AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Free-standing Na2C6O6/MXene composite paper for high-performance organic sodium-ion batteries

Zhengran Wang1,2,§Yuchan Zhang1,§Huiyu Jiang1Chuanliang Wei1Yongling An1Liwen Tan1Shenglin Xiong2Jinkui Feng1,2( )
Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
Shenzhen Institute of Shandong University, Shenzhen 518057, China

§ Zhengran Wang and Yuchan Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

In this work, flexible and highly conductive MXene paper is utilized as an efficienct host to address the dissolution and low electronic conductivity issues of disodium rhodizonate electrode for sodium-ion batteries.

Abstract

Sodium-ion batteries (SIBs) are regarded as the ideal low-cost choice for next-generation large-scale energy storage system. Carbonyl-based organic salt-disodium rhodizonate (Na2C6O6) with high theoretical specific capacity (501 mAh·g−1) is considered as a promising cathode material for SIBs. However, the dissolution of active material in electrolyte and low electronic conductivity lead to rapidly capacity decay and poor rate performance. Herein, a simple method is designed to construct free-standing and flexible Ti3C2Tx Na2C6O6/MXene paper via vacuum-assisted filtration and antisolvent approach. The MXene can form an electronic conductive network, adsorb the active materials, and offer additional active sites for Na storage. The binder-free Na2C6O6/MXene paper delivers excellent electrochemical property with a high rate performance of 231 mAh·g−1 at 1,000 mA·g−1 and a high capacity of 215 mAh·g−1 after 100 cycles. This work provides an attractive strategy for designing high-performance organic electrode materials of SIBs.

Electronic Supplementary Material

Download File(s)
12274_2022_4696_MOESM1_ESM.pdf (397.2 KB)

References

[1]

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

[2]

Wu, J. X.; Liu, S. L.; Rehman, Y.; Huang, T. Z.; Zhao, J. C.; Gu, Q. F.; Mao, J. F.; Guo, Z. P. Phase engineering of nickel sulfides to boost sodium- and potassium-ion storage performance. Adv. Funct. Mater. 2021, 31, 2010832.

[3]

McBrayer, J. D.; Rodrigues, M. T. F.; Schulze, M. C.; Abraham, D. P.; Apblett, C. A.; Bloom, I.; Carroll, G. M.; Colclasure, A. M.; Fang, C.; Harrison, K. L. et al. Calendar aging of silicon-containing batteries. Nat. Energy 2021, 6, 866–872.

[4]

Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.

[5]

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

[6]

Luo, W.; Chen, X. Q.; Xia, Y.; Chen, M.; Wang, L. J.; Wang, Q. Q.; Li, W.; Yang, J. P. Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv. Energy Mater. 2017, 7, 1701083.

[7]

Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.

[8]

Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102–120.

[9]

Wang, T. Y.; Su, D. W.; Shanmukaraj, D.; Rojo, T.; Armand, M.; Wang, G. X. Electrode materials for sodium-ion batteries: Considerations on crystal structures and sodium storage mechanisms. Electrochem. Energy Rev. 2018, 1, 200–237.

[10]

Wang, H. G.; Li, W.; Liu, D. P.; Feng, X. L.; Wang, J.; Yang, X. Y.; Zhang, X. B.; Zhu, Y. J.; Zhang, Y. Flexible electrodes for sodium-ion batteries: Recent progress and perspectives. Adv. Mater. 2017, 29, 1703012.

[11]
YuanG. B.LiuD. P.FengX. L.ShaoM. Z.HaoZ. M.SunT.YuH. H.GeH. Y.ZuoX. T.ZhangY. In situ fabrication of porous CoxP hierarchical nanostructures on carbon fiber cloth with exceptional performance for sodium storageAdv. Mater.202234210898510.1002/adma.202108985

Yuan, G. B.; Liu, D. P.; Feng, X. L.; Shao, M. Z.; Hao, Z. M.; Sun, T.; Yu, H. H.; Ge, H. Y.; Zuo, X. T.; Zhang, Y. In situ fabrication of porous CoxP hierarchical nanostructures on carbon fiber cloth with exceptional performance for sodium storage. Adv. Mater. 2022, 34, 2108985.

[12]

Sun, T.; Feng, X. L.; Sun, Q. Q.; Yu, Y.; Yuan, G. B.; Xiong, Q.; Liu, D. P.; Zhang, X. B.; Zhang, Y. Solvation effect on the improved sodium storage performance of N-heteropentacenequinone for sodium-ion batteries. Angew. Chem. 2021, 133, 27010–27016.

[13]

Ma, J. L.; Meng, F. L.; Yu, Y.; Liu, D. P.; Yan, J. M.; Zhang, Y.; Zhang, X. B.; Jiang, Q. Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy-O2 batteries. Nat. Chem. 2019, 11, 64–70.

[14]

Chen, Y. M.; Liang, W. F.; Li, S.; Zou, F.; Bhaway, S. M.; Qiang, Z.; Gao, M.; Vogt, B. D.; Zhu, Y. A nitrogen doped carbonized metal-organic framework for high stability room temperature sodium-sulfur batteries. J. Mater. Chem. A 2016, 4, 12471–12478.

[15]

Sun, Y.; Guo, S. H.; Zhou, H. S. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy Environ. Sci. 2019, 12, 825–840.

[16]

Ni, Q.; Bai, Y.; Wu, F.; Wu, C. Polyanion-type electrode materials for sodium-ion batteries. Adv. Sci. 2017, 4, 1600275.

[17]

Fang, Y. J.; Zhang, J. X.; Xiao, L. F.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Phosphate framework electrode materials for sodium ion batteries. Adv. Sci. 2017, 4, 1600392.

[18]

Alvin, S.; Cahyadi, H. S.; Hwang, J.; Chang, W.; Kwak, S. K.; Kim, J. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon. Adv. Energy Mater. 2020, 10, 2000283.

[19]

Hu, J. H.; Liang, R.; Tang, W.; He, H. Y.; Fan, C. Synthesis of polyanionic anthraquinones as new insoluble organic cathodes for organic Na-ion batteries. Int. J. Hydrogen Energy 2020, 45, 24573–24581.

[20]

Liu, T.; Feng, X. L.; Jin, X.; Shao, M. Z.; Su, Y. T.; Zhang, Y.; Zhang, X. B. Protecting the lithium metal anode for a safe flexible lithium-air battery in ambient air. Angew. Chem. 2019, 131, 18408–18413.

[21]

Chen, Y.; Wang, C. L. Designing high performance organic batteries. Acc. Chem. Res. 2020, 53, 2636–2647.

[22]

Yu, Q. H.; Tang, W.; Hu, Y.; Gao, J.; Wang, M.; Liu, S. H.; Lai, H. H.; Xu, L.; Fan, C. Novel low-cost, high-energy-density (> 700 Wh·kg−1) Li-rich organic cathodes for Li-ion batteries. Chem. Eng. J. 2021, 415, 128509.

[23]

Xiong, M.; Tang, W.; Cao, B.; Yang, C. L.; Fan, C. A small-molecule organic cathode with fast charge–discharge capability for K-ion batteries. J. Mater. Chem. A 2019, 7, 20127–20131.

[24]

Tang, W.; Liang, R.; Li, D.; Yu, Q. H.; Hu, J. H.; Cao, B.; Fan, C. Highly stable and high rate-performance Na-ion batteries using polyanionic anthraquinone as the organic cathode. ChemSusChem 2019, 12, 2181–2185.

[25]

Luo, C.; Xu, G. L.; Ji, X.; Hou, S.; Chen, L.; Wang, F.; Jiang, J. J.; Chen, Z. H.; Ren, Y.; Amine, K. et al. Reversible redox chemistry of azo compounds for sodium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 2879–2883.

[26]

Song, Z. P.; Zhan, H.; Zhou, Y. H. Polyimides: Promising energy-storage materials. Angew. Chem., Int. Ed. 2010, 49, 8444–8448.

[27]

Xu, G. Y.; Nie, P.; Dou, H.; Ding, B.; Li, L. Y.; Zhang, X. G. Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Mater. Today 2017, 20, 191–209.

[28]

Ma, C.; Wang, L. Y.; Shu, M. H.; Hou, C. C.; Wang, K. X.; Chen, J. S. Thiophene derivatives as electrode materials for high-performance sodium-ion batteries. J. Mater. Chem. A 2021, 9, 11530–11536.

[29]

Wang, L. Y.; Ma, C.; Hou, C. C.; Wei, X.; Wang, K. X.; Chen, J. S. Construction of large non-localized π-electron system for enhanced sodium-ion storage. Small 2022, 18, 2105825.

[30]

Hu, Y.; Tang, W.; Yu, Q. H.; Wang, X. X.; Liu, W. Q.; Hu, J. H.; Fan, C. Novel insoluble organic cathodes for advanced organic K-ion batteries. Adv. Funct. Mater. 2020, 30, 2000675.

[31]

Rajagopalan, R.; Tang, Y. G.; Jia, C. K.; Ji, X. B.; Wang, H. Y. Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: Issues and solutions. Energy Environ. Sci. 2020, 13, 1568–1592.

[32]

Häupler, B.; Wild, A.; Schubert, U. S. Carbonyls: Powerful organic materials for secondary batteries. Adv. Energy Mater. 2015, 5, 1402034.

[33]

Wang, X. C.; Shang, Z. F.; Yang, A. K.; Zhang, Q.; Cheng, F. Y.; Jia, D. Z.; Chen, J. Combining quinone cathode and ionic liquid electrolyte for organic sodium-ion batteries. Chem 2019, 5, 364–375.

[34]

Wang, L. Y.; Ma, C.; Wei, X.; Chang, B. B.; Wang, K. X.; Chen, J. S. Sodium phthalate as an anode material for sodium ion batteries: Effect of the bridging carbonyl group. J. Mater. Chem. A 2020, 8, 8469–8475.

[35]

Chen, H. Y.; Armand, M.; Demailly, G.; Dolhem, F.; Poizot, P.; Tarascon, J. M. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem 2008, 1, 348–355.

[36]

Chen, H. Y.; Armand, M.; Courty, M.; Jiang, M.; Grey, C. P.; Dolhem, F.; Tarascon, J. M.; Poizot, P. Lithium salt of tetrahydroxybenzoquinone: Toward the development of a sustainable Li-ion battery. J. Am. Chem. Soc. 2009, 131, 8984–8988.

[37]

Kim, H.; Seo, D. H.; Yoon, G.; Goddard III, W. A.; Lee, Y. S.; Yoon, W. S.; Kang, K. The reaction mechanism and capacity degradation model in lithium insertion organic cathodes, Li2C6O6, using combined experimental and first principle studies. J. Phys. Chem. Lett. 2014, 5, 3086–3092.

[38]

Chihara, K.; Chujo, N.; Kitajou, A.; Okada, S. Cathode properties of Na2C6O6 for sodium-ion batteries. Electrochim. Acta 2013, 110, 240–246.

[39]

Wang, C. L.; Fang, Y. G.; Xu, Y.; Liang, L. Y.; Zhou, M.; Zhao, H. P.; Lei, Y. Manipulation of disodium rhodizonate: Factors for fast-charge and fast-discharge sodium-ion batteries with long-term cyclability. Adv. Funct. Mater. 2016, 26, 1777–1786.

[40]

Wang, Y. Q.; Ding, Y.; Pan, L. J.; Shi, Y.; Yue, Z. H.; Shi, Y.; Yu, G. H. Understanding the size-dependent sodium storage properties of Na2C6O6-based organic electrodes for sodium-ion batteries. Nano Lett. 2016, 16, 3329–3334.

[41]

Huang, Y.; Jiang, G. D.; Xiong, J.; Yang, C. X.; Ai, Q.; Wu, H.; Yuan, S. D. Recrystallization synthesis of disodium rhodizonate-conductive polyaniline composite with high cyclic performance as cathode material of sodium-ion battery. Appl. Surf. Sci. 2020, 499, 143849.

[42]

Ni, J. F.; Li, L. Self-supported 3D array electrodes for sodium microbatteries. Adv. Funct. Mater. 2018, 28, 1704880.

[43]

Chen, W. H.; Zhang, X. X.; Mi, L. W.; Liu, C. T.; Zhang, J. M.; Cui, S. Z.; Feng, X. M.; Cao, Y. L.; Shen, C. Y. High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries. Adv. Mater. 2019, 31, 1806664.

[44]

Ni, J. F.; Fu, S. D.; Wu, C.; Maier, J.; Yu, Y.; Li, L. Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Adv. Mater. 2016, 28, 2259–2265.

[45]

Liu, Y. S.; Liu, X.; Xu, S. M.; Bai, Y. L.; Ma, C.; Bai, W. L.; Wu, X. Y.; Wei, X.; Wang, K. X.; Chen, J. S. 3D ordered macroporous MoO2 attached on carbonized cloth for high performance free-standing binder-free lithium-sulfur electrodes. J. Mater. Chem. A 2019, 7, 24524–24531.

[46]

Fu, S. D.; Ni, J. F.; Xu, Y.; Zhang, Q.; Li, L. Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries. Nano Lett. 2016, 16, 4544–4551.

[47]

Ni, J. F.; Wang, W. C.; Wu, C.; Liang, H. C.; Maier, J.; Yu, Y.; Li, L. Highly reversible and durable Na storage in niobium pentoxide through optimizing structure, composition, and nanoarchitecture. Adv. Mater. 2017, 29, 1605607.

[48]

Zhang, Y. L.; Mu, Z. J.; Lai, J. P.; Chao, Y. G.; Yang, Y.; Zhou, P.; Li, Y. J.; Yang, W. X.; Xia, Z. H.; Guo, S. J. MXene/Si@SiOx@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage. ACS Nano 2019, 13, 2167–2175.

[49]

Wei, C. L.; Tao, Y.; An, Y. L.; Tian, Y.; Zhang, Y. C.; Feng, J. K.; Qian, Y. T. Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes. Adv. Funct. Mater. 2020, 30, 2004613.

[50]

Luo, J. M.; Wang, C. L.; Wang, H.; Hu, X. F.; Matios, E.; Lu, X.; Zhang, W. K.; Tao, X. Y.; Li, W. Y. Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Adv. Funct. Mater. 2019, 29, 1805946.

[51]

Luo, J. M.; Matios, E.; Wang, H.; Tao, X. Y.; Li, W. Y. Interfacial structure design of MXene-based nanomaterials for electrochemical energy storage and conversion. InfoMat 2020, 2, 1057–1076.

[52]

Jiang, H. Y.; Lin, X. H.; Wei, C. L.; Zhang, Y. C.; Feng, J. K.; Tian, X. L. Sodiophilic Mg2+-decorated Ti3C2 MXene for dendrite-free sodium metal batteries with carbonate-based electrolytes. Small 2022, 18, 2107637.

[53]

Luo, J. M.; Fang, C.; Jin, C. B.; Yuan, H. D.; Sheng, O. W.; Fang, R. Y.; Zhang, W. K.; Huang, H.; Gan, Y. P.; Xia, Y. et al. Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. J. Mater. Chem. A 2018, 6, 7794–7806.

[54]

Guo, D.; Ming, F. W.; Su, H.; Wu, Y. Q.; Wahyudi, W.; Li, M. L.; Hedhili, M. N.; Sheng, G.; Li, L. J.; Alshareef, H. N. et al. MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li-S battery. Nano Energy 2019, 61, 478–485.

[55]

Zhao, Q.; Zhu, Q. Z.; Liu, Y.; Xu, B. Status and prospects of MXene-based lithium-sulfur batteries. Adv. Funct. Mater. 2021, 31, 2100457.

[56]

Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

[57]

Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall’Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505.

[58]

Ling, Z.; Ren, C. E.; Zhao, M. Q.; Yang, J.; Giammarco, J. M.; Qiu, J. S.; Barsoum, M. W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676–16681.

[59]

Li, J. M.; Kurra, N.; Seredych, M.; Meng, X.; Wang, H. Z.; Gogotsi, Y. Bipolar carbide-carbon high voltage aqueous lithium-ion capacitors. Nano Energy 2019, 56, 151–159.

[60]

Tian, Y.; An, Y. L.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. A general method for constructing robust, flexible and freestanding MXene@metal anodes for high-performance potassium-ion batteries. J. Mater. Chem. A 2019, 7, 9716–9725.

[61]

Lee, M.; Hong, J.; Lopez, J.; Sun, Y. M.; Feng, D. W.; Lim, K.; Chueh, W. C.; Toney, M. F.; Cui, Y.; Bao, Z. N. High-performance sodium-organic battery by realizing four-sodium storage in disodium rhodizonate. Nat. Energy 2017, 2, 861–868.

[62]

Ding, L.; Wei, Y. Y.; Wang, Y. J.; Chen, H. B.; Caro, J.; Wang, H. H. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem., Int. Ed. 2017, 56, 1825–1829.

[63]

Wang, C. Y.; Zheng, Z. J.; Feng, Y. Q.; Ye, H.; Cao, F. F.; Guo, Z. P. Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. Nano Energy 2020, 74, 104817.

[64]

Tan, L. W.; Wei, C. L.; Zhang, Y. C.; Xiong, S. L.; Li, H.; Feng, J. K. Self-assembled, highly-lithiophilic and well-aligned biomass engineered MXene paper enables dendrite-free lithium metal anode in carbonate-based electrolyte. J. Energy Chem. 2022, 69, 221–230.

[65]

Takahashi, M.; Kaya, K.; Ito, M. Resonance Raman scattering and the Jahn-Teller effect of oxocarbon ions. Chem. Phys. 1978, 35, 293–306.

[66]

Wang, X.; Zhang, P. J.; Tang, X. Y.; Guan, J. J.; Lin, X. H.; Wang, Y. J.; Dong, X.; Yue, B. B.; Yan, J. Y.; Li, K. et al. Structure and electrical performance of Na2C6O6 under high pressure. J. Phys. Chem. C 2019, 123, 17163–17169.

[67]

Wei, C. L.; Tan, L. W.; Zhang, Y. C.; Xi, B. J.; Xiong, S. L.; Feng, J. K. MXene/organics heterostructures enable ultrastable and high-rate lithium/sodium batteries. ACS Appl. Mater. Interfaces 2022, 14, 2979–2988.

[68]

Liu, Y. T.; Zhang, P.; Sun, N.; Anasori, B.; Zhu, Q. Z.; Liu, H.; Gogotsi, Y.; Xu, B. Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 2018, 30, 1707334.

[69]

Meng, R. J.; Huang, J. M.; Feng, Y. T.; Zu, L. H.; Peng, C. X.; Zheng, L. R.; Zheng, L.; Chen, Z. B.; Liu, G. L.; Chen, B. J. et al. Black phosphorus quantum dot/Ti3C2 MXene nanosheet composites for efficient electrochemical lithium/sodium-ion storage. Adv. Energy Mater. 2018, 8, 1801514.

[70]

Tian, Y.; An, Y. L.; Wei, C. L.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 2019, 13, 11676–11685.

[71]

Luo, C.; Fan, X. L.; Ma, Z. H.; Gao, T.; Wang, C. S. Self-healing chemistry between organic material and binder for stable sodium-ion batteries. Chem 2017, 3, 1050–1062.

[72]

Yamashita, T.; Momida, H.; Oguchi, T. First-principles investigation of a phase transition in NaxC6O6 as an organic cathode material for Na-ion batteries: Role of intermolecule bonding of C6O6. J. Phys. Soc. Japan 2015, 84, 074703.

[73]

Xia, X. H.; Deng, S. J.; Xie, D.; Wang, Y. D.; Feng, S. S.; Wu, J. B.; Tu, J. P. Boosting sodium ion storage by anchoring MoO2 on vertical graphene arrays. J. Mater. Chem. A 2018, 6, 15546–15552.

[74]

An, Y. L.; Tian, Y.; Wei, H.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Porosity- and graphitization-controlled fabrication of nanoporous silicon@carbon for lithium storage and its conjugation with MXene for lithium-metal anode. Adv. Funct. Mater. 2020, 30, 1908721.

[75]

Zhang, Q. K.; Zhang, Y. C.; Wei, C. L.; An, Y. L.; Tan, L. W.; Xiong, S. L.; Feng, J. K. Highly reversible lithium metal-organic battery enabled by a freestanding MXene interlayer. J. Power Sources 2022, 521, 230963.

[76]

Jeon, M.; Jun, B. M.; Kim, S.; Jang, M.; Park, C. M.; Snyder, S. A.; Yoon, Y. A review on MXene-based nanomaterials as adsorbents in aqueous solution. Chemosphere 2020, 261, 127781.

Nano Research
Pages 458-465
Cite this article:
Wang Z, Zhang Y, Jiang H, et al. Free-standing Na2C6O6/MXene composite paper for high-performance organic sodium-ion batteries. Nano Research, 2023, 16(1): 458-465. https://doi.org/10.1007/s12274-022-4696-5
Topics:

819

Views

34

Crossref

36

Web of Science

37

Scopus

0

CSCD

Altmetrics

Received: 22 May 2022
Revised: 07 June 2022
Accepted: 23 June 2022
Published: 16 July 2022
© Tsinghua University Press 2022
Return