AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Super-assembly of integrated gold magnetic assay with loop-mediated isothermal amplification for point-of-care testing

Jianping Liang1,§Jie Zeng3,§Xiaojuan Huang1Tengteng Zhu1Yonglong Gong1Chen Dong1Xiangrong Wang1,5Lingzhi Zhao1Lei Xie3Kang Liang6Qiongxiang Tan1Yali Cui1,2( )Biao Kong3( )Wenli Hui1,4( )
The College of life science, Northwest University, Xi’an 710069, China
Shaanxi Provincial Engineering Research Center for Nano-Biomedical Detection, Xi’an 710077, China
Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, China
Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an 710069, China
School of Chemical Engineering, Graduate School of Biomedical Engineering, and Australian Centre for NanoMedicine, University of New South Wales, NSW 2052, Australia

§ Jianping Liang and Jie Zeng contributed equally to this work.

Show Author Information

Graphical Abstract

The schematic illustration displays the over-all process of surface modification and molecular detection of gold magnetic nanoparticles. The anti-digoxin antibody labeled on the modified gold magnetic nanoparticles and loop-mediated isothermal amplification (LAMP) double-labeled products formed by biotin and digoxin labeled on primers interact with the lateral flow assay (LFA) system and present visual bands.

Abstract

With the increasing global threat of various diseases and infections, it is essential to develop a fast, low-cost, and easy-to-use point-of-care testing (POCT) system for inspections at all levels of medical institutions and self-examination at home. In this work, gold magnetic nanoparticles (GMNPs) are used as the key material, and a rapid visual detection method is designed through integrating loop-mediated isothermal amplification (LAMP) and lateral flow assay (LFA) biosensor for detecting a variety of analytes which includes whole blood, buccal swabs, and DNA. It is worth to note that the proposed method does not need DNA extraction. Furthermore, uracil DNA glycosylase (UDG) is employed to eliminate carrier contamination for preventing false positive results. The whole detection process can be finished within 25 min. The accuracy of detection is measured by assessing the polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) C677T. The detection limit of the newly developed extraction-free detection system for MTHFR C677T is 0.16 ng/μL. A preliminary clinical study of the proposed method is carried out by analyzing 600 clinical samples (including 200 whole blood samples, 100 buccal swabs, and 300 genomic DNA samples). The results indicate that the proposed method is 100% consistent with the sequencing results which provides a new choice for POCT and shows a broad application prospect in all levels of medical clinics and at home.

Electronic Supplementary Material

Download File(s)
12274_2022_4692_MOESM1_ESM.pdf (417.9 KB)

References

[1]

Everitt, A. R.; Clare, S.; Pertel, T.; John, S. P.; Wash, R. S.; Smith, S. E.; Chin, C. R.; Feeley, E. M.; Sims, J. S.; Adams, D. J. et al. IFITM3 restricts the morbidity and mortality associated with influenza. Nature 2012, 484, 519–523.

[2]

Moore, J.; McKnight, A. J.; Simmonds, M. J.; Courtney, A. E.; Hanvesakul, R.; Brand, O. J.; Briggs, D.; Ball, S.; Cockwell, P.; Patterson, C. C. et al. Association of caveolin-1 gene polymorphism with kidney transplant fibrosis and allograft failure. JAMA 2010, 303, 1282–1287.

[3]

Grant, J. R.; Arantes, A. S.; Liao, X. P.; Stothard, P. In-depth annotation of SNPs arising from resequencing projects using NGS-SNP. Bioinformatics 2011, 27, 2300–2301.

[4]

Li, J.; Huang, Y.; Wang, D. F.; Song, B.; Li, Z. H.; Song, S. P.; Wang, L. H.; Jiang, B. W.; Zhao, X. C.; Yan, J. et al. A power-free microfluidic chip for SNP genotyping using graphene oxide and a DNA intercalating dye. Chem. Commun. 2013, 49, 3125–3127.

[5]

Martinez-Serra, J.; Robles, J.; Nicolàs, A.; Gutierrez, A.; Ros, T.; Amat, J. C.; Alemany, R.; Vögler, O.; Abelló, A.; Noguera, A. et al. Fluorescence resonance energy transfer-based real-time polymerase chain reaction method without DNA extraction for the genotyping of F5, F2, F12, MTHFR, and HFE. J. Blood Med. 2014, 5, 99–106.

[6]

Loo, K. W.; Griffiths, L. R.; Gan, S. H. A novel multiplex PCR-RFLP method for simultaneous detection of the MTHFR 677 C > T, eNOS +894 G > T and - eNOS −786 T > C variants among Malaysian Malays. BMC Med. Genet. 2012, 13, 34.

[7]

Hendre, P. S.; Kamalakannan, R.; Varghese, M. High-throughput and parallel SNP discovery in selected candidate genes in Eucalyptus camaldulensis using Illumina NGS platform. Plant Biotechnol. J. 2012, 10, 646–656.

[8]

Ahsan, M.; Li, X. D.; Lundberg, A. E.; Kierczak, M.; Siegel, P. B.; Carlborg, O.; Marklund, S. Identification of candidate genes and mutations in QTL regions for chicken growth using bioinformatic analysis of NGS and SNP-chip data. Front. Genet. 2013, 4, 226.

[9]

Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, e63.

[10]

Nagamine, K.; Hase, T.; Notomi, T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 2002, 16, 223–229.

[11]

Kim, D. Y.; Kim, H. R.; Park, J. H.; Kwon, N. Y.; Kim, J. M.; Kim, J. K.; Park, J. H.; Lee, K. K.; Kim, S. H.; Kim, W. I. et al. Detection of a novel porcine circovirus 4 in Korean pig herds using a loop-mediated isothermal amplification assay. J. Virol. Methods 2022, 299, 114350.

[12]

Wang, Y.; Wang, X. X.; Chen, H.; Han, L. M.; Wang, L. C.; Chen, T.; Li, S.; Li, H.; Li, Y. L.; Li, Z. K. et al. A novel real-time reverse transcription loop-mediated isothermal amplification detection platform: Application to diagnosis of COVID-19. Front. Bioeng. Biotechnol. 2021, 9, 748746.

[13]

Kwon, S. J.; Cho, Y. E.; Kim, M. H.; Seo, J. K. A one-step reverse-transcription loop-mediated isothermal amplification assay optimized for the direct detection of cucumber green mottle mosaic virus in cucurbit seeds. Mol. Cell. Probes 2021, 60, 101775.

[14]

Khammanee, T.; Sawangjaroen, N.; Buncherd, H.; Tun, A. W.; Thanapongpichat, S. A LAMP-SNP assay detecting C580Y mutation in Pfkelch13 gene from clinically dried blood spot samples. Korean J. Parasitol. 2021, 59, 15–22.

[15]

Cibecchini, G.; Cecere, P.; Tumino, G.; Morcia, C.; Ghizzoni, R.; Carnevali, P.; Terzi, V.; Pompa, P. P. A fast, naked-eye assay for varietal traceability in the durum wheat production chain. Foods 2020, 9, 1691.

[16]

Zhang, S. N.; Cai, Y.; Zhang, J. X.; Liu, X. N.; He, L. H.; Cheng, L.; Hua, K.; Hui, W. L.; Zhu, J. L.; Wan, Y. S. et al. Tetra-primer ARMS-PCR combined with GoldMag lateral flow assay for genotyping: Simultaneous visual detection of both alleles. Nanoscale 2020, 12, 10098–10105.

[17]

Komura, R.; Kawakami, T.; Nakajima, K.; Suzuki, H.; Nakashima, C. Simultaneous detection of benzimidazole-resistant strains of fusarium head blight using the loop-mediated isothermal amplification-fluorescent loop primer method. J. Gen. Plant Pathol. 2018, 84, 247–253.

[18]

Tsujimura, K.; Bannai, H.; Nemoto, M.; Kokado, H. Loop-mediated isothermal amplification-fluorescent loop primer assay for the genotyping of a single nucleotide polymorphism at position 2254 in the viral DNA polymerase gene of equid alphaherpesvirus 1. J. Vet. Diagn. Invest. 2019, 31, 640–644.

[19]

Mori, Y.; Kitao, M.; Tomita, N.; Notomi, T. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J. Biochem. Biophys. Methods 2004, 59, 145–157.

[20]

Mori, Y.; Nagamine, K.; Tomita, N.; Notomi, T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem. Biophys. Res. Commun. 2001, 289, 150–154.

[21]

Goto, M.; Honda, E.; Ogura, A.; Nomoto, A.; Hanaki, K. I. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. BioTechniques 2009, 46, 167–172.

[22]

Mohon, A. N.; Menard, D.; Alam, M. S.; Perera, K.; Pillai, D. R. A novel single-nucleotide polymorphism loop mediated isothermal amplification assay for detection of artemisinin-resistant Plasmodium falciparum malaria. Open Forum Infect. Dis. 2018, 5, ofy011.

[23]

Zhang, C.; Yao, Y.; Zhu, J. L.; Zhang, S. N.; Zhang, S. S.; Wei, H.; Hui, W. L.; Cui, Y. L. Establishment and application of a real-time loop-mediated isothermal amplification system for the detection of CYP2C19 polymorphisms. Sci. Rep. 2016, 6, 26533.

[24]

Nazki, F. H.; Sameer, A. S.; Ganaie, B. A. Folate: Metabolism, genes, polymorphisms and the associated diseases. Gene 2014, 533, 11–20.

[25]

Frosst, P.; Blom, H. J.; Milos, R.; Goyette, P.; Sheppard, C. A.; Matthews, R. G.; Boers, G. J. H.; den Heijer, M.; Kluijtmans, L. A. J.; van den Heuvel, L. P. et al. A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 1995, 10, 111–113.

[26]

Zhuo, X. L.; Song, J.; Li, D. R.; Wu, Y. Z.; Zhou, Q. MTHFR C677T polymorphism interaction with heavy alcohol consumption increases head and neck carcinoma risk. Sci. Rep. 2015, 5, 10671.

[27]

Xuan, C.; Li, H.; Zhao, J. X.; Wang, H. W.; Wang, Y.; Ning, C. P.; Liu, Z.; Zhang, B. B.; He, G. W.; Lun, L. M. Association between MTHFR polymorphisms and congenital heart disease: A meta-analysis based on 9,329 cases and 15,076 controls. Sci. Rep. 2014, 4, 7311.

[28]

He, J.; Liao, X. Y.; Zhu, J. H.; Xue, W. Q.; Shen, G. P.; Huang, S. Y.; Chen, W.; Jia, W. H. Association of MTHFR C677T and A1298C polymorphisms with non-Hodgkin lymphoma susceptibility: Evidence from a meta-analysis. Sci. Rep. 2014, 4, 6159.

[29]

Holmes, M. V.; Newcombe, P.; Hubacek, J. A.; Sofat, R.; Ricketts, S. L.; Cooper, J.; Breteler, M. M.; Bautista, L. E.; Sharma, P.; Whittaker, J. C. et al. Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: A meta-analysis of genetic studies and randomised trials. Lancet 2011, 378, 584–594.

[30]

Li, P. P.; Qin, C. Methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms and susceptibility to ischemic stroke: A meta-analysis. Gene 2014, 535, 359–364.

[31]

Yan, L. F.; Zhao, L.; Long, Y.; Zou, P.; Ji, G. X.; Gu, A. H.; Zhao, P. Association of the maternal MTHFR C677T polymorphism with susceptibility to neural tube defects in offsprings: Evidence from 25 case-control studies. PLoS One 2012, 7, e41689.

[32]

Lian, T.; Peng, M. L.; Vermorken, A. J. M.; Jin, Y. Y.; Luo, Z. Y.; Van de Ven, W. J. M.; Wan, Y. S.; Hou, P.; Cui, Y. L. Synthesis and characterization of curcumin-functionalized HP-β-CD-modified GoldMag nanoparticles as drug delivery agents. J. Nanosci. Nanotechnol. 2016, 16, 6258–6264.

[33]

Zhang, C.; Liu, X. N.; Yao, Y.; Liu, K. W.; Hui, W. L.; Zhu, J. L.; Dou, Y. L.; Hua, K.; Peng, M. L.; Wang, Z. K. et al. Genotyping of multiple clinical samples with a combined direct PCR and magnetic lateral flow assay. iScience 2018, 7, 170–179.

[34]

Zhao, M.; Zhang, X. Q.; Wang, S.; Chen, C.; Cui, Y. L. A simple method for purification of genomic DNA from whole blood using Fe3O4/Au composite particles as a carrier. J. Med. Coll. PLA 2009, 24, 239–243.

[35]

Hui, W. L.; Shi, F.; Yan, K. P.; Peng, M. L.; Cheng, X.; Luo, Y. L.; Chen, X. M.; Roy, V. A. L.; Cui, Y.; Wang, Z. K. Fe3O4/Au/Fe3O4 nanoflowers exhibiting tunable saturation magnetization and enhanced bioconjugation. Nanoscale 2012, 4, 747–751.

[36]
Hui, W. L. Fabrication of GoldMag nanoparticles-based genotyping system and its application in medication guide of clopidogrel. Ph. D. Dissertation, Northwest University, Xi’an, Shaanxi, 2013.
[37]

Hsieh, K.; Mage, P. L.; Csordas, A. T.; Eisenstein, M.; Soh, H. T. Simultaneous elimination of carryover contamination and detection of DNA with uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification (UDG-LAMP). Chem. Commun. 2014, 50, 3747–3749.

[38]

Chen, B. W.; He, Y. C.; Sung, S. Y.; Le, T. T. H.; Hsieh, C. L.; Chen, J. Y.; Wei, Z. H.; Yao, D. J. Synthesis and characterization of magnetic nanoparticles coated with polystyrene sulfonic acid for biomedical applications. Sci. Technol. Adv. Mater. 2020, 21, 471–481.

[39]

Stafford, S.; Garnier, C.; Gun’ko, Y. K. Polyelectrolyte-stabilised magnetic-plasmonic nanocomposites. Nanomaterials 2018, 8, 1044.

[40]

Atila Dinçer, C.; Yıldız, N.; Aydoğan, N.; Çalımlı, A. A comparative study of Fe3O4 nanoparticles modified with different silane compounds. Appl. Surf. Sci. 2014, 318, 297–304.

[41]

Zhang, X. M.; Zhang, Q. L.; Ma, T.; Liu, Q.; Wu, S. D.; Hua, K.; Zhang, C.; Chen, M. W.; Cui, Y. L. Enhanced stability of gold magnetic nanoparticles with poly(4-styrenesulfonic acid-co-maleic acid): Tailored optical properties for protein detection. Nanoscale Res. Lett. 2017, 12, 547.

[42]

Geoghegan, W. D.; Ackerman, G. A. Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: A new method, theory and application. J. Histochem. Cytochem. 1977, 25, 1187–1200.

[43]

Carlos, F. F.; Veigas, B.; Matias, A. S.; Doria, G.; Flores, O.; Baptista, P. V. Allele specific LAMP-gold nanoparticle for characterization of single nucleotide polymorphisms. Biotechnol. Rep. (Amst. ) 2017, 16, 21–25.

[44]

Kwong, K. M.; Tam, C. C.; Chan, R.; Lee, S. W. L.; Ip, P.; Kwok, J. Comparison of single nucleotide polymorphism genotyping of CYP2C19 by loop-mediated isothermal amplification and real-time PCR melting curve analysis. Clin. Chim. Acta 2018, 478, 45–50.

[45]

Monroe, C.; Grier, C.; Kemp, B. M. Evaluating the efficacy of various thermo-stable polymerases against co-extracted PCR inhibitors in ancient DNA samples. Forensic Sci. Int. 2013, 228, 142–153.

[46]

Connelly, C. M.; Porter, L. R.; TerMaat, J. R. PCR amplification of a triple-repeat genetic target directly from whole blood in 15 minutes as a proof-of-principle PCR study for direct sample analysis for a clinically relevant target. BMC Med. Genet. 2014, 15, 130.

[47]

Liu, X. N.; Zhang, C.; Zhao, M. Y.; Liu, K. W.; Li, H.; Li, N. N.; Gao, L. L.; Yang, X. M.; Ma, T.; Zhu, J. L. et al. A direct isothermal amplification system adapted for rapid SNP genotyping of multifarious sample types. Biosens Bioelectron. 2018, 115, 70–76.

[48]

Bu, Y.; Huang, H.; Zhou, G. H. Direct polymerase chain reaction (PCR) from human whole blood and filter-paper-dried blood by using a PCR buffer with a higher pH. Anal. Biochem. 2008, 375, 370–372.

[49]

Kil, E. J.; Kim, S.; Lee, Y. J.; Kang, E. H.; Lee, M.; Cho, S. H.; Kim, M. K.; Lee, K. Y.; Heo, N. Y.; Choi, H. S. et al. Advanced loop-mediated isothermal amplification method for sensitive and specific detection of Tomato chlorosis virus using a uracil DNA glycosylase to control carry-over contamination. J. Virol. Methods 2015, 213, 68–74.

[50]

Tang, Y.; Chen, H.; Diao, Y. X. Advanced uracil DNA glycosylase-supplemented real-time reverse transcription loop-mediated isothermal amplification (UDG-rRT-LAMP) method for universal and specific detection of Tembusu virus. Sci. Rep. 2016, 6, 27605.

[51]

Ritzler, M.; Perschil, I.; Altwegg, M. Influence of residual uracil-DNA glycosylase activity on the electrophoretic migration of dUTP-containing PCR products. J. Microbiol. Methods 1999, 35, 73–76.

[52]

Thornton, C. G.; Hartley, J. L.; Rashtchian, A. Utilizing uracil DNA glycosylase to control carryover contamination in PCR: Characterization of residual UDG activity following thermal cycling. Biotechniques 1992, 13, 180–184.

[53]

Pierce, K. E.; Wangh, L. J. Effectiveness and limitations of uracil-DNA glycosylases in sensitive real-time PCR assays. Biotechniques 2004, 36, 44–46,48.

[54]

Wang, H. C.; Kasper, G. Filtration efficiency of nanometer-size aerosol particles. J. Aerosol Sci. 1991, 22, 31–41.

[55]

Hui, W. L.; Zhang, S. N.; Zhang, C.; Wan, Y. S.; Zhu, J. L.; Zhao, G.; Wu, S. D.; Xi, D. J.; Zhang, Q. L.; Li, N. N. et al. A novel lateral flow assay based on GoldMag nanoparticles and its clinical applications for genotyping of MTHFR C677T polymorphisms. Nanoscale 2016, 8, 3579–3587.

[56]

Ouyang, Y. W.; Li, J. Y.; Haverstick, D. M.; Landers, J. P. Rotation-driven microfluidic disc for white blood cell enumeration using magnetic bead aggregation. Anal. Chem. 2016, 88, 11046–11054.

Nano Research
Pages 1242-1251
Cite this article:
Liang J, Zeng J, Huang X, et al. Super-assembly of integrated gold magnetic assay with loop-mediated isothermal amplification for point-of-care testing. Nano Research, 2023, 16(1): 1242-1251. https://doi.org/10.1007/s12274-022-4692-9
Topics:

1204

Views

5

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 25 May 2022
Revised: 21 June 2022
Accepted: 21 June 2022
Published: 04 August 2022
© Tsinghua University Press 2022
Return