AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Selective dissolution to synthesize densely populated Pt single atom catalyst

Weinan Yang1,§Xiaoguang Zhao2,§Ya Wang1Rong Wang1Wenhao Yang1Yue Peng1( )Junhua Li1( )
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
Sinopec Research Institute of Petroleum Processing, Beijing 100083, China

§ Weinan Yang and Xiaoguang Zhao contributed equally to this work.

Show Author Information

Graphical Abstract

Selective dissolution in acid solution transformed Pt doped lanthanum manganese perovskite into Mn2O3 supported densely populated Pt single atom catalyst.

Abstract

Single atom catalysts (SACs) have become one of research focuses in heterogeneous catalysis for their effective utilization of active metal atoms and unique properties in various catalytic reactions. However, due to their high surface energy, noble metal single atoms like Pt tend to migrate and agglomerate to form larger clusters or nanoparticles, which makes it a challenge to fabricate noble metal SACs with high loading (> 5 wt.%). Furthermore, the decisive factors of loading maximum are still not clear. Here, we reported a manganese oxide supported Pt SAC with a high loading of 5.6 wt.% synthesized by selective dissolution strategy. The pre-stabilization of Pt by coordinated oxygen and the abundant surface defects of support are the determinants of high loading. The Pt SAC exhibited much better H2 spill-over and hydrocarbon oxidation abilities with lower adsorption and dissociation energies than the manganese oxide support because of its local electronic structure with less repulsion.

Electronic Supplementary Material

Video
12274_2022_4690_MOESM2_ESM.mp4
12274_2022_4690_MOESM3_ESM.mp4
12274_2022_4690_MOESM4_ESM.mp4
Download File(s)
12274_2022_4690_MOESM1_ESM.pdf (13.4 MB)

References

[1]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

[2]

Li, X. N.; Yang, X. F.; Huang, Y. Q.; Zhang, T.; Liu, B. Supported noble-metal single atoms for heterogeneous catalysis. Adv. Mater. 2019, 31, 1902031.

[3]

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

[4]

Lou, Y.; Jiang, F.; Zhu, W.; Wang, L.; Yao, T. Y.; Wang, S. S.; Yang, B.; Yang, B.; Zhu, Y. F.; Liu, X. H. et al. CeO2 supported Pd dimers boosting CO2 hydrogenation to ethanol. Appl. Catal. B 2021, 291, 120122.

[5]

Lou, Y.; Cai, Y. F.; Hu, W. D.; Wang, L.; Dai, Q. G.; Zhan, W. C.; Guo, Y. L.; Hu, P.; Cao, X. M.; Liu, J. Y. et al. Identification of active area as active center for CO oxidation over single Au atom catalyst. ACS Catal. 2020, 10, 6094–6101.

[6]

Wu, J. B.; Xiong, L. K.; Zhao, B. T.; Liu, M. L.; Huang, L. Densely populated single atom catalysts. Small Methods 2020, 4, 1900540.

[7]

Wang, J.; Li, Z. J.; Wu, Y. E.; Li, Y. D. Fabrication of single-atom catalysts with precise structure and high metal loading. Adv. Mater. 2018, 30, 1801649.

[8]

Lou, Y.; Xu, J.; Zhang, Y.; Pan, C.; Dong, Y.; Zhu, Y. Metal–support interaction for heterogeneous catalysis: From nanoparticles to single atoms. Mater. Today Nano 2020, 12, 100093.

[9]

Nie, L.; Mei, D. H.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernandez, X. I. P.; Delariva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419–1423.

[10]

Lin, J.; Qiao, B. T.; Li, N.; Li, L.; Sun, X. C.; Liu, J. Y.; Wang, X. D.; Zhang, T. Little do more: A highly effective Pt1/FeOx single-atom catalyst for the reduction of NO by H2. Chem. Commun. 2015, 51, 7911–7914.

[11]

Jiang, Z. Y.; Feng, X. B.; Deng, J. L.; He, C.; Douthwaite, M.; Yu, Y. K.; Liu, J.; Hao, Z. P.; Zhao, Z. Atomic-scale insights into the low-temperature oxidation of methanol over a single-atom Pt1-Co3O4 catalyst. Adv. Funct. Mater. 2019, 29, 1902041.

[12]

Yang, K.; Liu, Y. X.; Deng, J. G.; Zhao, X. T.; Yang, J.; Han, Z.; Hou, Z. Q.; Dai, H. X. Three-dimensionally ordered mesoporous iron oxide-supported single-atom platinum: Highly active catalysts for benzene combustion. Appl. Catal. B 2019, 244, 650–659.

[13]

Hoang, S.; Guo, Y. B.; Binder, A. J.; Tang, W. X.; Wang, S. B.; Liu, J. Y.; Tran, H.; Lu, X. Y.; Wang, Y.; Ding, Y. et al. Activating low-temperature diesel oxidation by single-atom Pt on TiO2 nanowire array. Nat. Commun. 2020, 11, 1062.

[14]

Jeong, H.; Kwon, O.; Kim, B. S.; Bae, J.; Shin, S.; Kim, H. E.; Kim, J.; Lee, H. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat. Catal. 2020, 3, 368–375.

[15]

Zhang, Z. L.; Zhu, Y. H.; Asakura, H.; Zhang, B.; Zhang, J. G.; Zhou, M. X.; Han, Y.; Tanaka, T.; Wang, A. Q.; Zhang, T. et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 2017, 8, 16100.

[16]

Kim, J.; Roh, C. W.; Sahoo, S. K.; Yang, S.; Bae, J.; Han, J. W.; Lee, H. Highly durable platinum single-atom alloy catalyst for electrochemical reactions. Adv. Energy Mater. 2018, 8, 1701476.

[17]

Chen, W. L.; Gao, W. P.; Tu, P.; Robert, T.; Ma, Y. L.; Shan, H.; Gu, X.; Shang, W.; Tao, P.; Song, C. Y. et al. Neighboring Pt atom sites in an ultrathin FePt nanosheet for the efficient and highly CO-tolerant oxygen reduction reaction. Nano Lett. 2018, 18, 5905–5912.

[18]

Zhang, Z. Q.; Chen, Y. G.; Zhou, L. Q.; Chen, C.; Han, Z.; Zhang, B. S.; Wu, Q.; Yang, L. J.; Du, L. Y.; Bu, Y. F. et al. The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring. Nat. Commun. 2019, 10, 1657.

[19]

Shen, R. A.; Chen, W. X.; Peng, Q.; Lu, S. Q.; Zheng, L. R.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J. T.; Zhuang, Z. B. et al. High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem 2019, 5, 2099–2110.

[20]

Li, H. L.; Wang, L. B.; Dai, Y. Z.; Pu, Z. T.; Lao, Z. H.; Chen, Y. W.; Wang, M. L.; Zheng, X. S.; Zhu, J. F.; Zhang, W. H. et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 2018, 13, 411–417.

[21]

Jones, J.; Xiong, H. F.; Delariva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Herna´ndez, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

[22]

Kunwar, D.; Zhou, S. L.; DeLaRiva, A.; Peterson, E. J.; Xiong, H. F.; Pereira-Hernandez, X. I.; Purdy, S. C.; Ter Veen, R.; Brongersma, H. H.; Miller, J. T. et al. Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support. ACS Catal. 2019, 9, 3978–3990.

[23]

Liu, K. P.; Tang, Y.; Yu, Z. Y.; Ge, B. H.; Ren, G. Q.; Ren, Y. J.; Su, Y.; Zhang, J. C.; Sun, X. C.; Chen, Z. Q. et al. High-loading and thermally stable Pt1/MgAl1.2Fe0.8O4 single-atom catalysts for high-temperature applications. Sci. China Mater. 2020, 63, 949–958.

[24]

Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450–453.

[25]

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

[26]

Si, W. Z.; Wang, Y.; Peng, Y.; Li, J. H. Selective dissolution of A-site cations in ABO3 perovskites: A new path to high-performance catalysts. Angew. Chem., Int. Ed. 2015, 127, 8065–8068.

[27]

Yang, W. N.; Wang, S. M.; Li, K. Z.; Liu, S.; Gan, L. N.; Peng, Y.; Li, J. H. Highly selective α-Mn2O3 catalyst for cGPF soot oxidation: Surface activated oxygen enhancement via selective dissolution. Chem. Eng. J. 2019, 364, 448–451.

[28]

Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 2005, 12, 537–541.

[29]

Munoz, M.; Argoul, P.; Farges, F. Continuous Cauchy wavelet transform analyses of EXAFS spectra: A qualitative approach. Amer. Mineral. 2003, 88, 694–700.

[30]

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251.

[31]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[32]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.

[33]

Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509.

[34]

Wang, L.; Maxisch, T.; Ceder, G. Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 2006, 73, 195107.

[35]

Seriani, N.; Jin, Z.; Pompe, W.; Ciacchi, L. C. Density functional theory study of platinum oxides: From infinite crystals to nanoscopic particles. Phys. Rev. B 2007, 76, 155421.

[36]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

[37]

Kästner, J.; Sherwood, P. Superlinearly converging dimer method for transition state search. J. Chem. Phys. 2008, 128, 014106.

[38]

Galakhov, V. R.; Demeter, M.; Bartkowski, S.; Neumann, M.; Ovechkina, N. A.; Kurmaev, E. Z.; Lobachevskaya, N. I.; Mukovskii, Y. M.; Mitchell, J.; Ederer, D. L. Mn 3s exchange splitting in mixed-valence manganites. Phys. Rev. B 2002, 65, 113102.

[39]

Midgley, P. A.; Weyland, M. 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 2003, 96, 413–431.

[40]

Russell, A.; Epling, W. S. Diesel oxidation catalysts. Catal. Rev. 2011, 53, 337–423.

[41]

Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

[42]

Kuai, L.; Chen, Z.; Liu, S. J.; Kan, E. J.; Yu, N.; Ren, Y. M.; Fang, C. H.; Li, X. Y.; Li, Y. D.; Geng, B. Y. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nat. Commun. 2020, 11, 48.

[43]

Prins, R. Hydrogen spillover. Facts and fiction. Chem. Rev. 2012, 112, 2714–2738.

[44]

McCue, I.; Benn, E.; Gaskey, B.; Erlebacher, J. Dealloying and dealloyed materials. Annu. Rev. Mater. Res. 2016, 46, 263–286.

[45]

Gu, X. K.; Qiao, B. T.; Huang, C. Q.; Ding, W. C.; Sun, K. J.; Zhan, E. S.; Zhang, T.; Liu, J. Y.; Li, W. X. Supported single Pt1/Au1 atoms for methanol steam reforming. ACS Catal. 2014, 4, 3886–3890.

Nano Research
Pages 219-227
Cite this article:
Yang W, Zhao X, Wang Y, et al. Selective dissolution to synthesize densely populated Pt single atom catalyst. Nano Research, 2023, 16(1): 219-227. https://doi.org/10.1007/s12274-022-4690-y
Topics:

1076

Views

5

Crossref

10

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 28 April 2022
Revised: 18 June 2022
Accepted: 21 June 2022
Published: 27 July 2022
© Tsinghua University Press 2022
Return