AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Excitation orthogonalized upconversion nanoprobe for instant visual detection of trinitrotoluene

Xu Li1Xu Zhao1Xiaoyu Xu2Yang Lu1Jiahang Wu1Fangmeng Liu1Xu Yan1Peng Sun1Chenguang Wang1Xianggui Kong3Xiaomin Liu1( )Geyu Lu1( )
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
Department of Public Security of Jilin Province, Changchun 130051, China
State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and physics, Chinese Academy of Science, Changchun 130033, China
Show Author Information

Graphical Abstract

In this work, we developed a relatively simple structure of orthogonalized luminescent upconversion nanoparticles (OUCNPs) (β-NaErF4@NaLuF4@NaYF4:20%Yb, 2%Er@NaLuF4), where the fluorescence emission switches from red to green when the excitation wavelength is shifted from 808 to 980 nm. As a proofof-principle, we demonstrate the application of the designed OUCNPs for anti-counterfeiting and selfreferential instant visual detection of trinitrotoluene (TNT).

Abstract

Excitation-emission orthogonalized luminescent upconversion nanoparticles (OUCNPs), which can respond to changes in external stimuli accordingly, show great promise in many intelligent applications. However, the construction of such materials mostly relies on the selective absorption of Nd3+ and Yb3+ at different wavelengths and the long-range energy migration between the layers, resulting in complex structures and limited orthogonal luminescence intensity. Herein, we developed a relatively simple structure of OUCNPs (β-NaErF4@NaLuF4@NaYF4:20%Yb, 2%Er@NaLuF4), where the fluorescence emission switches from red to green when the excitation wavelength is shifted from 808 to 980 nm. This structure exhibits high-quality, independent, and non-interfering orthogonal luminescence properties without Nd3+ sensitization and long-range energy migration. As a proof of concept, we demonstrate the application of the designed OUCNPs in anti-counterfeiting. We also prepared OUCNPs@PEI (PEI = polyethylenimine) self-referencing fluorescent probes to enable quantitative analysis of trinitrotoluene (TNT) in solution with a detection limit of 3.04 μM. The probes can be made into test strips for portable on-site visual detection of TNT, and can also be used to image latent fingerprints and detect explosive residues in fingerprints simultaneously. The concept proposed in this work can be extended to the visual detection of a larger range of organic and biological molecules, and is highly promising for practical applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4693_MOESM1_ESM.pdf (2.3 MB)

References

[1]

Cheng, L.; Yang, K.; Zhang, S.; Shao, M. W.; Lee, S.; Liu, Z. Highly-sensitive multiplexed in vivo imaging using pegylated upconversion nanoparticles. Nano Res. 2010, 3, 722–732.

[2]

Hong, A. R.; Kyhm, J. H.; Kang, G. M.; Jang, H. S. Orthogonal R/G/B upconversion luminescence-based full-color tunable upconversion nanophosphors for transparent displays. Nano Lett. 2021, 21, 4838–4844.

[3]
Wang, M. ; Li, M. ; Yang, M. Y. ; Zhang, X. M. ; Yu, A. Y. ; Zhu, Y. ; Qiu, P. H. ; Mao, C. B. NIR-induced highly sensitive detection of latent fingermarks by NaYF4: Yb, Er upconversion nanoparticles in a dry powder state. Nano Res. 2015, 8, 1800–1810.
[4]

Zheng, K. Z.; Han, S. Y.; Zeng, X.; Wu, Y. M.; Song, S. Y.; Zhang, H. J.; Liu, X. G. Rewritable optical memory through high-registry orthogonal upconversion. Adv. Mater. 2018, 30, 1801726.

[5]
Zhuang, Y. X. ; Chen, D. R. ; Chen, W. J. ; Zhang, W. X. ; Su, X. ; Deng, R. R. ; An, Z. F. ; Chen, H. M. ; Xie, R. J. X-ray-charged bright persistent luminescence in NaYF4: Ln3+@NaYF4 nanoparticles for multidimensional optical information storage. Light Sci. Appl. 2021, 10, 132.
[6]

Song, Y. P.; Lu, M. Y.; Mandl, G. A.; Xie, Y.; Sun, G. T.; Chen, J. B.; Liu, X.; Capobianco, J. A.; Sun, L. N. Energy migration control of multimodal emissions in an Er3+-doped nanostructure for information encryption and deep-learning decoding. Angew. Chem. , Int. Ed. 2021, 60, 23790–23796.

[7]

Ankenbruck, N.; Courtney, T.; Naro, Y.; Deiters, A. Optochemical control of biological processes in cells and animals. Angew. Chem. , Int. Ed. 2018, 57, 2768–2798.

[8]

Zuo, M. Z.; Qian, W. R.; Xu, Z. Q.; Shao, W.; Hu, X. Y.; Zhang, D. M.; Jiang, J. L.; Sun, X. Q.; Wang, L. Y. Multiresponsive supramolecular theranostic nanoplatform based on Pillar[5]arene and diphenylboronic acid derivatives for integrated glucose sensing and insulin delivery. Small 2018, 14, 1801942.

[9]

Wang, Z.; Qiu, X. E.; Xi, W. S.; Tang, M.; Liu, J. L.; Jiang, H.; Sun, L. N. Tailored upconversion nanomaterial: A hybrid nano fluorescent sensor for evaluating efficacy of lactate dehydrogenase inhibitors as anticancer drugs. Sens. Actuator B Chem. 2021, 345, 130417.

[10]
Cui, S. S. ; Yin, D. Y. ; Chen, Y. Q. ; Di, Y. F. ; Chen, H. Y. ; Ma, Y. X. ; Achilefu, S. ; Gu, Y. Q. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano. 2013, 7, 676–688.
[11]
Idris, N. M. ; Gnanasammandhan, M. K. ; Zhang, J. ; Ho, P. C. ; Mahendran, R. ; Zhang, Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012, 18, 1580–1585.
[12]

Ding, X.; Liu, J. H.; Liu, D. P.; Li, J. Q.; Wang, F.; Li, L. J.; Wang, Y. H.; Song, S. Y.; Zhang, H. J. Multifunctional core/satellite polydopamine@Nd3+-sensitized upconversion nanocomposite: A single 808 nm near-infrared light-triggered theranostic platform for in vivo imaging-guided photothermal therapy. Nano Res. 2017, 10, 3434–3446.

[13]

Carling, C. J.; Boyer, J. C.; Branda, N. R. Remote-control photoswitching using NIR light. J. Am. Chem. Soc. 2009, 131, 10838–10839.

[14]

Di, Z. H.; Liu, B.; Zhao, J.; Gu, Z. J.; Zhao, Y. L.; Li, L. L. An orthogonally regulatable DNA nanodevice for spatiotemporally controlled biorecognition and tumor treatment. Sci. Adv. 2020, 6, eaba9381.

[15]

Jayakumar, M. K. G.; Idris, N. M.; Zhang, Y. Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc. Natl. Acad. Sci. USA 2012, 109, 8483–8488.

[16]

Zhu, X. J.; Feng, W.; Chang, J.; Tan, Y. W.; Li, J. C.; Chen, M.; Sun, Y.; Li, F. Y. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 2016, 7, 10437.

[17]

Zheng, W.; Huang, P.; Tu, D. T.; Ma, E.; Zhu, H. M.; Chen, X. Y. Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection. Chem. Soc. Rev. 2015, 44, 1379–1415.

[18]

Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–174.

[19]

Bünzli, J. C. G. Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev. 2010, 110, 2729–2755.

[20]

Zhou, J.; Fan, X. X.; Wu, D.; Liu, J.; Zhang, Y. H.; Ye, Z. K.; Xue, D. W.; He, M. B.; Zhu, L.; Feng, Z. et al. Hot-band absorption of indocyanine green for advanced anti-stokes fluorescence bioimaging. Light Sci. Appl. 2021, 10, 182.

[21]

Bünzli, J. C. G.; Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 2005, 34, 1048–1077.

[22]

Chen, G. Y.; Qiu, H. L.; Prasad, P. N.; Chen, X. Y. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev. 2014, 114, 5161–5214.

[23]

DaCosta, M. V.; Doughan, S.; Han, Y.; Krull, U. J. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review. Anal. Chim. Acta 2014, 832, 1–33.

[24]

Dong, H.; Sun, L. D.; Feng, W.; Gu, Y. Y.; Li, F. Y.; Yan, C. H. Versatile spectral and lifetime multiplexing nanoplatform with excitation orthogonalized upconversion luminescence. ACS Nano. 2017, 11, 3289–3297.

[25]

Lai, J. P.; Zhang, Y. X.; Pasquale, N.; Lee, K. B. An upconversion nanoparticle with orthogonal emissions using dual NIR excitations for controlled two-way photoswitching. Angew. Chem. , Int. Ed. 2014, 53, 14419–14423.

[26]

Li, X. M.; Guo, Z. Z.; Zhao, T. C.; Lu, Y.; Zhou, L.; Zhao, D. Y.; Zhang, F. Filtration shell mediated power density independent orthogonal excitations-emissions upconversion luminescence. Angew. Chem. , Int. Ed. 2016, 55, 2464–2469.

[27]

Tang, M.; Zhu, X. H.; Zhang, Y. H.; Zhang, Z. P.; Zhang, Z. M.; Mei, Q. S.; Zhang, J.; Wu, M. H.; Liu, J. L.; Zhang, Y. Near-infrared excited orthogonal emissive upconversion nanoparticles for imaging-guided on-demand therapy. ACS Nano. 2019, 13, 10405–10418.

[28]

Zhang, Z.; Jayakumar, M. K. G.; Shikha, S.; Zhang, Y.; Zheng, X.; Zhang, Y. Modularly assembled upconversion nanoparticles for orthogonally controlled cell imaging and drug delivery. ACS Appl. Mater. Interfaces 2020, 12, 12549–12556.

[29]

Zuo, J.; Tu, L. P.; Li, Q. Q.; Feng, Y. S.; Que, I.; Zhang, Y. L.; Liu, X. M.; Xue, B.; Cruz, L. J.; Chang, Y. L. et al. Near infrared light sensitive ultraviolet-blue nanophotoswitch for imaging-guided “Off-On” therapy. ACS Nano 2018, 12, 3217–3225.

[30]

Wang, L.; Dong, H.; Li, Y. N.; Liu, R.; Wang, Y. F.; Bisoyi, H. K.; Sun, L. D.; Yan, C. H.; Li, Q. Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer. Adv. Mater. 2015, 27, 2065–2069.

[31]

Zuo, J.; Li, Q. Q.; Xue, B.; Li, C. X.; Chang, Y. L.; Zhang, Y. L.; Liu, X. M.; Tu, L. P.; Zhang, H.; Kong, X. G. Employing shells to eliminate concentration quenching in photonic upconversion nanostructure. Nanoscale 2017, 9, 7941–7946.

[32]

Johnson, N. J. J.; Korinek, A.; Dong, C. H.; Van Veggel, F. C. J. M. Self-focusing by Ostwald ripening: A strategy for layer-by-layer epitaxial growth on upconverting nanocrystals. J. Am. Chem. Soc. 2012, 134, 11068–11071.

[33]

Chen, Q. S.; Xie, X. J.; Huang, B. L.; Liang, L. L.; Han, S. Y.; Yi, Z. G.; Wang, Y.; Li, Y.; Fan, D. Y.; Huang, L. et al. Confining excitation energy in Er3+-sensitized upconversion nanocrystals through Tm3+-mediated transient energy trapping. Angew. Chem. , Int. Ed. 2017, 56, 7605–7609.

[34]

Johnson, N. J. J.; He, S.; Diao, S.; Chan, E. M.; Dai, H. J.; Almutairi, A. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 2017, 139, 3275–3282.

[35]

Huang, J. S.; Yan, L.; Liu, S. B.; Song, N.; Zhang, Q. Y.; Zhou, B. Dynamic control of orthogonal upconversion in migratory core–shell nanostructure toward information security. Adv. Funct. Mater. 2021, 31, 2009796.

[36]

Liu, X. W.; Wang, Y.; Li, X. Y.; Yi, Z. G.; Deng, R. R.; Liang, L. L.; Xie, X. J.; Loong, D. T. B.; Song, S. Y.; Fan, D. Y. et al. Binary temporal upconversion codes of Mn2+-activated nanoparticles for multilevel anti-counterfeiting. Nat. Commun. 2017, 8, 899.

[37]

Zhou, B.; Yan, L.; Huang, J. S.; Liu, X. L.; Tao, L. L.; Zhang, Q. Y. NIR II-responsive photon upconversion through energy migration in an ytterbium sublattice. Nat. Photonics 2020, 14, 760–766.

[38]

Zhao, W. C.; Yang, X.; Feng, A. X.; Yan, X. L.; Wang, L. Q.; Liang, T.; Liu, J.; Ma, H. S.; Zhou, Y. Y. Distribution and migration characteristics of dinitrotoluene sulfonates (DNTs) in typical TNT production sites: Effects and health risk assessment. J. Environ. Manage. 2021, 287, 112342.

[39]

Hu, Z. Y.; Jiang, N.; Zhang, Y. Q.; Xia, Y. Q.; Zhou, C. B. Propagation of shock wave and structure dynamic response of explosion in a subway station: A case study of Wuhan subway station. J. Vibroeng. 2020, 22, 1453–1469.

[40]

Steinfeld, J. I.; Wormhoudt, J. Explosives detection: A challenge for physical chemistry. Ann. Rev. Phys. Chem. 1998, 49, 203–232.

[41]

Yinon, J. Field detection and monitoring of explosives. TrAC Trends Anal. Chem. 2002, 21, 292–301.

[42]

Jurado-Campos, N.; Chiluwal, U.; Eiceman, G. A. Improved selectivity for the determination of trinitrotoluene through reactive stage tandem ion mobility spectrometry and a quantitative measure of source-based suppression of ionization. Talanta 2021, 226, 121944.

[43]

Baldin, M. N.; Bobrovnikov, S. M.; Vorozhtsov, A. B.; Gorlov, E. V.; Gruznov, V. M.; Zharkov, V. I.; Panchenko, Y. N.; Pryamov, M. V.; Sakovich, G. V. Effectiveness of combined laser and gas chromatographic remote detection of traces of explosives. Atmos. Ocean. Opt. 2019, 32, 227–233.

[44]

Moazzen, S.; Zarei, A. R.; Mardi, K. Green sample preparation based on directly suspended droplet microextraction using deep eutectic solvent for ultra-trace quantification of nitroaromatic explosives by high performance liquid chromatography. J. Anal. Chem. 2021, 76, 1296–1304.

[45]

Zhang, K.; Zhou, H. B.; Mei, Q. S.; Wang, S. H.; Guan, G. J.; Liu, R. Y.; Zhang, J.; Zhang, Z. P. Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid. J. Am. Chem. Soc. 2011, 133, 8424–8427.

[46]

Lei, Z. D.; Ling, X.; Mei, Q. S.; Fu, S.; Zhang, J.; Zhang, Y. An excitation navigating energy migration of lanthanide ions in upconversion nanoparticles. Adv. Mater. 2020, 32, 1906225.

[47]

Bogdan, N.; Vetrone, F.; Ozin, G. A.; Capobianco, J. A. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett. 2011, 11, 835–840.

[48]

Feng, Y. S.; Li, Z.; Li, Q. Q.; Yuan, J.; Tu, L. P.; Ning, L. X.; Zhang, H. Internal OH induced cascade quenching of upconversion luminescence in NaYF4: Yb/Er nanocrystals. Light Sci. Appl. 2021, 10, 105.

[49]

Lai, F. L.; Wang, Y.; Li, D. D.; Sun, X. S.; Peng, J.; Zhang, X. D.; Tian, Y. P.; Liu, T. X. Visible light-driven superoxide generation by conjugated polymers for organic synthesis. Nano Res. 2018, 11, 1099–1108.

[50]

Wang, M. Latent fingermarks light up: Facile development of latent fingermarks using NIR-responsive upconversion fluorescent nanocrystals. RSC Adv. 2016, 6, 36264–36268.

[51]

Wang, M.; Li, M.; Yu, A. Y.; Zhu, Y.; Yang, M. Y.; Mao, C. B. Fluorescent nanomaterials for the development of latent fingerprints in forensic sciences. Adv. Funct. Mater. 2017, 27, 1606243.

Nano Research
Pages 1491-1499
Cite this article:
Li X, Zhao X, Xu X, et al. Excitation orthogonalized upconversion nanoprobe for instant visual detection of trinitrotoluene. Nano Research, 2023, 16(1): 1491-1499. https://doi.org/10.1007/s12274-022-4693-8
Topics:

847

Views

3

Crossref

19

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 24 April 2022
Revised: 05 June 2022
Accepted: 22 June 2022
Published: 30 July 2022
© Tsinghua University Press 2022
Return