Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Two-dimensional (2D) magnetic materials promise unconventional properties and quantum phases as well as advances in ultra-compact spintronics. Miniaturization of 2D magnets often reaches a single monolayer but in general can go beyond this limit, as demonstrated by 2D magnetism of submonolayer Eu superstructures coupled with Si. The question is whether the submonolayer magnetism constitutes a general phenomenon. Herein, we demonstrate that regular Eu lattices form a class of 2D magnets displaying various structures, stoichiometries, and chemical bonding. We synthesized and studied a set of Eu superstructures on Ge(001). Their magnetic properties are consistent with the emergence of a magnetic order such as ferro- or ferrimagnetism. In particular, control over the magnetic transition temperature by weak magnetic fields indicates the 2D nature of the magnetism. Taken together, Eu/Ge and Eu/Si superstructures seed a nucleus of the research area addressing the emergence of magnetism in submonolayer chemical species.
Burch, K. S.; Mandrus, D.; Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47–52.
Huang, B.; McGuire, M. A.; May, A. F.; Xiao, D.; Jarillo-Herrero, P.; Xu, X. D. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater. 2020, 19, 1276–1289.
Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.
Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.
Wei, S. R.; Tang, X.; Liao, X. Q.; Ge, Y. Q.; Jin, H.; Chen, W. C.; Zhang, H.; Wei, Y. D. Recent progress of spintronics based on emerging 2D materials: CrI3 and Xenes. Mater. Res. Express 2019, 6, 122004.
Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.
Gao, A. Y.; Liu, Y. F.; Hu, C. W.; Qiu, J. X.; Tzschaschel, C.; Ghosh, B.; Ho, S. C.; Bérubé, D.; Chen, R.; Sun, H. P. et al. Layer hall effect in a 2D topological axion antiferromagnet. Nature 2021, 595, 521–525.
Tokmachev, A. M.; Averyanov, D. V.; Taldenkov, A. N.; Parfenov, O. E.; Karateev, I. A.; Sokolov, I. S.; Storchak, V. G. Lanthanide f7 metalloxenes—A class of intrinsic 2D ferromagnets. Mater. Horiz. 2019, 6, 1488–1496.
Averyanov, D. V.; Sokolov, I. S.; Platunov, M. S.; Wilhelm, F.; Rogalev, A.; Gargiani, P.; Valvidares, M.; Jaouen, N.; Parfenov, O. E.; Taldenkov, A. N. et al. Competing magnetic states in silicene and germanene 2D ferromagnets. Nano Res. 2020, 13, 3396–3402.
Song, T. C.; Sun, Q. C.; Anderson, E.; Wang, C.; Qian, J. M.; Taniguchi, T.; Watanabe, K.; McGuire, M. A.; Stöhr, R.; Xiao, D. et al. Direct visualization of magnetic domains and Moiré magnetism in twisted 2D magnets. Science 2021, 374, 1140–1144.
Balan, A. P.; Radhakrishnan, S.; Woellner, C. F.; Sinha, S. K.; Deng, L. Z.; de los Reyes, C.; Rao, B. M.; Paulose, M.; Neupane, R.; Apte, A. et al. Exfoliation of a non-van der Waals material from iron ore hematite. Nat. Nanotechnol. 2018, 13, 602–609.
Parfenov, O. E.; Tokmachev, A. M.; Averyanov, D. V.; Karateev, I. A.; Sokolov, I. S.; Taldenkov, A. N.; Storchak, V. G. Layer-controlled laws of electron transport in two-dimensional ferromagnets. Mater. Today 2019, 29, 20–25.
Li, T. T.; Jiang, S. W.; Sivadas, N.; Wang, Z. F.; Xu, Y.; Weber, D.; Goldberger, J. E.; Watanabe, K.; Taniguchi, T.; Fennie, C. J. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 2019, 18, 1303–1308.
Huang, B.; Clark, G.; Klein, D. R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544–548.
Jiang, S. W.; Li, L. Z.; Wang, Z. F.; Mak, K. F.; Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018, 13, 549–553.
Tokmachev, A. M.; Averyanov, D. V.; Parfenov, O. E.; Taldenkov, A. N.; Karateev, I. A.; Sokolov, I. S.; Kondratev, O. A.; Storchak, V. G. Emerging two-dimensional ferromagnetism in silicene materials. Nat. Commun. 2018, 9, 1672.
Thiel, L.; Wang, Z.; Tschudin, M. A.; Rohner, D.; Gutiérrez-Lezama, I.; Ubrig, N.; Gibertini, M.; Giannini, E.; Morpurgo, A. F.; Maletinsky, P. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 2019, 364, 973–976.
Song, T. C.; Cai, X. H.; Tu, M. W. Y.; Zhang, X. Q.; Huang, B.; Wilson, N. P.; Seyler, K. L.; Zhu, L.; Taniguchi, T.; Watanabe, K. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 2018, 360, 1214–1218.
Bedoya-Pinto, A.; Ji, J. R.; Pandeya, A. K.; Gargiani, P.; Valvidares, M.; Sessi, P.; Taylor, J. M.; Radu, F.; Chang, K.; Parkin, S. S. P. Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 2021, 374, 616–620.
Bikaljević, D.; González-Orellana, C.; Peña-Díaz, M.; Steiner, D.; Dreiser, J.; Gargiani, P.; Foerster, M.; Niño, M. Á; Aballe, L.; Ruiz-Gomez, S. et al. Noncollinear magnetic order in two-dimensional NiBr2 films grown on Au(111). ACS Nano 2021, 15, 14985–14995.
Serrano, G.; Poggini, L.; Briganti, M.; Sorrentino, A. L.; Cucinotta, G.; Malavolti, L.; Cortigiani, B.; Otero, E.; Sainctavit, P.; Loth, S. et al. Quantum dynamics of a single molecule magnet on superconducting Pb(111). Nat. Mater. 2020, 19, 546–551.
Elmers, H. J.; Hauschild, J.; Höche, H.; Gradmann, U.; Bethge, H.; Heuer, D.; Köhler, U. Submonolayer magnetism of Fe(110) on W(110): Finite width scaling of stripes and percolation between islands. Phys. Rev. Lett. 1994, 73, 898–901.
Enders, A.; Skomski, R.; Honolka, J. Magnetic surface nanostructures. J. Phys.: Condens. Matter 2010, 22, 433001.
Zhang, T.; Cheng, P.; Li, W. J.; Sun, Y. J.; Wang, G.; Zhu, X. G.; He, K.; Wang, L. L.; Ma, X. C. et al. Superconductivity in one-atomic-layer metal films grown on Si(111). Nat. Phys. 2010, 6, 104–108.
Sokolov, I. S.; Averyanov, D. V.; Parfenov, O. E.; Karateev, I. A.; Taldenkov, A. N.; Tokmachev, A. M.; Storchak, V. G. 2D ferromagnetism in europium/graphene bilayers. Mater. Horiz. 2020, 7, 1372–1378.
Huttmann, F.; Rothenbach, N.; Kraus, S.; Ollefs, K.; Arruda, L. M.; Bernien, M.; Thonig, D.; Delin, A.; Fransson, J.; Kummer, K. et al. Europium cyclooctatetraene nanowire carpets: A low-dimensional, organometallic, and ferromagnetic insulator. J. Phys. Chem. Lett. 2019, 10, 911–917.
Schulz, S.; Nechaev, I. A.; Güttler, M.; Poelchen, G.; Generalov, A.; Danzenbächer, S.; Chikina, A.; Seiro, S.; Kliemt, K.; Vyazovskaya, A. Y. et al. Emerging 2D-ferromagnetism and strong spin–orbit coupling at the surface of valence-fluctuating EuIr2Si2. npj Quant. Mater. 2019, 4, 26.
Li, Y. F.; Zhang, K. C.; Liu, Y. Structural, magnetic and topological properties in rare-earth-adsorbed silicene system. J. Magn. Magn. Mater. 2019, 492, 165606.
Zhai, X. C.; Wen, R.; Zhou, X. F.; Chen, W.; Yan, W.; Gong, L. Y.; Pu, Y.; Li, X. Valley-mediated and electrically switched bipolar–unipolar transition of the spin-diode effect in heavy group-IV monolayers. Phys. Rev. Appl. 2019, 11, 064047.
Averyanov, D. V.; Sokolov, I. S.; Tokmachev, A. M.; Parfenov, O. E.; Karateev, I. A.; Taldenkov, A. N.; Storchak, V. G. High-temperature magnetism in graphene induced by proximity to EuO. ACS Appl. Mater. Interfaces 2018, 10, 20767–20774.
Chen, P.; Han, W.; Zhao, M.; Su, J. W.; Li, Z. X.; Li, D. Y.; Pi, L. J.; Zhou, X.; Zhai, T. Y. Recent advances in 2D rare earth materials. Adv. Funct. Mater. 2021, 31, 2008790.
Tokmachev, A. M.; Averyanov, D. V.; Taldenkov, A. N.; Sokolov, I. S.; Karateev, I. A.; Parfenov, O. E.; Storchak, V. G. Two-dimensional magnets beyond the monolayer limit. ACS Nano 2021, 15, 12034–12041.
Ponath, P.; Hamze, A. K.; Posadas, A. B.; Lu, S. R.; Wu, H. W.; Smith, D. J.; Demkov, A. A. Surface structure analysis of Eu Zintl template on Ge(001). Surf. Sci. 2018, 674, 94–102.
Averyanov, D. V.; Sokolov, I. S.; Karateev, I. A.; Taldenkov, A. N.; Kondratev, O. A.; Parfenov, O. E.; Tokmachev, A. M.; Storchak, V. G. Interface-controlled integration of functional oxides with Ge. J. Mater. Chem. C 2021, 9, 17012–17018.
Molle, A.; Bhuiyan, M. N. K.; Tallarida, G.; Fanciulli, M. In situ chemical and structural investigations of the oxidation of Ge(001) substrates by atomic oxygen. Appl. Phys. Lett. 2006, 89, 083504.
Parfenov, O. E.; Averyanov, D. V.; Tokmachev, A. M.; Sokolov, I. S.; Karateev, I. A.; Taldenkov, A. N.; Storchak, V. G. High-mobility carriers in germanene derivatives. Adv. Funct. Mater. 2020, 30, 1910643.
Heggemann, J.; Appelfeller, S.; Niermann, T.; Lehmann, M.; Dähne, M. Internal atomic structure of terbium silicide nanowires on Si(001) capped by silicon. Surf. Sci. 2020, 696, 121563.
Kuzmin, M.; Perälä, R. E.; Laukkanen, P.; Väyrynen, I. J. Atomic geometry and electronic structure of the Si(100) 2 × 3-Eu surface phase. Phys. Rev. B 2005, 72, 085343.
Averyanov, D. V.; Karateeva, C. G.; Karateev, I. A.; Tokmachev, A. M.; Kuzmin, M. V.; Laukkanen, P.; Vasiliev, A. L.; Storchak, V. G. A prospective submonolayer template structure for integration of functional oxides with silicon. Mater. Design 2017, 116, 616–621.
Averyanov, D. V.; Sokolov, I. S.; Karateev, I. A.; Taldenkov, A. N.; Parfenov, O. E.; Tokmachev, A. M.; Storchak, V. G. Universal interface between functional oxides and silicon. Adv. Funct. Mater. 2021, 31, 2010269.
Reiner, J. W.; Garrity, K. F.; Walker, F. J.; Ismail-Beigi, S.; Ahn, C. H. Role of strontium in oxide epitaxy on silicon (001). Phys. Rev. Lett. 2008, 101, 105503.
McKee, R. A.; Walker, F. J.; Nardelli, M. B.; Shelton, W. A.; Stocks, G. M. The interface phase and the Schottky barrier for a crystalline dielectric on silicon. Science 2003, 300, 1726–1730.
Bobev, S.; Bauer, E. D.; Thompson, J. D.; Sarrao, J. L.; Miller, G. J.; Eck, B.; Dronskowski, R. Metallic behavior of the Zintl phase EuGe2: Combined structural studies, property measurements, and electronic structure calculations. J. Solid State Chem. 2004, 177, 3545–3552.
Mermin, N. D.; Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 1966, 17, 1133–1136.
De’Bell, K.; MacIsaac, A. B.; Whitehead, J. P. Dipolar effects in magnetic thin films and quasi-two-dimensional systems. Rev. Mod. Phys. 2000, 72, 225–257.
Bruno, P. Magnetization and Curie temperature of ferromagnetic ultrathin films: The influence of magnetic anisotropy and dipolar interactions (invited). MRS Online Proc. Library 1991, 231, 299–310.
Li, B.; Wan, Z.; Wang, C.; Chen, P.; Huang, B.; Cheng, X.; Qian, Q.; Li, J.; Zhang, Z. W.; Sun, G. Z. et al. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater. 2021, 20, 818–825.
Kim, H. H.; Yang, B. W.; Li, S. W.; Jiang, S. W.; Jin, C. H.; Tao, Z.; Nichols, G.; Sfigakis, F.; Zhong, S. Z.; Li, C. H. et al. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. Proc. Natl. Acad. Sci. USA 2019, 116, 11131–11136.
May, A. F.; Ovchinnikov, D.; Zheng, Q.; Hermann, R.; Calder, S.; Huang, B.; Fei, Z. Y.; Liu, Y. H.; Xu, X. D.; McGuire, M. A. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano 2019, 13, 4436–4442.
Appelfeller, S.; Kuls, S.; Dähne, M. Tb silicide nanowire growth on planar and vicinal Si(001) surfaces. Surf. Sci. 2015, 641, 180–190.
Wu, S. H.; Zhang, Q. Z.; Yang, H. X.; Ma, Y. X.; Zhang, T.; Liu, L. W.; Gao, H. J.; Wang, Y. L. Advances in two-dimensional heterostructures by mono-element intercalation underneath epitaxial graphene. Prog. Surf. Sci. 2021, 96, 100637.
Voloshina, E.; Dedkov, Y. Dirac electron behavior for spin-up electrons in strongly interacting graphene on ferromagnetic Mn5Ge3. J. Phys. Chem. Lett. 2019, 10, 3212–3216.