AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Noble-metal free plasmonic nanomaterials for enhanced photocatalytic applications—A review

Jinghua Li1Yiming Zhang1Yalong Huang1BingLuo 2Li Jing1Dengwei Jing1( )
International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
Show Author Information

Graphical Abstract

This paper reviews the fundamental principles and classification of the localized surface plasmon resonance (LSPR) effect of noble-metal free plasmonic nanomaterials in photocatalytic and their recent applications in hydrogen generation, carbon dioxide reduction, and pollutant degradation.

Abstract

Plasmonic nanomaterial catalysis is currently at the frontier of photocatalysis, overcoming the limitations of wide bandgap semiconductors for light absorption. Its localized surface plasmon resonance (LSPR) properties allow broad ultraviolet–visible–near infrared ray (UV–vis–NIR) absorption, making it an ideal material for solar energy conversion. Most plasmonic nanostructures rely on precious metals. Although noble metal plasmonic nanomaterials have proven to be one of the strategies for enhancing photocatalytic activity, their expensive cost and limitations in light absorption range have hindered their practical application. As a result, noble-metal free plasmonic nanomaterials have risen to the top of the research priority list. Therefore, this paper reviews the fundamental principles and classification of the LSPR effect of noble-metal free plasmonic nanomaterials in photocatalytic and their recent applications in hydrogen generation, carbon dioxide reduction, and pollutant degradation. Specific cases elucidate the possible working mechanism of enhanced photocatalysis by noble-metal free plasmonic nanomaterials. Finally, the challenges and future opportunities for noble-metal free plasmonic nanomaterials in energy conversion and storage are discussed and envisioned.

References

[1]

Hong, X. Y.; Zhu. S. D.; Xia, M. Z.; Du, P.; Wang, F. Y. Investigation of the efficient adsorption performance and adsorption mechanism of 3D composite structure La nanosphere-coated Mn/Fe layered double hydrotalcite on phosphate. J. Colloid Interface Sci. 2022, 614, 478–488.

[2]

Song, H.; Meng, X. G.; Wang, Z. J.; Liu, H. M.; Ye, J. H. Solar-energy-mediated methane conversion. Joule 2019, 3, 1606–1636.

[3]

Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

[4]

Zhao, Y. F.; Gao, W.; Li, S. W.; Williams, G. R.; Mahadi, A. H.; Ma, D. Solar- versus thermal-driven catalysis for energy conversion. Joule 2019, 3, 920–937.

[5]

Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

[6]

Yuan, C.; Cheng, P. F; Li, J.; Gao, X. L.; Gao, X. S.; Wang, X.; Jin, M. L.; Nötzel, R.; Zhou, G. F.; Zhang, Z. et al. ZIF-67 with argon annealing treatment for visible light responsive degradation of organic dyes in a wide pH range. Microporous Mesoporous Mater 2019, 285, 13–20.

[7]

Li, J. H.; Luo, B.; Zheng, X. W.; Jing, D. W.; Ma, L. J. The in situ photodeposition fabrication of a NixCoy/g-C3N4 photocatalyst for efficient catalytic hydrogen generation. Catal. Sci. Technol. 2021, 11, 7624–7631.

[8]

Wy, Y.; Jung, H.; Hong, J. W.; Han, S. W. Exploiting plasmonic hot spots in Au-based nanostructures for sensing and photocatalysis. Acc. Chem. Res. 2022, 55, 831–843.

[9]

An, H. D.; Li, M. M.; Gao, J.; Zhang, Z. J.; Ma, S. Q.; Chen, Y. Incorporation of biomolecules in metal-organic frameworks for advanced applications. Coord. Chem. Rev. 2019, 384, 90–106.

[10]

Takata, T.; Jiang, J. Z.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581, 411–414.

[11]

Yin, X.; Feng, L. G.; Yang, W.; Zhang, Y. X.; Wu, H. Y.; Yang, L.; Zhou, L.; Gan, L.; Sun, S. R. Interface engineering of plasmonic induced Fe/N/C-F catalyst with enhanced oxygen catalysis performance for fuel cells application. Nano Res. 2022, 15, 2138–2146.

[12]

Guo, Q.; Zhou, C. Y.; Ma, Z. B.; Yang, X. M. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv. Mater. 2019, 31, 1901997.

[13]

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

[14]

Meng, A. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. 2019, 31, 1807660.

[15]

Wang, M. Y.; Iocozzia, J.; Sun, L.; Lin, C. J.; Lin, Z. Q. Correction: Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis. Energy Environ. Sci. 2017, 10, 2041.

[16]

Li, X.; Shi, J. L.; Hao, H. M.; Lang, X. J. Visible light-induced selective oxidation of alcohols with air by dye-sensitized TiO2 photocatalysis. Appl. Catal. B: Environ. 2018, 232, 260–267.

[17]

Di Mauro, A.; Cantarella, M.; Nicotra, G.; Privitera, V.; Impellizzeri, G. Low temperature atomic layer deposition of ZnO: Applications in photocatalysis. Appl. Catal. B: Environ. 2016, 196, 68–76.

[18]

Noman, M. T.; Petru, M.; Militký, J.; Azeem, M.; Ashraf, M. A. One-pot sonochemical synthesis of ZnO nanoparticles for photocatalytic applications, modelling and optimization. Materials 2019, 13, 14.

[19]

Wang, L. F.; Liu, S. H.; Wang, Z.; Zhou, Y. L.; Qin, Y.; Wang, Z. L. Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets via thermal stress. ACS Nano 2016, 10, 2636–2643.

[20]

Yu, K. F.; Jiang, P. Y.; Yuan, H. B.; He, R.; Zhu, W. K.; Wang, L. B. Cu-based nanocrystals on ZnO for uranium photoreduction: Plasmon-assisted activity and entropy-driven stability. Appl. Catal. B: Environ. 2021, 288, 119978.

[21]

Liu, Z. C.; Liu, Z. F.; Cui, T.; Li, J. W.; Zhang, J.; Chen, T.; Wang, X. C.; Liang, X. P. Photocatalysis of two-dimensional honeycomb-like ZnO nanowalls on zeolite. Chem. Eng. J. 2014, 235, 257–263.

[22]

Xu, H. Q.; Yang, S. Z.; Ma, X.; Huang, J. E.; Jiang, H. L. Unveiling charge-separation dynamics in CdS/metal-organic framework composites for enhanced photocatalysis. ACS Catal. 2018, 8, 11615–11621.

[23]

Zhu, C.; Liu, C. A.; Fu, Y. J.; Gao, J.; Huang, H.; Liu, Y.; Kang, Z. H. Construction of CdS/CdS photocatalysts for stable and efficient hydrogen production in water and seawater. Appl. Catal. B: Environ. 2019, 242, 178–185.

[24]

Zhu, N. Y.; Tang, J.; Tang, C. L.; Duan, P. F.; Yao, L. G.; Wu, Y. H.; Dionysiou, D. D. Combined CdS nanoparticles-assisted photocatalysis and periphytic biological processes for nitrate removal. Chem. Eng. J. 2018, 353, 237–245.

[25]

Zhang, M. Y.; Hu, Q. Y.; Ma, K. W.; Ding, Y.; Li, C. Pyroelectric effect in CdS nanorods decorated with a molecular Co-catalyst for hydrogen evolution. Nano Energy 2020, 73, 104810.

[26]

Wang, Y. R.; Zhao, J. J.; Hou, W. Q.; Xu, Y. M. Decoration of CdS nanowires with Ni3S4 nanoballs enhancing H2 and H2O2 production under visible light. Appl. Catal. B: Environ. 2022, 310, 121350.

[27]

Dörr, T. S.; Deilmann, L.; Haselmann, G.; Cherevan, A.; Zhang, P.; Blaha, P.; De Oliveira, P. W.; Kraus, T.; Eder, D. Ordered mesoporous TiO2 gyroids: Effects of pore architecture and Nb-doping on photocatalytic hydrogen evolution under UV and visible irradiation. Adv. Energy Mater. 2018, 8, 1802566.

[28]

Lim, J.; Monllor-Satoca, D.; Jang, J. S. ; Lee, S.; Choi, W. Visible light photocatalysis of fullerol-complexed TiO2 enhanced by Nb doping. Appl. Catal. B: Environ. 2014, 152–153, 233–240.

[29]

Li, J. L.; Xu, X. T.; Liu, X. J.; Yu, C. Y.; Yan, D.; Sun, Z.; Pan, L. K. Sn doped TiO2 nanotube with oxygen vacancy for highly efficient visible light photocatalysis. J. Alloys Compd. 2016, 679, 454–462.

[30]

Iwaszuk, A.; Nolan, M. SnO-nanocluster modified anatase TiO2 photocatalyst: Exploiting the Sn(II) lone pair for a new photocatalyst material with visible light absorption and charge carrier separation. J. Mater. Chem. A 2013, 1, 6670–6677.

[31]

Niu, P. P.; Wu, G. H.; Chen, P. H.; Zheng, H. T.; Cao, Q.; Jiang, H. L. Optimization of boron doped TiO2 as an efficient visible light-driven photocatalyst for organic dye degradation with high reusability. Front. Chem. 2020, 8, 172.

[32]

Xu, F. C.; Wu, F. F.; Zhu, K. L.; Fang, Z. P.; Jia, D. M.; Wang, Y. K.; Jia, G.; Low, J.; Ye, W.; Sun, Z. T. et al. Boron doping and high curvature in Bi nanorolls for promoting photoelectrochemical nitrogen fixation. Appl. Catal. B: Environ. 2021, 284, 119689.

[33]

Wang, F.; He, X. X.; Sun, L. M.; Chen, J. Q.; Wang, X. J.; Xu, J. H.; Han, X. G. Engineering an N-doped TiO2@N-doped C butterfly-like nanostructure with long-lived photo-generated carriers for efficient photocatalytic selective amine oxidation. J. Mater. Chem. A 2018, 6, 2091–2099.

[34]

Zheng, P.; Zhou, W.; Wang, Y. P.; Ren, D. Z.; Zhao, J.; Guo, S. W. N-doped graphene-wrapped TiO2 nanotubes with stable surface Ti3+ for visible-light photocatalysis. Appl. Surf. Sci. 2020, 512, 144549.

[35]

Mohamed, R. M.; Aazam, E. Synthesis and characterization of P-doped TiO2 thin-films for photocatalytic degradation of butyl benzyl phthalate under visible-light irradiation. Chin. J. Catal. 2013, 34, 1267–1273.

[36]

Mendiola-Alvarez, S. Y.; Palomino-Cabello, C.; Hernández-Ramírez, A.; Turnes-Palomino, G.; Guzmán-Mar, J. L.; Hinojosa-Reyes, L. Coupled heterogeneous photocatalysis using a P-TiO2-αFe2O3 catalyst and K2S2O8 for the efficient degradation of a sulfonamide mixture. J. Photochem. Photobiol. A: Chem. 2020, 394, 112485.

[37]

Li, Q.; Li, X.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G. CdS/graphene nanocomposite photocatalysts. Adv. Energy Mater. 2015, 5, 1500010.

[38]

Tang, S. L.; Sun, J.; Hong, H.; Liu, Q. B. Solar fuel from photo-thermal catalytic reactions with spectrum-selectivity: A review. Front. Energy 2017, 11, 437–451.

[39]

Ola, O.; Maroto-Valer, M. M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C: Photochem. Rev. 2015, 24, 16–42.

[40]

Ye, W.; Long, R.; Huang, H.; Xiong, Y. J. Plasmonic nanostructures in solar energy conversion. J. Mater. Chem. C 2017, 5, 1008–1021.

[41]
Wang, H. L.; Liu, X. L.; Luo, Q. Y.; Yao, H. C.; Xu, Q.; Tian, Y.; Wang, J. G.; Xuan, Y. M. Artificial “honeycomb-honey” decorated with non-noble plasmonic nanoparticles for superior solar capture and thermal energy storage. Nano Res. 2022, 15, 8065–8075.
[42]

Agrawal, A.; Cho, S. H.; Zandi, O.; Ghosh, S.; Johns, R. W.; Milliron, D. J. Localized surface plasmon resonance in semiconductor nanocrystals. Chem. Rev. 2018, 118, 3121–3207.

[43]

Tada, H.; Suzuki, F.; Ito, S.; Akita, T.; Tanaka, K.; Kawahara, T.; Kobayashi, H. Au-core/Pt-shell bimetallic cluster-loaded TiO2. 1. Adsorption of organosulfur compound. J. Phys. Chem. B 2002, 106, 8714–8720.

[44]

Yan, H. J.; Yang, J. H.; Ma, G. J.; Wu, G. P.; Zong, X.; Lei, Z. B.; Shi, J. Y.; Li, C. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-Pds/CdS photocatalyst. J. Catal. 2009, 266, 165–168.

[45]

Dias, M. R. S.; Leite, M. S. Alloying: A platform for metallic materials with on-demand optical response. Acc. Chem. Res. 2019, 52, 2881–2891.

[46]

Lee, K. S.; El-Sayed, M. A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 2006, 110, 19220–19225.

[47]

Biggins, J. S.; Yazdi, S.; Ringe, E. Magnesium nanoparticle plasmonics. Nano Lett. 2018, 18, 3752–3758.

[48]

Zhang, X. M.; Chen, Y. L.; Liu, R. S.; Tsai, D. P. Plasmonic photocatalysis. Rep. Prog. Phys. 2013, 76, 046401.

[49]

Kazuma, E.; Kim, Y. Mechanistic studies of plasmon chemistry on metal catalysts. Angew. Chem., Int. Ed. 2019, 58, 4800–4808.

[50]

Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567–576.

[51]

Ahlawat, M.; Mittal, D.; Rao, V. G. Plasmon-induced hot-hole generation and extraction at nano-heterointerfaces for photocatalysis. Commun. Mater. 2021, 2, 114.

[52]

Meng, X. G.; Liu, L. Q.; Ouyang, S. X.; Xu, H.; Wang, D. F.; Zhao, N. Q.; Ye, J. H. Nanometals for solar-to-chemical energy conversion: From semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis. Adv. Mater. 2016, 28, 6781–6803.

[53]

Brooks, J. L.; Warkentin, C. L.; Saha, D.; Keller, E. L.; Frontiera, R. R. Toward a mechanistic understanding of plasmon-mediated photocatalysis. Nanophotonics 2018, 7, 1697–1724.

[54]

Mayer, K. M.; Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857.

[55]

Jung, I.; Kim, M.; Kwak, M.; Kim, G.; Jang, M.; Kim, S. M.; Park, D. J.; Park, S. Surface plasmon resonance extension through two-block metal-conducting polymer nanorods. Nat. Commun. 2018, 9, 1010.

[56]

Li, D. B.; Sun, X. J.; Jia, Y. P.; Stockman, M. I.; Paudel, H. P.; Song, H.; Jiang, H.; Li, Z. M. Direct observation of localized surface plasmon field enhancement by kelvin probe force microscopy. Light Sci. Appl. 2017, 6, e17038.

[57]

Ditlbacher, H.; Krenn, J. R.; Schider, G.; Leitner, A.; Aussenegg, F. R. Two-dimensional optics with surface plasmon polaritons. Appl. Phys. Lett. 2002, 81, 1762–1764.

[58]

Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.

[59]

Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q. Nanostructure-based plasmon-enhanced raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 16021.

[60]

Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297.

[61]

Knobloch, H.; Brunner, H.; Leitner, A.; Aussenegg, F.; Knoll, W. Probing the evanescent field of propagating plasmon surface polaritons by fluorescence and raman spectroscopies. J. Chem. Phys. 1993, 98, 10093–10095.

[62]

Wang, M. Y.; Ye, M. D.; Iocozzia, J.; Lin, C. J.; Lin, Z. Q. Plasmon-mediated solar energy conversion via photocatalysis in noble metal/semiconductor composites. Adv. Sci. 2016, 3, 1600024.

[63]

Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W. Y.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. N. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111, 3669–3712.

[64]

Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830.

[65]

Vu, N. N.; Kaliaguine, S.; Do, T. O. Plasmonic photocatalysts for sunlight-driven reduction of CO2: Details, developments, and perspectives. ChemSusChem 2020, 13, 3967–3991.

[66]

Link, S.; El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 1999, 103, 8410–8426.

[67]

Li, X. G., Xiao, D., Zhang, Z. Y. Landau damping of quantum plasmons in metal nanostructures. New J. Phys. 2013, 15, 023011.

[68]
Kreibig, U.; Vollmer, M. Theoretical considerations. In Optical Properties of Metal Clusters; Kreibig; U.; Vollmer, M., Eds.; Springer: Berlin, 1995; pp 13–201.
[69]

Wang, Y.; Wang, Y.; Aravind, I.; Cai, Z.; Shen, L.; Zhang, B. X.; Wang, B.; Chen, J. H.; Zhao, B. F.; Shi, H. T. et al. In situ investigation of ultrafast dynamics of hot electron-driven photocatalysis in plasmon-resonant grating structures. J. Am. Chem. Soc. 2022, 144, 3517–3526.

[70]

Cortés, E.; Besteiro, L. V.; Alabastri, A.; Baldi, A.; Tagliabue, G.; Demetriadou, A.; Narang, P. Challenges in plasmonic catalysis. ACS Nano 2020, 14, 16202–16219.

[71]

Cheng, G.; Zhang, M. M.; Han, C.; Liang, Y.; Zhao, K. Achieving solar-to-hydrogen evolution promotion using TiO2 nanoparticles and an unanchored Cu co-catalyst. Mater. Res. Bull. 2020, 129, 110891.

[72]

Hao, W. M.; Zhao, L.; Li, X. Q.; Qin, L. X.; Han, S.; Kang, S. Z. Cu nanoclusters incorporated mesoporous TiO2 nanoparticles: An efficient and stable noble metal-free photocatalyst for light driven H2 generation. Int. J. Hydrogen Energy 2021, 46, 6461–6473.

[73]

Song, R.; Liu, M. C.; Luo, B.; Geng, J. F.; Jing, D. W. Plasmon-induced photothermal effect of sub-10-nm Cu nanoparticles enables boosted full-spectrum solar H2 production. AIChE J. 2020, 66, e17008.

[74]

Jiao, Z. B.; Shang, M. D.; Liu, J. M.; Lu, G. X.; Wang, X. S.; Bi, Y. P. The charge transfer mechanism of bi modified TiO2 nanotube arrays: TiO2 serving as a “charge-transfer-bridge”. Nano Energy 2017, 31, 96–104.

[75]

Zhao, Z. W.; Zhang, W. D.; Lv, X. S.; Sun, Y. J.; Dong, F.; Zhang, Y. X. Noble metal-free Bi nanoparticles supported on TiO2 with plasmon-enhanced visible light photocatalytic air purification. Environ. Sci. Nano 2016, 3, 1306–1317.

[76]

Takahashi, Y.; Tatsuma, T. Solid state photovoltaic cells based on localized surface plasmon-induced charge separation. Appl. Phys. Lett. 2011, 99, 182110.

[77]

Kim, S.; Kim, J. M.; Park, J. E.; Nam, J. M. Nonnoble-metal-based plasmonic nanomaterials: Recent advances and future perspectives. Adv. Mater. 2018, 30, 1704528.

[78]

Cushing, S. K.; Li, J. T.; Meng, F. K.; Senty, T. R.; Suri, S.; Zhi, M. J.; Li, M.; Bristow, A. D.; Wu, N. Q. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 2012, 134, 15033–15041.

[79]

Hu, C.; Peng, T. W.; Hu, X. X.; Nie, Y. L.; Zhou, X. F.; Qu, J. H.; He, H. Plasmon-induced photodegradation of toxic pollutants with Ag-AgI/Al2O3 under visible-light irradiation. J. Am. Chem. Soc. 2010, 132, 857–862.

[80]

Kowalska, E.; Mahaney, O. O. P.; Abe, R.; Ohtani, B. Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. Phys. Chem. Chem. Phys. 2010, 12, 2344–2355.

[81]

Kumar, A.; Choudhary, P.; Kumar, A.; Camargo, P. H. C.; Krishnan, V. Recent advances in plasmonic photocatalysis based on TiO2 and noble metal nanoparticles for energy conversion, environmental remediation, and organic synthesis. Small 2022, 18, 2101638.

[82]

Liu, M. Y.; Kang, Q.; Xie, Z. C.; Lu, L. H.; Dai, K.; Dawson, G. Heterostructure nanocomposite with local surface plasmon resonance effect enhanced photocatalytic activity—A critical review. J. Phys. D:Appl. Phys. 2022, 55, 043002.

[83]

Zharov, V. P.; Mercer, K. E.; Galitovskaya, E. N.; Smeltzer, M. S. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys. J. 2006, 90, 619–627.

[84]

Wang, S. J.; Huang, P.; Nie, L. M.; Xing, R. J.; Liu, D. B.; Wang, Z.; Lin, J.; Chen, S. H.; Niu, G.; Lu, G. M. et al. Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv. Mater. 2013, 25, 3055–3061.

[85]

Ali, M. R. K.; Rahman, M. A.; Wu, Y.; Han, T. G.; Peng, X. H.; Mackey, M. A.; Wang, D. S.; Shin, H. J.; Chen, Z. G.; Xiao, H. P. et al. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proc. Natl. Acad. Sci. USA 2017, 114, E3110–E3118.

[86]

Meng, X. G.; Wang, T.; Liu, L. Q.; Ouyang, S. X.; Li, P.; Hu, H. L.; Kako, T.; Iwai, H.; Tanaka, A.; Ye, J. H. Photothermal conversion of CO2 into CH4 with H2 over group viii nanocatalysts: An alternative approach for solar fuel production. Angew. Chem., Int. Ed. 2014, 53, 11478–11482.

[87]

Huang, Z. L.; Liu, J. C.; Zong, S.; Wang, X. Y.; Chen, K. X.; Liu, L. L.; Fang, Y. X. Fabrication of graphitic carbon nitride/nonstoichiometric molybdenum oxide nanorod composite with the nonmetal plasma enhanced photocatalytic hydrogen evolution activity. J. Colloid Interface Sci. 2022, 606, 848–859.

[88]

Zeng, Z. P.; Yan, Y. B.; Chen, J.; Zan, P.; Tian, Q. H.; Chen, P. Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by mxene quantum dots. Adv. Funct. Mater. 2019, 29, 1806500.

[89]

Zhang, Y. Y.; Cheng, Y. R.; Yang, F.; Yuan, Z. P.; Wei, W.; Lu, H. T.; Dong, H. F.; Zhang, X. J. Near-infrared triggered Ti3C2/g-C3N4 heterostructure for mitochondria-targeting multimode photodynamic therapy combined photothermal therapy. Nano Today 2020, 34, 100919.

[90]

Neumann, O.; Feronti, C.; Neumann, A. D.; Dong, A. J.; Schell, K.; Lu, B.; Kim, E.; Quinn, M.; Thompson, S.; Grady, N. et al. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proc. Natl. Acad. Sci. USA 2013, 110, 11677–11681.

[91]

Boerigter, C.; Aslam, U.; Linic, S. Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials. ACS Nano 2016, 10, 6108–6115.

[92]

Da Silva, A. G. M.; Rodrigues, T. S.; Wang, J. L.; Camargo, P. H. C. Plasmonic catalysis with designer nanoparticles. Chem. Commun. 2022, 58, 2055–2074.

[93]

Zhang, P. Y.; Liu, H. Y.; Li, X. M. Plasmonic CuCo/carbon dots: An unconventional photocatalyst used for photocatalytic overall water splitting. ACS Sustain. Chem. Eng. 2020, 8, 17979–17987.

[94]

Li, S. W.; Miao, P.; Zhang, Y. Y.; Wu, J.; Zhang, B.; Du, Y. C.; Han, X. J.; Sun, J. M.; Xu, P. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv. Mater. 2021, 33, 2000086.

[95]

Gellé, A.; Jin, T.; De La Garza, L.; Price, G. D.; Besteiro, L. V.; Moores, A. Applications of plasmon-enhanced nanocatalysis to organic transformations. Chem. Rev. 2020, 120, 986–1041.

[96]

Kim, T.; Kang, S.; Heo, J.; Cho, S.; Kim, J. W.; Choe, A.; Walker, B.; Shanker, R.; Ko, H.; Kim, J. Y. Nanoparticle-enhanced silver-nanowire plasmonic electrodes for high-performance organic optoelectronic devices. Adv. Mater. 2018, 30, 1800659.

[97]

Liu, L. Q.; Zhang, X. N.; Yang, L. F.; Ren, L. T.; Wang, D. F.; Ye, J. H. Metal nanoparticles induced photocatalysis. Natl. Sci. Rev. 2017, 4, 761–780.

[98]

Wang, S. S.; Jiao, L.; Qian, Y. Y.; Hu, W. C.; Xu, G. Y.; Wang, C.; Jiang, H. L. Boosting electrocatalytic hydrogen evolution over metal-organic frameworks by plasmon-induced hot-electron injection. Angew. Chem. 2019, 131, 10823–10827.

[99]

Kang, H.; Buchman, J. T.; Rodriguez, R. S.; Ring, H. L.; He, J. Y.; Bantz, K. C.; Haynes, C. L. Stabilization of silver and gold nanoparticles: Preservation and improvement of plasmonic functionalities. Chem. Rev. 2019, 119, 664–699.

[100]

Xia, Y. S. Optical sensing and biosensing based on non-spherical noble metal nanoparticles. Anal. Bioanal. Chem. 2016, 408, 2813–2825.

[101]

Xin, Y.; Yu, K. F.; Zhang, L. T.; Yang, Y. R.; Yuan, H. B.; Li, H. L.; Wang, L. B.; Zeng, J. Copper-based plasmonic catalysis: Recent advances and future perspectives. Adv. Mater. 2021, 33, 2008145.

[102]

Mishra, A.; Mehta, A.; Basu, S.; Shetti, N. P.; Reddy, K. R.; Aminabhavi, T. M. Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: A review. Carbon 2019, 149, 693–721.

[103]

Li, J. H.; Xiong, L. Q.; Luo, B.; Jing, D. W.; Cao, J. M.; Tang, J. W. Hollow carbon sphere-modified graphitic carbon nitride for efficient photocatalytic H2 production. Chem.—Eur. J. 2021, 27, 16879–16888.

[104]

Lu, S. S.; Liu, F. L.; Qiu, P. X.; Qiao, M.; Li, Y. F.; Cheng, Z. W.; Xue, N. X.; Hou, X. K.; Xu, C. M.; Xiang, Y. B. et al. Photothermal-assisted photocatalytic degradation with ultrahigh solar utilization: Towards practical application. Chem. Eng. J. 2020, 379, 122382.

[105]

Ali, N.; Tsega, T. T.; Cao, Y. C.; Abbas, S.; Li, W. J.; Iqbal, A.; Fazal, H.; Xin, Z. L.; Zai, J. T.; Qian, X. F. Copper vacancy activated plasmonic Cu3-xSnS4 for highly efficient photocatalytic hydrogen generation: Broad solar absorption, efficient charge separation and decreased HER overpotential. Nano Res. 2021, 14, 3358–3364.

[106]

Sayed, M.; Yu, J. G.; Liu, G.; Jaroniec, M. Non-noble plasmonic metal-based photocatalysts. Chem. Rev. 2022, 122, 10484–10537.

[107]

Zhang, P. Y.; Zeng, G. C.; Song, T.; Huang, S. B.; Wang, T. T.; Zeng, H. P. Synthesis of a plasmonic cuni bimetal modified with carbon quantum dots as a non-semiconductor-driven photocatalyst for effective water splitting. J. Catal. 2019, 369, 267–275.

[108]

Bhattacharya, C.; Saji, S. E.; Mohan, A.; Madav, V.; Jia, G. H.; Yin, Z. Y. Sustainable nanoplasmon-enhanced photoredox reactions: Synthesis, characterization, and applications. Adv. Energy Mater. 2020, 10, 2002402.

[109]

Ren, K.; Yin, P. E.; Zhou, Y. Z.; Cao, X. Z.; Dong, C. K.; Cui, L.; Liu, H.; Du, X. W. Localized defects on copper sulfide surface for enhanced plasmon resonance and water splitting. Small 2017, 13, 1700867.

[110]

Gawande, M. B.; Goswami, A.; Felpin, F. X.; Asefa, T.; Huang, X. X.; Silva, R.; Zou, X. X.; Zboril, R.; Varma, R. S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev. 2016, 116, 3722–3811.

[111]

Mondal, I.; Gonuguntla, S.; Pal, U. Photoinduced fabrication of Cu/TiO2 core–shell heterostructures derived from Cu-MoF for solar hydrogen generation: The size of the Cu nanoparticle matters. J. Phys. Chem. C 2019, 123, 26073–26081.

[112]

Redfern, L. R.; Li, Z. Y.; Zhang, X.; Farha, O. K. Highly selective acetylene semihydrogenation catalyzed by Cu nanoparticles supported in a metal-organic framework. ACS Appl. Nano Mater. 2018, 1, 4413–4417.

[113]

Xiong, H. L.; Dong, Y. Y.; Liu, D.; Long, R.; Kong, T. T.; Xiong, Y. J. Recent advances in porous materials for photocatalytic CO2 reduction. J. Phys. Chem. Lett. 2022, 13, 1272–1282.

[114]

He, X. Y.; Liu, M.; Liang, Z.; Wang, Z. Y.; Wang, P.; Liu, Y. Y.; Cheng, H. F.; Dai, Y.; Zheng, Z. K.; Huang, B. B. Photo-enhanced CO2 hydrogenation by plasmonic Cu/ZnO at atmospheric pressure. J. Solid State Chem. 2021, 298, 122113.

[115]

Jiang, L. S.; Wang, K.; Wu, X. Y.; Zhang, G. K. Highly enhanced full solar spectrum-driven photocatalytic CO2 reduction performance in Cu2−xS/g-C3N4 composite: Efficient charge transfer and mechanism insight. Sol. RRL 2021, 5, 2000326.

[116]

Liu, X. L.; Liu, Q.; Wang, P.; Liu, Y. Z.; Huang, B. B.; Rozhkova, E. A.; Zhang, Q. Q.; Wang, Z. Y.; Dai, Y.; Lu, J. Efficient photocatalytic H2 production via rational design of synergistic spatially-separated dual cocatalysts modified Mn05Cd0. 5S photocatalyst under visible light irradiation. Chem. Eng. J. 2018, 337, 480–487.

[117]

Li, K. K.; Li, S.; Zhang, W. L.; Shi, Z. F.; Wu, D; Chen, X.; Lin, P.; Tian, Y. T.; Li, X. J. Highly-efficient and stable photocatalytic activity of lead-free Cs2AgInCl6 double perovskite for organic pollutant degradation. J. Colloid. Interface Sci. 2021, 596, 376–383.

[118]

Manuel, A. P.; Shankar, K. Hot electrons in TiO2-noble metal nano-heterojunctions: Fundamental science and applications in photocatalysis. Nanomaterials 2021, 11, 1249.

[119]
SenganM.VeerappanA. N-myristoyltaurine capped copper nanoparticles for selective colorimetric detection of Hg2+ in wastewater and as effective chemocatalyst for organic dye degradationMicrochem. J.20191481910.1016/j.microc.2019.04.049

Sengan, M.; Veerappan, A. N-myristoyltaurine capped copper nanoparticles for selective colorimetric detection of Hg2+ in wastewater and as effective chemocatalyst for organic dye degradation. Microchem. J. 2019, 148, 1–9.

[120]

Lv, Y. H.; Cao, X. F.; Jiang, H. Y.; Song, W. J.; Chen, C. C.; Zhao, J. C. Rapid photocatalytic debromination on TiO2 with in-situ formed copper co-catalyst: Enhanced adsorption and visible light activity. Appl. Catal. B: Environ. 2016, 194, 150–156.

[121]

Chen, H. L.; Xu, S. Y.; Cui, J. B.; Wang, L. Y. Cu2−xS/graphene oxide nanocomposites for efficient photocatalysis driven by real sunlight. RSC Adv. 2015, 5, 94375–94379.

[122]

Zhang, X. Y.; Zhou, J. F.; Yang, D. P.; Chen, S. Y.; Huang, J. L.; Li, Z. B. Cu2−xS loaded diatom nanocomposites as novel photocatalysts for efficient photocatalytic degradation of organic pollutants. Catal. Today 2019, 335, 228–235.

[123]

Zeng, D. Q.; Gong, P. Y.; Chen, Y. Z.; Zhang, Q. F.; Xie, Q. S.; Peng, D. L. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties. Nanoscale 2016, 8, 11602–11610.

[124]

Yang, X. L.; Zhong, H.; Zhu, Y. H.; Jiang, H. L.; Shen, J. H.; Huang, J. F.; Li, C. Z. Highly efficient reusable catalyst based on silicon nanowire arrays decorated with copper nanoparticles. J. Mater. Chem. A 2014, 2, 9040–9047.

[125]

Rekeb, L.; Hamadou, L.; Kadri, A.; Benbrahim, N.; Chainet, E. Highly broadband plasmonic Cu film modified Cu2O/TiO2 nanotube arrays for efficient photocatalytic performance. Int. J. Hydrogen Energy 2019, 44, 10541–10553.

[126]

Chen, Y. Y.; Wu, T.; Gao, P.; Li, N.; Wan, X. Y.; Wang, J. B.; Pan, W.; Tang, B. A Cu2+ doped mesoporous polydopamine Fenton nanoplatform for low-temperature photothermal therapy. Mater. Chem. Front. 2021, 5, 6546–6552.

[127]

Tao, B. L.; Lin, C. C.; Deng, Y. M.; Yuan, Z.; Shen, X. K.; Chen, M. W.; He, Y.; Peng, Z. H.; Hu, Y.; Cai, K. Y. Copper-nanoparticle-embedded hydrogel for killing bacteria and promoting wound healing with photothermal therapy. J. Mater. Chem. B 2019, 7, 2534–2548.

[128]

Geng, P.; Yu, N.; Macharia, D. K.; Meng, R. R.; Qiu, P.; Tao, C.; Li, M. Q.; Zhang, H. J.; Chen, Z. G.; Lian, W. S. MOF-derived CuS@Cu-MOF nanocomposites for synergistic photothermal-chemodynamic-chemo therapy. Chem. Eng. J. 2022, 441, 135964.

[129]

Toudert, J.; Serna, R.; Jiménez De Castro, M. Exploring the optical potential of nano-bismuth: Tunable surface plasmon resonances in the near ultraviolet-to-near infrared range. J. Phys. Chem. C 2012, 116, 20530–20539.

[130]

Dong, F.; Xiong, T.; Sun, Y. J.; Zhao, Z. W.; Zhou, Y.; Feng, X.; Wu, Z. B. A semimetal bismuth element as a direct plasmonic photocatalyst. Chem. Commun. 2014, 50, 10386–10389.

[131]

Wang, Z.; Jiang, C. L.; Huang, R.; Peng, H.; Tang, X. D. Investigation of optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method. J. Phys. Chem. C 2014, 118, 1155–1160.

[132]

Guo, C. B.; Hu, R.; Qiao, H.; Duan, C. G.; Qi, X. TiO2 nanoparticles anchoring on two-dimensional Bi2Se3 nanosheet as an enhanced visible light catalyst. J. Mater. Sci. Mater. Electron. 2021, 32, 19424–19433.

[133]

Autore, M.; Di Pietro, P.; Di Gaspare, A.; D’Apuzzo, F.; Giorgianni, F.; Brahlek, M.; Koirala, N.; Oh, S.; Lupi, S. Terahertz plasmonic excitations in Bi2Se3 topological insulator. J. Phys.: Condens. Matter 2017, 29, 183002.

[134]

Gupta, A.; Chowdhury, R. K.; Ray, S. K.; Srivastava, S. K. Selective photoresponse of plasmonic silver nanoparticle decorated Bi2Se3 nanosheets. Nanotechnology 2019, 30, 435204.

[135]

Zhao, H.; Liang, Z. Q.; Liu, X.; Qiu, P. Y.; Cui, H. Z.; Tian, J. Noble metal-like behavior of plasmonic Bi particles deposited on reduced TiO2 microspheres for efficient full solar spectrum photocatalytic oxygen evolution. Chin. J. Catal. 2020, 41, 333–340.

[136]

Liu, L. Z.; Dai, K.; Zhang, J. F.; Li, L. L. Plasmonic Bi-enhanced ammoniated α-MnS/Bi2MoO6 S-scheme heterostructure for visible-light-driven CO2 reduction. J. Colloid Interface Sci. 2021, 604, 844–855.

[137]

Li, X. W.; Sun, Y. J.; Xiong, T.; Jiang, G. M.; Zhang, Y. X.; Wu, Z. B.; Dong, F. Activation of amorphous bismuth oxide via plasmonic bi metal for efficient visible-light photocatalysis. J. Catal. 2017, 352, 102–112.

[138]
LiuJ.LiY.LiZ. W.KeJ.XiaoH. N.HouY. In situ growing of Bi/Bi2O2CO3 on Bi2WO6 nanosheets for improved photocatalytic performanceCatal. Today20183142910.1016/j.cattod.2017.12.001

Liu, J.; Li, Y.; Li, Z. W.; Ke, J.; Xiao, H. N.; Hou, Y. In situ growing of Bi/Bi2O2CO3 on Bi2WO6 nanosheets for improved photocatalytic performance. Catal. Today 2018, 314, 2–9.

[139]

Li, X. W.; Zhang, W. D.; Cui, W.; Sun, Y. J.; Jiang, G. M.; Zhang, Y. X.; Huang, H. W.; Dong, F. Bismuth spheres assembled on graphene oxide: Directional charge transfer enhances plasmonic photocatalysis and in situ drifts studies. Appl. Catal. B: Environ. 2018, 221, 482–489.

[140]

Liang, C.; Niu, C. G.; Zhang, L.; Wen, X. J.; Yang, S. F.; Guo, H.; Zeng, G. M. Construction of 2D heterojunction system with enhanced photocatalytic performance: Plasmonic Bi and reduced graphene oxide Co-modified Bi5O7I with high-speed charge transfer channels. J. Hazard. Mater. 2019, 361, 245–258.

[141]

Li, B.; Cheng, Y.; Zheng, R. X.; Wu, X. Q.; Qi, F.; Wu, Y. Y.; Hu, Y. Q.; Li, X. Improving the photothermal therapy efficacy and preventing the surface oxidation of bismuth nanoparticles through the formation of a bismuth@bismuth selenide heterostructure. J. Mater. Chem. B 2020, 8, 8803–8808.

[142]

Wu, Q.; Tan, L.; Liu, X. M.; Li, Z. Y.; Zhang, Y.; Zheng, Y. F.; Liang, Y. Q.; Cui, Z. D.; Zhu, S. L.; Wu, S. L. The enhanced near-infrared photocatalytic and photothermal effects of mxene-based heterojunction for rapid bacteria-killing. Appl. Catal. B: Environ. 2021, 297, 120500.

[143]

Cheng, H. F.; Klapproth, M.; Sagaltchik, A.; Li, S.; Thomas, A. Ordered mesoporous WO283: Selective reduction synthesis, exceptional localized surface plasmon resonance and enhanced hydrogen evolution reaction activity. J. Mater. Chem. A 2018, 6, 2249–2256.

[144]

Liu, J.; Ma, S.; Chen, K.; Wang, W.; Wang, P.-F,; Zhou, L.; Wang, Q.-Q. Hydrogenation and plasmon-enhanced photocatalytic activity of rhenium oxide nanosheets. J. Alloys Compd. 2021, 855, 157254.

[145]

Li, B. S.; Lai, C.; Lin, H. J.; Liu, S. Y.; Qin, L.; Zhang, M. M.; Zhou, M. Z.; Li, L.; Yi, H.; Chen, L. The promising NIR light-driven MO3−x (M = Mo, W) photocatalysts for energy conversion and environmental remediation. Chem. Eng. J. 2022, 431, 134044.

[146]

Lu, C. H.; Li, J.; Chen, G. Y.; Li, B. J.; Lou, Z. Z. Self-Z-scheme plasmonic tungsten oxide nanowires for boosting ethanol dehydrogenation under UV–visible light irradiation. Nanoscale 2019, 11, 12774–12780.

[147]

Lv, C.; Wang, L. L.; Liu, X. G.; Zhao, L.; Lan, X. F.; Shi, J. S. An efficient inverse opal (IO)-TiO2-MoO3−x for photocatalytic H2 evolution and RhB degradation-the synergy effect of IO structure and plasmonic MoO3−x. Appl. Surf. Sci. 2020, 527, 146726.

[148]

Paik, T.; Cargnello, M.; Gordon, T. R.; Zhang, S.; Yun, H.; Lee, J. D.; Woo, H. Y.; Oh, S. J.; Kagan, C. R.; Fornasiero, P. et al. Photocatalytic hydrogen evolution from substoichiometric colloidal WO3−x nanowires. ACS Energy Lett. 2018, 3, 1904–1910.

[149]

Zhang, X. L.; Wang, X.; Yi, X. L.; Liu, L. Q.; Ye, J. H.; Wang, D. F. Metal-reduced WO3−x electrodes with tunable plasmonic resonance for enhanced photoelectrochemical water splitting. ACS Appl. Energy Mater. 2020, 3, 3569–3576.

[150]

Guo, Y. Z.; Chang, B. B.; Wen, T.; Zhang, S. R.; Zeng, M.; Hu, N. T.; Su, Y. J.; Yang, Z.; Yang, B. C. A Z-scheme photocatalyst for enhanced photocatalytic H2 evolution, constructed by growth of 2D plasmonic MoO3−x nanoplates onto 2D g-C3N4 nanosheets. J. Colloid Interface Sci. 2020, 567, 213–223.

[151]

Lou, Z. Z.; Zhu, M. S.; Yang, X. G.; Zhang, Y.; Whangbo, M. H.; Li, B. J.; Huang, B. B. Continual injection of photoinduced electrons stabilizing surface plasmon resonance of non-elemental-metal plasmonic photocatalyst CdS/WO3−x for efficient hydrogen generation. Appl. Catal. B: Environ. 2018, 226, 10–15.

[152]

Guo, S. H.; Li, X. H.; Ren, X. G.; Yang, L.; Zhu, J. M.; Wei, B. Q. Optical and electrical enhancement of hydrogen evolution by MoS2@MoO3 core–shell nanowires with designed tunable plasmon resonance. Adv. Funct. Mater. 2018, 28, 1802567.

[153]

Spetter, D.; Tahir, M. N.; Hilgert, J.; Khan, I.; Qurashi, A.; Lu, H.; Weidner, T.; Tremel, W. Solvothermal synthesis of molybdenum-tungsten oxides and their application for photoelectrochemical water splitting. ACS Sustainable Chem. Eng. 2018, 6, 12641–12649.

[154]

Lin, Z. Y.; Du, C.; Yan, B.; Wang, C. X.; Yang, G. W. Two-dimensional amorphous NiO as a plasmonic photocatalyst for solar H2 evolution. Nat. Commun. 2018, 9, 4036.

[155]

Liu, Q. Q.; He, X. D.; Peng, J. J.; Yu, X. H.; Tang, H.; Zhang, J. Hot-electron-assisted S-scheme heterojunction of tungsten oxide/graphitic carbon nitride for broad-spectrum photocatalytic H2 generation. Chin. J. Catal. 2021, 42, 1478–1487.

[156]

Patra, K. K.; Ghosalya, M. K.; Bajpai, H.; Raj, S.; Gopinath, C. S. Oxidative disproportionation of MoS2/go to MoS2/MoO3−x/RGO: Integrated and plasmonic 2D-multifunctional nanocomposites for solar hydrogen generation from near-infrared and visible regions. J. Phys. Chem. C 2019, 123, 21685–21693.

[157]

Pan, L.; Zhang, J. W.; Jia, X.; Ma, Y. H.; Zhang, X. W.; Wang, L.; Zou, J. J. Highly efficient Z-scheme WO3−x quantum dots/TiO2 for photocatalytic hydrogen generation. Chin. J. Catal. 2017, 38, 253–259.

[158]
ZhangZ. Y.JiangX. Y.LiuB. K.GuoL. J.LuN.WangL.HuangJ. D.LiuK. C.DongB. IR-driven ultrafast transfer of plasmonic hot electrons in nonmetallic branched heterostructures for enhanced H2 generationAdv. Mater.201830170522110.1002/adma.201705221

Zhang, Z. Y.; Jiang, X. Y.; Liu, B. K.; Guo, L. J.; Lu, N.; Wang, L.; Huang, J. D.; Liu, K. C.; Dong, B. IR-driven ultrafast transfer of plasmonic hot electrons in nonmetallic branched heterostructures for enhanced H2 generation. Adv. Mater. 2018, 30, 1705221.

[159]
LSPR-driven upconversion enhancement and photocatalytic H2 evolution for Er-Yb: TiO2/MoO3−x nano-semiconductor heterostructureCeram. Int.201945166251663010.1016/j.ceramint.2019.05.203

Shang, J. Y.; Xu, X. S.; Liu, K. C.; Bao, Y. N.; Yangyang; He, M. LSPR-driven upconversion enhancement and photocatalytic H2 evolution for Er-Yb: TiO2/MoO3−x nano-semiconductor heterostructure. Ceram. Int. 2019, 45, 16625–16630.

[160]

Yin, H. B.; Kuwahara, Y.; Mori, K.; Cheng, H. F.; Wen, M. C.; Huo, Y. N.; Yamashita, H. Localized surface plasmon resonances in plasmonic molybdenum tungsten oxide hybrid for visible-light-enhanced catalytic reaction. J. Phys. Chem. C 2017, 121, 23531–23540.

[161]

Yin, H. B.; Kuwahara, Y.; Mori, K.; Cheng, H. F.; Wen, M. C.; Yamashita, H. High-surface-area plasmonic MoO3−x: Rational synthesis and enhanced ammonia borane dehydrogenation activity. J. Mater. Chem. A 2017, 5, 8946–8953.

[162]

Lu, N.; Zhang, Z. Y.; Wang, Y.; Liu, B. K.; Guo, L. J.; Wang, L.; Huang, J. D.; Liu, K. C.; Dong, B. Direct evidence of IR-driven hot electron transfer in metal-free plasmonic W18O49/carbon heterostructures for enhanced catalytic H2 production. Appl. Catal. B: Environ. 2018, 233, 19–25.

[163]

Li, J.; Ye, Y. H.; Ye, L. Q.; Su, F. Y.; Ma, Z. Y.; Huang, J. D.; Xie, H. Q.; Doronkin, D. E.; Zimina, A.; Grunwaldt, J. D. et al. Sunlight induced photo-thermal synergistic catalytic CO2 conversion via localized surface plasmon resonance of MoO3−x. J. Mater. Chem. A 2019, 7, 2821–2830.

[164]

Li, J.; Xu, X. H.; Huang, B. B.; Lou, Z. Z.; Li, B. J. Light-induced in situ formation of a nonmetallic plasmonic MoS2/MoO3−x heterostructure with efficient charge transfer for CO2 reduction and SERS detection. ACS Appl. Mater. Interfaces 2021, 13, 10047–10053.

[165]

Xie, S. J.; Zhang, H. K.; Liu, G. D.; Wu, X. J.; Lin, J. C.; Zhang, Q. H.; Wang, Y. Tunable localized surface plasmon resonances in MoO3−x-TiO2 nanocomposites with enhanced catalytic activity for CO2 photoreduction under visible light. Chin. J. Catal. 2020, 41, 1125–1131.

[166]

Lou, Z. Z.; Zhang, P.; Li, J.; Yang, X. G.; Huang, B. B.; Li, B. J. Plasmonic heterostructure TiO2-MCs/WO3−x-NWs with continuous photoelectron injection boosting hot electron for methane generation. Adv. Funct. Mater. 2019, 29, 1808696.

[167]

Lu, C. H.; Li, J.; Yan, J. H.; Li, B. J.; Huang, B. B.; Lou, Z. Z. Surface plasmon resonance and defects on tungsten oxides synergistically boost high-selective CO2 reduction for ethylene. Appl. Mater. Today 2020, 20, 100744.

[168]

Stanley, R.; Alphas Jebasingh, J.; Manisha Vidyavathy, S. Enhanced sunlight photocatalytic degradation of methylene blue by rod-like ZnO-SiO2 nanocomposite. Optik 2019, 180, 134–143.

[169]

Tang, H. B.; Tang, Z. H.; Bright, J.; Liu, B. T.; Wang, X. J.; Meng, G. W.; Wu, N. O. Visible-light localized surface plasmon resonance of WO3−x nanosheets and its photocatalysis driven by plasmonic hot carriers. ACS Sustainable Chem. Eng. 2021, 9, 1500–1506.

[170]

Feng, C. Y.; Tang, L.; Deng, Y. C.; Wang, J. J.; Liu, Y. N.; Ouyang, X. L.; Chen, Z. M.; Yang, H. R.; Yu, J. F.; Wang, J. J. Maintaining stable LSPR performance of W18O49 by protecting its oxygen vacancy: A novel strategy for achieving durable sunlight driven photocatalysis. Appl. Catal. B: Environ. 2020, 276, 119167.

[171]

Liu, Q. W.; Wu, Y. W.; Zhang, J. W.; Chen, K. J.; Huang, C. J.; Chen, H.; Qiu, X. Q. Plasmonic MoO3−x nanosheets with tunable oxygen vacancies as efficient visible light responsive photocatalyst. Appl. Surf. Sci. 2019, 490, 395–402.

[172]

Kang, Y.; Wu, X. M.; Gao, Q. Plasmonic-enhanced near-infrared photocatalytic activity of F-doped (NH4)033WO3 nanorods. ACS Sustainable Chem. Eng. 2019, 7, 4210–4219.

[173]

Zheng, F.; Dong, F. Q.; Lv, Z. Z.; Li, H. L.; Zhou, L.; Chen, Y. H.; Huo, T. T.; Luo, X. J. A novel g-C3N4/tourmaline composites equipped with plasmonic MoO3−x to boost photocatalytic activity. Colloids Interface Sci. Commun. 2021, 43, 100434.

[174]

Yang, J. Y.; Liu, J. X.; Qiao, Y. T.; Shi, F.; Ran, S.; Dong, Y. T.; Liu, S. H. In situ synthesis of bifunctional TiO2-CsxWO3 composite particles with transparent heat shielding and photocatalytic activity. CrystEngComm 2020, 22, 573–586.

[175]

Li, Y.; Wu, X. Y.; Li, J.; Wang, K.; Zhang, G. K. Z-scheme g-C3N4@CsxWO3 heterostructure as smart window coating for UV isolating, Vis penetrating, NIR shielding and full spectrum photocatalytic decomposing VOCs. Appl. Catal. B: Environ. 2018, 229, 218–226.

[176]

Nayak, A. K.; Pradhan, D. Microwave-assisted greener synthesis of defect-rich tungsten oxide nanowires with enhanced photocatalytic and photoelectrochemical performance. J. Phys. Chem. C 2018, 122, 3183–3193.

[177]

Zhang, W. L.; Deng, G. Y.; Li, B.; Zhao, X. X.; Ji, T.; Song, G. S.; Xiao, Z. Y.; Cao, Q.; Xiao, J. B.; Huang, X. J. et al. Degradable rhenium trioxide nanocubes with high localized surface plasmon resonance absorbance like gold for photothermal theranostics. Biomaterials 2018, 159, 68–81.

[178]

Odda, A. H.; Xu, Y. C.; Lin, J.; Wang, G.; Ullah, N.; Zeb, A.; Liang, K.; Wen, L. P.; Xu, A. W. Plasmonic MoO3−x nanoparticles incorporated in prussian blue frameworks exhibit highly efficient dual photothermal/photodynamic therapy. J. Mater. Chem. B 2019, 7, 2032–2042.

[179]

Li, R.; An, H. J.; Huang, W.; He, Y. Molybdenum oxide nanosheets meet ascorbic acid: Tunable surface plasmon resonance and visual colorimetric detection at room temperature. Sens. Actuators B:Chem. 2018, 259, 59–63.

[180]

Wang, J. H.; Yang, Y. H.; Li, H.; Gao, J.; He, P.; Bian, L.; Dong, F. Q.; He, Y. Stable and tunable plasmon resonance of molybdenum oxide nanosheets from the ultraviolet to the near-infrared region for ultrasensitive surface-enhanced raman analysis. Chem. Sci. 2019, 10, 6330–6335.

[181]

Shi, Y. Z.; Liu, Q. Y.; Hong, R. J.; Tao, C. X.; Wang, Q.; Lin, H.; Han, Z. X.; Zhang, D. W. SERS-active WO3−x thin films with tunable surface plasmon resonance induced by defects from thermal treatment. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 268, 120686.

[182]

Song, K. N.; Liu, X. M.; Tian, C.; Deng, H.; Wang, J. D.; Su, X. T. Oxygen defect-rich WO3−x nanostructures with high photocatalytic activity for dehydration of isopropyl alcohol to propylene. Surf. Interfaces 2019, 14, 245–250.

[183]

Li, J.; Chen, G. Y.; Yan, J. H.; Huang, B. B.; Cheng, H. F.; Lou, Z. Z.; Li, B. J. Solar-driven plasmonic tungsten oxides as catalyst enhancing ethanol dehydration for highly selective ethylene production. Appl. Catal. B: Environ. 2020, 264, 118517.

[184]

Li, Y. H.; Chen, X.; Zhang, M. J.; Zhu, Y. M.; Ren, W. J.; Mei, Z. W.; Gu, M.; Pan, F. Oxygen vacancy-rich MoO3−x nanobelts for photocatalytic N2 reduction to NH3 in pure water. Catal. Sci. Technol. 2019, 9, 803–810.

[185]

Wu, H. Y.; Li, X.; Cheng, Y.; Xiao, Y. H.; Li, R. F.; Wu, Q. P.; Lin, H.; Xu, J.; Wang, G. Q.; Lin, C. et al. Plasmon-driven N2 photofixation in pure water over MoO3−x nanosheets under visible to nir excitation. J. Mater. Chem. A 2020, 8, 2827–2835.

[186]

Ai, S.; Ma, M.; Chen, Y. Z.; Gao, X. H.; Liu, G. Metal-ceramic carbide integrated solar-driven evaporation device based on ZrC nanoparticles for water evaporation and desalination. Chem. Eng. J. 2022, 429, 132014.

[187]

Cheng, Z. X.; Qi, W. L.; Pang, C. H.; Thomas, T.; Wu, T.; Liu, S. Q.; Yang, M. H. Recent advances in transition metal nitride-based materials for photocatalytic applications. Adv. Funct. Mater. 2021, 31, 2100553.

[188]

Liu, Y. T.; Lu, M. Y.; Perng, T. P.; Chen, L. J. Plasmonic enhancement of hydrogen production by water splitting with cds nanowires protected by metallic tin overlayers as highly efficient photocatalysts. Nano Energy 2021, 89, 106407.

[189]

Liu, Y.; Zhang, X. W.; Lu, L. S.; Ye, J.; Wang, J. L.; Li, X. M.; Bai, X. D.; Wang, W. L. Nanoplasmonic zirconium nitride photocatalyst for direct overall water splitting. Chin. Chem. Lett. 2022, 33, 1271–1274.

[190]

Zhu, Q. B.; Xuan, Y. M.; Zhang, K.; Chang, K. Enhancing photocatalytic CO2 reduction performance of g-C3N4-based catalysts with non-noble plasmonic nanoparticles. Appl. Catal. B: Environ. 2021, 297, 120440.

[191]

Huang, W. C.; Meng, H. X.; Gao, Y.; Wang, J. X.; Yang, C. Y.; Liu, D. Q.; Liu, J.; Guo, C. S.; Yang, B.; Cao, W. W. Metallic tungsten carbide nanoparticles as a near-infrared-driven photocatalyst. J. Mater. Chem. A 2019, 7, 18538–18546.

[192]

Han, N. N.; Liu, K.; Zhang, X. P.; Wang, M.; Du, P.; Huang, Z. H.; Zhou, D. J.; Zhang, Q.; Gao, T. F.; Jia, Y. et al. Highly efficient and stable solar-powered desalination by tungsten carbide nanoarray film with sandwich wettability. Sci. Bull. 2019, 64, 391–399.

[193]

Li, C.; Yang, W. Y.; Li, Q. TiO2-based photocatalysts prepared by oxidation of TiN nanoparticles and their photocatalytic activities under visible light illumination. J. Mater. Sci. Technol. 2018, 34, 969–975.

[194]

Liu, J. M.; Wang, A. Z.; Liu, S. H.; Yang, R. Q.; Wang, L. W.; Gao, F. N.; Zhou, H. G.; Yu, X.; Liu, J.; Chen, C. Y. A titanium nitride nanozyme for pH-responsive and irradiation-enhanced cascade-catalytic tumor therapy. Angew. Chem., Int. Ed. 2021, 60, 25328–25338.

[195]

Nyamukamba, P.; Tichagwa, L.; Ngila, J. C.; Petrik, L. Plasmonic metal decorated titanium dioxide thin films for enhanced photodegradation of organic contaminants. J. Photochem. Photobiol. A: Chem. 2017, 343, 85–95.

[196]

Ma, B.; Kong, C. C.; Lv, J.; Zhang, W. X.; Guo, J.; Zhang, X. J.; Yang, Z. M.; Yang, S. Controllable in-situ synthesis of Cu-Cu2O heterostructures with enhanced visible-light photocatalytic activity. ChemistrySelect 2018, 3, 10641–10645.

[197]

Bao, Y. C.; Chen, K. Z. A novel Z-scheme visible light driven Cu2O/Cu/g-C3N4 photocatalyst using metallic copper as a charge transfer mediator. Mol. Catal. 2017, 432, 187–195.

[198]

Zhang, P. Y.; Song, T.; Wang, T. T.; Zeng, H. P. Effectively extending visible light absorption with a broad spectrum sensitizer for improving the H2 evolution of in-situ Cu/g-C3N4 nanocomponents. Int. J. Hydrogen Energy 2017, 42, 14511–14521.

[199]

Zhang, P. Y.; Song, T.; Wang, T. T.; Zeng, H. P. In-situ synthesis of Cu nanoparticles hybridized with carbon quantum dots as a broad spectrum photocatalyst for improvement of photocatalytic H2 evolution. Appl. Catal. B: Environ. 2017, 206, 328–335.

[200]

Huang, T. B.; Xu, Z. X.; Zeng, G. C.; Zhang, P. Y.; Song, T.; Wang, Y. L.; Wang, T.; Huang, S. B.; Wang, T. T.; Zeng, H. P. Selective deposition of plasmonic copper on few layers graphene with specific defects for efficiently synchronous photocatalytic hydrogen production. Carbon 2019, 143, 257–267.

[201]

Zhang, P. Y.; Song, T.; Wang, T. T.; Zeng, H. P. Plasmonic Cu nanoparticle on reduced graphene oxide nanosheet support: An efficient photocatalyst for improvement of near-infrared photocatalytic H2 evolution. Appl. Catal. B: Environ. 2018, 225, 172–179.

[202]

Lou, Y. B.; Zhang, Y. K.; Cheng, L.; Chen, J. X.; Zhao, Y. X. A stable plasmonic Cu@Cu2O/ZnO heterojunction for enhanced photocatalytic hydrogen generation. ChemSusChem 2018, 11, 1505–1511.

[203]

Xu, X. Y.; Luo, F. T.; Tang, W. S.; Hu, J. G.; Zeng, H. B.; Zhou, Y. Enriching hot electrons via NIR-photon-excited plasmon in WS2@Cu hybrids for full-spectrum solar hydrogen evolution. Adv. Funct. Mater. 2018, 28, 1804055.

[204]

Zhang, P. Y.; Zeng, G. C.; Song, T.; Huang, S. B.; Wang, T. T.; Zeng, H. P. Design of plasmonic CuCo bimetal as a nonsemiconductor photocatalyst for synchronized hydrogen evolution and storage. Appl. Catal. B: Environ. 2019, 242, 389–396.

[205]

Zhao, J.; Li, Y. X.; Zhu, Y. Q.; Wang, Y.; Wang, C. Y. Enhanced CO2 photoreduction activity of black TiO2-coated Cu nanoparticles under visible light irradiation: Role of metallic Cu. Appl. Catal. A Gen. 2016, 510, 34–41.

[206]

Sayed, M.; Zhang, L. Y.; Yu, J. G. Plasmon-induced interfacial charge-transfer transition prompts enhanced CO2 photoreduction over Cu/Cu2O octahedrons. Chem. Eng. J. 2020, 397, 125390.

[207]

Wang, B.; Feng, W. H.; Zhang, L. L.; Zhang, Y.; Huang, X. Y.; Fang, Z. B.; Liu, P. In situ construction of a novel Bi/CdS nanocomposite with enhanced visible light photocatalytic performance. Appl. Catal. B: Environ. 2017, 206, 510–519.

[208]

Wang, H.; Yuan, X. Z.; Wu, Y.; Zeng, G. M.; Tu, W. G.; Sheng, C.; Deng, Y. C.; Chen, F.; Chew, J. W. Plasmonic Bi nanoparticles and BiOCl sheets as cocatalyst deposited on perovskite-type ZnSn(OH)6 microparticle with facet-oriented polyhedron for improved visible-light-driven photocatalysis. Appl. Catal. B: Environ. 2017, 209, 543–553.

[209]

Chen, D. D.; Wu, S. X.; Fang, J. Z.; Lu, S. Y.; Zhou, G. Y.; Feng, W. H.; Yang, F.; Chen, Y.; Fang, Z. Q. A nanosheet-like α-Bi2O3/g-C3N4 heterostructure modified by plasmonic metallic Bi and oxygen vacancies with high photodegradation activity of organic pollutants. Sep. Purif. Technol. 2018, 193, 232–241.

[210]

Guo, M. J.; Zhao, T. Y.; Xing, Z. P.; Qiu, Y. L.; Pan, K.; Li, Z. Z.; Yang, S. L.; Zhou, W. Hollow octahedral Cu2−xS/CdS/Bi2S3 p-n-p type tandem heterojunctions for efficient photothermal effect and robust visible-light-driven photocatalytic performance. ACS Appl. Mater. Interfaces 2020, 12, 40328–40338.

[211]

Chen, X.; Li, Q.; Li, J. J.; Chen, J.; Jia, H. P. Modulating charge separation via in situ hydrothermal assembly of low content Bi2S3 into UiO-66 for efficient photothermocatalytic CO2 reduction. Appl. Catal. B: Environ. 2020, 270, 118915.

[212]

Chang, X. F.; Xie, L.; Sha, W. E. I.; Lu, K.; Qi, Q.; Dong, C. Y.; Yan, X. X.; Gondal, M. A.; Rashid, S. G.; Dai, Q. I. et al. Probing the light harvesting and charge rectification of bismuth nanoparticles behind the promoted photoreactivity onto Bi/BiOCl catalyst by (in-situ) electron microscopy. Appl. Catal. B: Environ. 2017, 201, 495–502.

[213]

Wang, H.; Zhang, W. D.; Li, X. W.; Li, J. Y.; Cen, W. L.; Li, Q. Y.; Dong, F. Highly enhanced visible light photocatalysis and in situ FT-IR studies on Bi metal@defective biocl hierarchical microspheres. Appl. Catal. B: Environ. 2018, 225, 218–227.

[214]

Dong, X. A.; Zhang, W. D.; Sun, Y. J.; Li, J. Y.; Cen, W. L.; Cui, Z. H.; Huang, H. W.; Dong, F. Visible-light-induced charge transfer pathway and photocatalysis mechanism on Bi semimetal@defective BiOBr hierarchical microspheres. J. Catal. 2018, 357, 41–50.

[215]

Xu, X. M.; Meng, L. J.; Dai, Y. X.; Zhang, M.; Sun, C.; Yang, S. G.; He, H.; Wang, S. M.; Li, H. Bi spheres SPR-coupled Cu2O/Bi2MoO6 with hollow spheres forming Z-scheme Cu2O/Bi/Bi2MoO6 heterostructure for simultaneous photocatalytic decontamination of sulfadiazine and Ni(II). J. Hazard Mater. 2020, 381, 120953.

[216]

Liu, Z. Y.; Wang, Q. Y.; Tan, X. Y.; Zheng, S. X.; Zhang, H.; Wang, Y. J.; Gao, S. M. Solvothermal preparation of Bi/Bi2O3 nanoparticles on TiO2 nts for the enhanced photoelectrocatalytic degradation of pollutants. J. Alloys Compd. 2020, 815, 152478.

[217]

Wang, J. Z.; Wang, Y. N.; Cao, C. S.; Zhang, Y.; Zhang, Y. Q.; Zhu, L. Y. Decomposition of highly persistent perfluorooctanoic acid by hollow Bi/BiOI1−xFx: Synergistic effects of surface plasmon resonance and modified band structures. J. Hazard Mater. 2021, 402, 123459.

[218]

Li, K.; Liang, Y. J.; Yang, J.; Yang, G.; Zhang, H.; Wang, K.; Xu, R.; Xie, X. J. Glucose-induced fabrication of Bi/α-FeC2O4·2H2O heterojunctions: A bifunctional catalyst with enhanced photocatalytic and Fenton oxidation efficiency. Catal. Sci. Technol. 2019, 9, 2543–2552.

[219]

Jin, X. Y.; Lei, S. Y.; Chen, J. F.; Zhong, J. B.; Zhang, S. L.; Tang, X. Q. Bi0 and oxygen vacancies co-induced enhanced visible-light photocatalytic detoxication of three typical contaminants over Bi2WO6 treated by NaBH4 solution. Surf. Interfaces 2022, 28, 101648.

[220]

Yin, S.; Zhong, K.; Yu, Q.; Wang, Z. L.; Li, Q. D.; Feng, Z. Y.; Du, H. S.; Yang, J. M.; Hua, Y. J.; Zhu, X. W. et al. Boosting CO2 capture and its photochemical conversion on bismuth surface. Phys. Status solidi A 2021, 218, 2000671.

[221]

Sun, L. M.; Yuan, Y. S.; Wang, F.; Zhao, Y. L.; Zhan, W. W.; Han, X. G. Selective wet-chemical etching to create TiO2@MOF frame heterostructure for efficient photocatalytic hydrogen evolution. Nano Energy 2020, 74, 104909.

[222]

Tang, X. F.; Huang, J. C.; Liao, H. Z.; Chen, G. X.; Mo, Z. P.; Ma, D. B.; Zhan, R. Z.; Li, Y. D. ; Luo, J. Y. Growth of W18O49/WOx/W dendritic nanostructures by one-step thermal evaporation and their high-performance photocatalytic activities in methyl orange degradation. CrystEngComm 2019, 21, 5905–5914.

[223]

Yu, M. J.; Chang, C. L.; Lan, H. Y.; Chiao, Z. Y.; Chen, Y. C.; Lee, H. W. H.; Chang, Y. C.; Chang, S. W.; Tanaka, T.; Tung, V. et al. Plasmon-enhanced solar-driven hydrogen evolution using titanium nitride metasurface broadband absorbers. ACS Photonics 2021, 8, 3125–3132.

[224]

Hao, J. X.; He, H.; Gong, S. Q.; Fan, J. C.; Xu, Q. J.; Min, Y. L. WN coupled with Bi nanoparticles to enhance the localized surface plasmon resonance effect for photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2021, 13, 19884–19893.

[225]

Li, Y. Y.; Wang, J. G.; Fan, Y. C.; Sun, H. H.; Hua, W.; Liu, H. Y.; Wei, B. Q. Plasmonic TiN boosting nitrogen-doped TiO2 for ultrahigh efficient photoelectrochemical oxygen evolution. Appl. Catal. B: Environ. 2019, 246, 21–29.

[226]

Zeng, X. J.; Choi, S. M.; Bai, Y. C.; Jang, M. J.; Yu, R. H.; Cho, H. S.; Kim, C. H.; Myung, N. V.; Yin, Y. D. Plasmon-enhanced oxygen evolution catalyzed by Fe2N-embedded TiOxNy nanoshells. ACS Appl. Energy Mater. 2020, 3, 146–151.

[227]

Awin, E. W.; Lale, A.; Hari Kumar, K. C.; Demirci, U. B.; Bernard, S.; Kumar, R. Plasmon enhanced visible light photocatalytic activity in polymer-derived TiN/Si-O-C-N nanocomposites. Mater. Des. 2018, 157, 87–96.

[228]

Wang, H. M.; Zhao, R.; Hu, H. X.; Fan, X. W.; Zhang, D. J.; Wang, D. 0d/2d heterojunctions of Ti3C2 MXene QDs/SiC as an efficient and robust photocatalyst for boosting the visible photocatalytic NO pollutant removal ability. ACS Appl. Mater. Interfaces 2020, 12, 40176–40185.

[229]

Xu, X. H.; Dutta, A.; Khurgin, J.; Wei, A.; Shalaev, V. M.; Boltasseva, A. TiN@TiO2 core–shell nanoparticles as plasmon-enhanced photosensitizers: The role of hot electron injection. Laser Photonics Rev. 2020, 14, 1900376.

[230]

Jiang, W. Q.; Fu, Q. G.; Wei, H. Y.; Yao, A. H. TiN nanoparticles: Synthesis and application as near-infrared photothermal agents for cancer therapy. J. Mater. Sci. 2019, 54, 5743–5756.

[231]

Bora, J.; Podder, S.; Gogoi, D.; Basumatary, B.; Pal, A. R. An all metal nitride nanostructure configuration: Study and exploitation in efficient photo-detection. J. Alloys Compd. 2021, 879, 160460.

[232]

Podder, S.; Pal, A. R. Hot carrier devices using visible and NIR responsive titanium nitride nanostructures with stoichiometry variation. Opt. Mater. 2019, 97, 109379.

Nano Research
Pages 10268-10291
Cite this article:
Li J, Zhang Y, Huang Y, et al. Noble-metal free plasmonic nanomaterials for enhanced photocatalytic applications—A review. Nano Research, 2022, 15(12): 10268-10291. https://doi.org/10.1007/s12274-022-4700-0
Topics:
Part of a topical collection:

1753

Views

20

Crossref

17

Web of Science

18

Scopus

1

CSCD

Altmetrics

Received: 16 May 2022
Revised: 18 June 2022
Accepted: 22 June 2022
Published: 31 August 2022
© Tsinghua University Press 2022
Return