Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Sodium-ion batteries (SIBs) are regarded as the ideal low-cost choice for next-generation large-scale energy storage system. Carbonyl-based organic salt-disodium rhodizonate (Na2C6O6) with high theoretical specific capacity (501 mAh·g−1) is considered as a promising cathode material for SIBs. However, the dissolution of active material in electrolyte and low electronic conductivity lead to rapidly capacity decay and poor rate performance. Herein, a simple method is designed to construct free-standing and flexible Ti3C2Tx Na2C6O6/MXene paper via vacuum-assisted filtration and antisolvent approach. The MXene can form an electronic conductive network, adsorb the active materials, and offer additional active sites for Na storage. The binder-free Na2C6O6/MXene paper delivers excellent electrochemical property with a high rate performance of 231 mAh·g−1 at 1,000 mA·g−1 and a high capacity of 215 mAh·g−1 after 100 cycles. This work provides an attractive strategy for designing high-performance organic electrode materials of SIBs.
Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.
Wu, J. X.; Liu, S. L.; Rehman, Y.; Huang, T. Z.; Zhao, J. C.; Gu, Q. F.; Mao, J. F.; Guo, Z. P. Phase engineering of nickel sulfides to boost sodium- and potassium-ion storage performance. Adv. Funct. Mater. 2021, 31, 2010832.
McBrayer, J. D.; Rodrigues, M. T. F.; Schulze, M. C.; Abraham, D. P.; Apblett, C. A.; Bloom, I.; Carroll, G. M.; Colclasure, A. M.; Fang, C.; Harrison, K. L. et al. Calendar aging of silicon-containing batteries. Nat. Energy 2021, 6, 866–872.
Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.
Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.
Luo, W.; Chen, X. Q.; Xia, Y.; Chen, M.; Wang, L. J.; Wang, Q. Q.; Li, W.; Yang, J. P. Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv. Energy Mater. 2017, 7, 1701083.
Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.
Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102–120.
Wang, T. Y.; Su, D. W.; Shanmukaraj, D.; Rojo, T.; Armand, M.; Wang, G. X. Electrode materials for sodium-ion batteries: Considerations on crystal structures and sodium storage mechanisms. Electrochem. Energy Rev. 2018, 1, 200–237.
Wang, H. G.; Li, W.; Liu, D. P.; Feng, X. L.; Wang, J.; Yang, X. Y.; Zhang, X. B.; Zhu, Y. J.; Zhang, Y. Flexible electrodes for sodium-ion batteries: Recent progress and perspectives. Adv. Mater. 2017, 29, 1703012.
Yuan, G. B.; Liu, D. P.; Feng, X. L.; Shao, M. Z.; Hao, Z. M.; Sun, T.; Yu, H. H.; Ge, H. Y.; Zuo, X. T.; Zhang, Y.
Sun, T.; Feng, X. L.; Sun, Q. Q.; Yu, Y.; Yuan, G. B.; Xiong, Q.; Liu, D. P.; Zhang, X. B.; Zhang, Y. Solvation effect on the improved sodium storage performance of N-heteropentacenequinone for sodium-ion batteries. Angew. Chem. 2021, 133, 27010–27016.
Ma, J. L.; Meng, F. L.; Yu, Y.; Liu, D. P.; Yan, J. M.; Zhang, Y.; Zhang, X. B.; Jiang, Q. Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy-O2 batteries. Nat. Chem. 2019, 11, 64–70.
Chen, Y. M.; Liang, W. F.; Li, S.; Zou, F.; Bhaway, S. M.; Qiang, Z.; Gao, M.; Vogt, B. D.; Zhu, Y. A nitrogen doped carbonized metal-organic framework for high stability room temperature sodium-sulfur batteries. J. Mater. Chem. A 2016, 4, 12471–12478.
Sun, Y.; Guo, S. H.; Zhou, H. S. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy Environ. Sci. 2019, 12, 825–840.
Ni, Q.; Bai, Y.; Wu, F.; Wu, C. Polyanion-type electrode materials for sodium-ion batteries. Adv. Sci. 2017, 4, 1600275.
Fang, Y. J.; Zhang, J. X.; Xiao, L. F.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Phosphate framework electrode materials for sodium ion batteries. Adv. Sci. 2017, 4, 1600392.
Alvin, S.; Cahyadi, H. S.; Hwang, J.; Chang, W.; Kwak, S. K.; Kim, J. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon. Adv. Energy Mater. 2020, 10, 2000283.
Hu, J. H.; Liang, R.; Tang, W.; He, H. Y.; Fan, C. Synthesis of polyanionic anthraquinones as new insoluble organic cathodes for organic Na-ion batteries. Int. J. Hydrogen Energy 2020, 45, 24573–24581.
Liu, T.; Feng, X. L.; Jin, X.; Shao, M. Z.; Su, Y. T.; Zhang, Y.; Zhang, X. B. Protecting the lithium metal anode for a safe flexible lithium-air battery in ambient air. Angew. Chem. 2019, 131, 18408–18413.
Chen, Y.; Wang, C. L. Designing high performance organic batteries. Acc. Chem. Res. 2020, 53, 2636–2647.
Yu, Q. H.; Tang, W.; Hu, Y.; Gao, J.; Wang, M.; Liu, S. H.; Lai, H. H.; Xu, L.; Fan, C. Novel low-cost, high-energy-density (> 700 Wh·kg−1) Li-rich organic cathodes for Li-ion batteries. Chem. Eng. J. 2021, 415, 128509.
Xiong, M.; Tang, W.; Cao, B.; Yang, C. L.; Fan, C. A small-molecule organic cathode with fast charge–discharge capability for K-ion batteries. J. Mater. Chem. A 2019, 7, 20127–20131.
Tang, W.; Liang, R.; Li, D.; Yu, Q. H.; Hu, J. H.; Cao, B.; Fan, C. Highly stable and high rate-performance Na-ion batteries using polyanionic anthraquinone as the organic cathode. ChemSusChem 2019, 12, 2181–2185.
Luo, C.; Xu, G. L.; Ji, X.; Hou, S.; Chen, L.; Wang, F.; Jiang, J. J.; Chen, Z. H.; Ren, Y.; Amine, K. et al. Reversible redox chemistry of azo compounds for sodium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 2879–2883.
Song, Z. P.; Zhan, H.; Zhou, Y. H. Polyimides: Promising energy-storage materials. Angew. Chem., Int. Ed. 2010, 49, 8444–8448.
Xu, G. Y.; Nie, P.; Dou, H.; Ding, B.; Li, L. Y.; Zhang, X. G. Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Mater. Today 2017, 20, 191–209.
Ma, C.; Wang, L. Y.; Shu, M. H.; Hou, C. C.; Wang, K. X.; Chen, J. S. Thiophene derivatives as electrode materials for high-performance sodium-ion batteries. J. Mater. Chem. A 2021, 9, 11530–11536.
Wang, L. Y.; Ma, C.; Hou, C. C.; Wei, X.; Wang, K. X.; Chen, J. S. Construction of large non-localized π-electron system for enhanced sodium-ion storage. Small 2022, 18, 2105825.
Hu, Y.; Tang, W.; Yu, Q. H.; Wang, X. X.; Liu, W. Q.; Hu, J. H.; Fan, C. Novel insoluble organic cathodes for advanced organic K-ion batteries. Adv. Funct. Mater. 2020, 30, 2000675.
Rajagopalan, R.; Tang, Y. G.; Jia, C. K.; Ji, X. B.; Wang, H. Y. Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: Issues and solutions. Energy Environ. Sci. 2020, 13, 1568–1592.
Häupler, B.; Wild, A.; Schubert, U. S. Carbonyls: Powerful organic materials for secondary batteries. Adv. Energy Mater. 2015, 5, 1402034.
Wang, X. C.; Shang, Z. F.; Yang, A. K.; Zhang, Q.; Cheng, F. Y.; Jia, D. Z.; Chen, J. Combining quinone cathode and ionic liquid electrolyte for organic sodium-ion batteries. Chem 2019, 5, 364–375.
Wang, L. Y.; Ma, C.; Wei, X.; Chang, B. B.; Wang, K. X.; Chen, J. S. Sodium phthalate as an anode material for sodium ion batteries: Effect of the bridging carbonyl group. J. Mater. Chem. A 2020, 8, 8469–8475.
Chen, H. Y.; Armand, M.; Demailly, G.; Dolhem, F.; Poizot, P.; Tarascon, J. M. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem 2008, 1, 348–355.
Chen, H. Y.; Armand, M.; Courty, M.; Jiang, M.; Grey, C. P.; Dolhem, F.; Tarascon, J. M.; Poizot, P. Lithium salt of tetrahydroxybenzoquinone: Toward the development of a sustainable Li-ion battery. J. Am. Chem. Soc. 2009, 131, 8984–8988.
Kim, H.; Seo, D. H.; Yoon, G.; Goddard III, W. A.; Lee, Y. S.; Yoon, W. S.; Kang, K. The reaction mechanism and capacity degradation model in lithium insertion organic cathodes, Li2C6O6, using combined experimental and first principle studies. J. Phys. Chem. Lett. 2014, 5, 3086–3092.
Chihara, K.; Chujo, N.; Kitajou, A.; Okada, S. Cathode properties of Na2C6O6 for sodium-ion batteries. Electrochim. Acta 2013, 110, 240–246.
Wang, C. L.; Fang, Y. G.; Xu, Y.; Liang, L. Y.; Zhou, M.; Zhao, H. P.; Lei, Y. Manipulation of disodium rhodizonate: Factors for fast-charge and fast-discharge sodium-ion batteries with long-term cyclability. Adv. Funct. Mater. 2016, 26, 1777–1786.
Wang, Y. Q.; Ding, Y.; Pan, L. J.; Shi, Y.; Yue, Z. H.; Shi, Y.; Yu, G. H. Understanding the size-dependent sodium storage properties of Na2C6O6-based organic electrodes for sodium-ion batteries. Nano Lett. 2016, 16, 3329–3334.
Huang, Y.; Jiang, G. D.; Xiong, J.; Yang, C. X.; Ai, Q.; Wu, H.; Yuan, S. D. Recrystallization synthesis of disodium rhodizonate-conductive polyaniline composite with high cyclic performance as cathode material of sodium-ion battery. Appl. Surf. Sci. 2020, 499, 143849.
Ni, J. F.; Li, L. Self-supported 3D array electrodes for sodium microbatteries. Adv. Funct. Mater. 2018, 28, 1704880.
Chen, W. H.; Zhang, X. X.; Mi, L. W.; Liu, C. T.; Zhang, J. M.; Cui, S. Z.; Feng, X. M.; Cao, Y. L.; Shen, C. Y. High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries. Adv. Mater. 2019, 31, 1806664.
Ni, J. F.; Fu, S. D.; Wu, C.; Maier, J.; Yu, Y.; Li, L. Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Adv. Mater. 2016, 28, 2259–2265.
Liu, Y. S.; Liu, X.; Xu, S. M.; Bai, Y. L.; Ma, C.; Bai, W. L.; Wu, X. Y.; Wei, X.; Wang, K. X.; Chen, J. S. 3D ordered macroporous MoO2 attached on carbonized cloth for high performance free-standing binder-free lithium-sulfur electrodes. J. Mater. Chem. A 2019, 7, 24524–24531.
Fu, S. D.; Ni, J. F.; Xu, Y.; Zhang, Q.; Li, L. Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries. Nano Lett. 2016, 16, 4544–4551.
Ni, J. F.; Wang, W. C.; Wu, C.; Liang, H. C.; Maier, J.; Yu, Y.; Li, L. Highly reversible and durable Na storage in niobium pentoxide through optimizing structure, composition, and nanoarchitecture. Adv. Mater. 2017, 29, 1605607.
Zhang, Y. L.; Mu, Z. J.; Lai, J. P.; Chao, Y. G.; Yang, Y.; Zhou, P.; Li, Y. J.; Yang, W. X.; Xia, Z. H.; Guo, S. J. MXene/Si@SiOx@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage. ACS Nano 2019, 13, 2167–2175.
Wei, C. L.; Tao, Y.; An, Y. L.; Tian, Y.; Zhang, Y. C.; Feng, J. K.; Qian, Y. T. Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes. Adv. Funct. Mater. 2020, 30, 2004613.
Luo, J. M.; Wang, C. L.; Wang, H.; Hu, X. F.; Matios, E.; Lu, X.; Zhang, W. K.; Tao, X. Y.; Li, W. Y. Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Adv. Funct. Mater. 2019, 29, 1805946.
Luo, J. M.; Matios, E.; Wang, H.; Tao, X. Y.; Li, W. Y. Interfacial structure design of MXene-based nanomaterials for electrochemical energy storage and conversion. InfoMat 2020, 2, 1057–1076.
Jiang, H. Y.; Lin, X. H.; Wei, C. L.; Zhang, Y. C.; Feng, J. K.; Tian, X. L. Sodiophilic Mg2+-decorated Ti3C2 MXene for dendrite-free sodium metal batteries with carbonate-based electrolytes. Small 2022, 18, 2107637.
Luo, J. M.; Fang, C.; Jin, C. B.; Yuan, H. D.; Sheng, O. W.; Fang, R. Y.; Zhang, W. K.; Huang, H.; Gan, Y. P.; Xia, Y. et al. Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. J. Mater. Chem. A 2018, 6, 7794–7806.
Guo, D.; Ming, F. W.; Su, H.; Wu, Y. Q.; Wahyudi, W.; Li, M. L.; Hedhili, M. N.; Sheng, G.; Li, L. J.; Alshareef, H. N. et al. MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li-S battery. Nano Energy 2019, 61, 478–485.
Zhao, Q.; Zhu, Q. Z.; Liu, Y.; Xu, B. Status and prospects of MXene-based lithium-sulfur batteries. Adv. Funct. Mater. 2021, 31, 2100457.
Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.
Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall’Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505.
Ling, Z.; Ren, C. E.; Zhao, M. Q.; Yang, J.; Giammarco, J. M.; Qiu, J. S.; Barsoum, M. W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676–16681.
Li, J. M.; Kurra, N.; Seredych, M.; Meng, X.; Wang, H. Z.; Gogotsi, Y. Bipolar carbide-carbon high voltage aqueous lithium-ion capacitors. Nano Energy 2019, 56, 151–159.
Tian, Y.; An, Y. L.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. A general method for constructing robust, flexible and freestanding MXene@metal anodes for high-performance potassium-ion batteries. J. Mater. Chem. A 2019, 7, 9716–9725.
Lee, M.; Hong, J.; Lopez, J.; Sun, Y. M.; Feng, D. W.; Lim, K.; Chueh, W. C.; Toney, M. F.; Cui, Y.; Bao, Z. N. High-performance sodium-organic battery by realizing four-sodium storage in disodium rhodizonate. Nat. Energy 2017, 2, 861–868.
Ding, L.; Wei, Y. Y.; Wang, Y. J.; Chen, H. B.; Caro, J.; Wang, H. H. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem., Int. Ed. 2017, 56, 1825–1829.
Wang, C. Y.; Zheng, Z. J.; Feng, Y. Q.; Ye, H.; Cao, F. F.; Guo, Z. P. Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. Nano Energy 2020, 74, 104817.
Tan, L. W.; Wei, C. L.; Zhang, Y. C.; Xiong, S. L.; Li, H.; Feng, J. K. Self-assembled, highly-lithiophilic and well-aligned biomass engineered MXene paper enables dendrite-free lithium metal anode in carbonate-based electrolyte. J. Energy Chem. 2022, 69, 221–230.
Takahashi, M.; Kaya, K.; Ito, M. Resonance Raman scattering and the Jahn-Teller effect of oxocarbon ions. Chem. Phys. 1978, 35, 293–306.
Wang, X.; Zhang, P. J.; Tang, X. Y.; Guan, J. J.; Lin, X. H.; Wang, Y. J.; Dong, X.; Yue, B. B.; Yan, J. Y.; Li, K. et al. Structure and electrical performance of Na2C6O6 under high pressure. J. Phys. Chem. C 2019, 123, 17163–17169.
Wei, C. L.; Tan, L. W.; Zhang, Y. C.; Xi, B. J.; Xiong, S. L.; Feng, J. K. MXene/organics heterostructures enable ultrastable and high-rate lithium/sodium batteries. ACS Appl. Mater. Interfaces 2022, 14, 2979–2988.
Liu, Y. T.; Zhang, P.; Sun, N.; Anasori, B.; Zhu, Q. Z.; Liu, H.; Gogotsi, Y.; Xu, B. Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 2018, 30, 1707334.
Meng, R. J.; Huang, J. M.; Feng, Y. T.; Zu, L. H.; Peng, C. X.; Zheng, L. R.; Zheng, L.; Chen, Z. B.; Liu, G. L.; Chen, B. J. et al. Black phosphorus quantum dot/Ti3C2 MXene nanosheet composites for efficient electrochemical lithium/sodium-ion storage. Adv. Energy Mater. 2018, 8, 1801514.
Tian, Y.; An, Y. L.; Wei, C. L.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 2019, 13, 11676–11685.
Luo, C.; Fan, X. L.; Ma, Z. H.; Gao, T.; Wang, C. S. Self-healing chemistry between organic material and binder for stable sodium-ion batteries. Chem 2017, 3, 1050–1062.
Yamashita, T.; Momida, H.; Oguchi, T. First-principles investigation of a phase transition in NaxC6O6 as an organic cathode material for Na-ion batteries: Role of intermolecule bonding of C6O6. J. Phys. Soc. Japan 2015, 84, 074703.
Xia, X. H.; Deng, S. J.; Xie, D.; Wang, Y. D.; Feng, S. S.; Wu, J. B.; Tu, J. P. Boosting sodium ion storage by anchoring MoO2 on vertical graphene arrays. J. Mater. Chem. A 2018, 6, 15546–15552.
An, Y. L.; Tian, Y.; Wei, H.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Porosity- and graphitization-controlled fabrication of nanoporous silicon@carbon for lithium storage and its conjugation with MXene for lithium-metal anode. Adv. Funct. Mater. 2020, 30, 1908721.
Zhang, Q. K.; Zhang, Y. C.; Wei, C. L.; An, Y. L.; Tan, L. W.; Xiong, S. L.; Feng, J. K. Highly reversible lithium metal-organic battery enabled by a freestanding MXene interlayer. J. Power Sources 2022, 521, 230963.
Jeon, M.; Jun, B. M.; Kim, S.; Jang, M.; Park, C. M.; Snyder, S. A.; Yoon, Y. A review on MXene-based nanomaterials as adsorbents in aqueous solution. Chemosphere 2020, 261, 127781.