. Electrochim. Acta 2021, 385, 138447.

42

Luo, H.; Wang, B.; Wang, C. L.; Wu, F. D.; Jin, F.; Cong, B. W.; Ning, Y.; Zhou, Y.; Wang, D. L.; Liu, H. K. et al. Synergistic deficiency and heterojunction engineering boosted VO2 redox kinetics for aqueous zinc-ion batteries with superior comprehensive performance. Energy Storage Mater. 2020, 33, 390–398.

43

Lin, J.; Zeng, C. H.; Lin, X. M.; Xu, C.; Xu, X.; Luo, Y. F. Metal-organic framework-derived hierarchical MnO/Co with oxygen vacancies toward elevated-temperature Li-ion battery. ACS Nano 2021, 15, 4594–4607.

44

Wang, B.; Xie, Y.; Liu, T.; Luo, H.; Wang, B.; Wang, C. H.; Wang, L.; Wang, D. L.; Dou, S. X.; Zhou, Y. LiFePO4 quantum-dots composite synthesized by a general microreactor strategy for ultra-high-rate lithium ion batteries. Nano Energy 2017, 42, 363–372.

45

Wang, F.; Sun, W.; Shadike, Z.; Hu, E. Y.; Ji, X.; Gao, T.; Yang, X. Q.; Xu, K.; Wang, C. S. How water accelerates bivalent ion diffusion at the electrolyte/electrode interface. Angew. Chem., Int. Ed. 2018, 57, 11978–11981.

46

Sun, W.; Wang, F.; Hou, S.; Yang, C. Y.; Fan, X. L.; Ma, Z. H.; Gao, T.; Han, F. D.; Hu, R. Z.; Zhu, M. et al. Zn/MnO2 battery chemistry With H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 2017, 139, 9775–9778.

47

Luo, H.; Wang, B.; Wu, F. D.; Jian, J. H.; Yang, K.; Jin, F.; Cong, B. W.; Ning, Y.; Zhou, Y.; Wang, D. L. et al. Synergistic nanostructure and heterointerface design propelled ultra-efficient in-situ self-transformation of zinc-ion battery cathodes with favorable kinetics. Nano Energy 2021, 81, 105601.

48

Luo, H.; Wang, B.; Wang, F.; Yang, J.; Wu, F. D.; Ning, Y.; Zhou, Y.; Wang, D. L.; Liu, H. K.; Dou, S. X. Anodic oxidation strategy toward structure-optimized V2O3 cathode via electrolyte regulation for Zn-ion storage. ACS Nano 2020, 14, 7328–7337.

49

Wang, J. J.; Wang, J. G.; Liu, H. Y.; You, Z. Y.; Li, Z.; Kang, F. Y.; Wei, B. Q. A highly flexible and lightweight MnO2/graphene membrane for superior zinc-ion batteries. Adv. Funct. Mater. 2021, 31, 2007397.

50

Luo, H.; Wang, B.; Liu, T.; Jin, F.; Liu, R.; Xu, C. Y.; Wang, C. H.; Ji, K. M.; Zhou, Y.; Wang, D. L. et al. Hierarchical design of hollow Co-Ni LDH nanocages strung by MnO2 nanowire with enhanced pseudocapacitive properties. Energy Storage Mater. 2019, 19, 370–378.

51

Fang, G. Z.; Zhu, C. Y.; Chen, M. H.; Zhou, J.; Tang, B. Y.; Cao, X. X.; Zheng, X. S.; Pan, A. Q.; Liang, S. Q. Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv. Funct. Mater. 2019, 29, 1808375.

52

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT:A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

53

Lejaeghere, K.; Bihlmayer, G.; Björkman, T.; Blaha, P.; Blügel, S.; Blum, V.; Caliste, D.; Castelli, I.; Clark, S.; Dal, A. et al. Reproducibility in density functional theory calculations of solids. Science 2016, 351, aad3000.

54

Constantinescu, G.; Kuc, A.; Heine, T. Stacking in bulk and bilayer hexagonal boron nitride. Phys. Rev. Lett. 2013, 111, 036104.

Nano Research
Pages 8603-8612
Cite this article:
Luo H, Wang L, Ren P, et al. Atomic engineering promoted electrooxidation kinetics of manganese-based cathode for stable aqueous zinc-ion batteries. Nano Research, 2022, 15(9): 8603-8612. https://doi.org/10.1007/s12274-022-4689-4
Topics:

1345

Views

24

Crossref

23

Web of Science

24

Scopus

2

CSCD

Altmetrics

Received: 25 March 2022
Revised: 11 June 2022
Accepted: 21 June 2022
Published: 12 July 2022
© Tsinghua University Press 2022
Return