Graphical Abstract

Developing high-efficiency and low-cost oxygen evolution reaction (OER) catalysts is crucial to advance the water splitting technology for sustainable hydrogen production. Here, a FeCoNi coordinated benzene-1,3,5-tricarboxylic acid (FeCoNiBTC) metal-organic framework (MOF) was synthesized by one-step solvothermal method for OER. A rapid in-situ chemical and electrochemical transformation was observed on the surface of the FeCoNiBTC MOF during OER process. The formed catalytic active FeCoNiOx(OH)y species retained the unique structure feature of initial FeCoNiBTC, moreover, it possessed multiple transition metal active nodes that cooperate with each other to adjust the electronic structure. Owing to the above structure advantages, the in-situ transformed FeCoNiOx(OH)y showed excellent OER catalytic activity with a small overpotential of 230 mV to achieve the 100 mA·cm−2, a low Tafel slope of 50.2 mV·dec−1, and superior stability of almost 80 h in alkaline aqueous solution. This work systematically studies the structure–performance relations of the multi-metal MOF-based materials in OER process, and it would enrich the exploration of highly efficient OER electrocatalysts.
Hermesmann, M.; Müller, T. E. Green, turquoise, blue, or grey? Environmentally friendly hydrogen production in transforming energy systems. Prog. Energy Combust. Sci. 2022, 90, 100996.
Jiao, S. L.; Fu, X. W.; Wang, S. Y.; Zhao, Y. Perfecting electrocatalysts via imperfections: Towards the large-scale deployment of water electrolysis technology. Energy Environ. Sci. 2021, 14, 1722–1770.
Yu, Z. Y.; Duan, Y.; Feng, X. Y.; Yu, X. X.; Gao, M. R.; Yu, S. H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects. Adv. Mater. 2021, 33, 2007100.
Boettcher, S. W.; Surendranath, Y. Heterogeneous electrocatalysis goes chemical. Nat. Catal. 2021, 4, 4–5.
Kwon, T.; Kim, T.; Son, Y.; Lee, K. Dopants in the design of noble metal nanoparticle electrocatalysts and their effect on surface energy and coordination chemistry at the nanocrystal surface. Adv. Energy Mater. 2021, 11, 2100265.
Tian, J. Y.; Jiang, F. L.; Yuan, D. Q.; Zhang, L. J.; Chen, Q. H.; Hong, M. C. Electric-field assisted in situ hydrolysis of bulk metal-organic frameworks (MOFs) into ultrathin metal oxyhydroxide nanosheets for efficient oxygen evolution. Angew. Chem., Int. Ed. 2020, 59, 13101–13108.
Jin, Y. S.; Huang, S. L.; Yue, X.; Du, H. Y.; Shen, P. K. Mo- and Fe-modified Ni(OH)2/NiOOH nanosheets as highly active and stable electrocatalysts for oxygen evolution reaction. ACS Catal. 2018, 8, 2359–2363.
Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; Garcia-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.
Guo, P. F.; Yang, Y.; Wang, W. J.; Zhu, B.; Wang, W. T.; Wang, Z. Y.; Wang, J. L.; Wang, K.; He, Z. H.; Liu, Z. T. Stable and active NiFeW layered double hydroxide for enhanced electrocatalytic oxygen evolution reaction. Chem. Eng. J. 2021, 426, 130768.
Huo, J. M.; Wang, Y.; Meng, J.; Zhao, X. Y.; Zhai, Q. G.; Jiang, Y. C.; Hu, M. C.; Li, S. N.; Chen, Y. π···π interaction directed 2D FeNi-LDH nanosheets from 2D Hofmann-MOFs for the oxygen evolution reaction. J. Mater. Chem. A 2022, 10, 1815–1820.
Yue, K. H.; Liu, J. L.; Xia, C. F.; Zhan, K.; Wang, P.; Wang, X. Y.; Yan, Y.; Xia, B. Y. Controllable synthesis of multidimensional carboxylic acid-based NiFe MOFs as efficient electrocatalysts for oxygen evolution. Mater. Chem. Front. 2021, 5, 7191–7198.
Zhu, Y. T.; Yue, K. H.; Xia, C. F.; Zaman, S.; Yang, H.; Wang, X. Y.; Yan, Y.; Xia, B. Y. Recent advances on MOF derivatives for non-noble metal oxygen electrocatalysts in zinc-air batteries. Nano-Micro Lett. 2021, 13, 137.
Liang, Z. B.; Qu, C.; Guo, W. H.; Zou, R. Q.; Xu, Q. Pristine metal-organic frameworks and their composites for energy storage and conversion. Adv. Mater. 2018, 30, 1702891.
Shen, Y.; Pan, T.; Wang, L.; Ren, Z.; Zhang, W. N.; Huo, F. W. Programmable logic in metal-organic frameworks for catalysis. Adv. Mater. 2021, 33, 2007442.
Yue, K. H.; Liu, J. L.; Zhu, Y. T.; Xia, C. F.; Wang, P.; Zhang, J. W.; Kong, Y.; Wang, X. Y.; Yan, Y.; Xia, B. Y. In situ ion-exchange preparation and topological transformation of trimetal-organic frameworks for efficient electrocatalytic water oxidation. Energy Environ. Sci. 2021, 14, 6546–6553.
Sun, H.; Chen, L.; Lian, Y. B.; Yang, W. J.; Lin, L.; Chen, Y. F.; Xu, J. B.; Wang, D.; Yang, X. Q.; Rümmerli, M. H. et al. Topotactically transformed polygonal mesopores on ternary layered double hydroxides exposing under-coordinated metal centers for accelerated water dissociation. Adv. Mater. 2020, 32, 2006784.
Srinivas, K.; Chen, X.; Liu, D. W.; Ma, F.; Zhang, X. J.; Zhang, W. L.; Lin, H.; Chen, Y. F. Surface modification of metal-organic frameworks under sublimated iron-atmosphere by controlled carbonization for boosted oxygen evolution reaction. Nano Res. 2022, 15, 5884–5894.
Neerugatti, K. E.; Adhikari, S.; Kim, D. H.; Heo, J. Eventual loss of phosphate and compensated passivation observed in CoPi thin films for efficient water oxidation in alkaline solutions. Appl. Catal. B Environ. 2021, 292, 120192.
Thangavel, P.; Ha, M. R.; Kumaraguru, S.; Meena, A.; Singh, A. N.; Harzandi, A. M.; Kim, K. S. Graphene-nanoplatelets-supported NiFe-MOF: High-efficiency and ultra-stable oxygen electrodes for sustained alkaline anion exchange membrane water electrolysis. Energy Environ. Sci. 2020, 13, 3447–3458.
Li, F. L.; Shao, Q.; Huang, X. Q.; Lang, J. P. Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2018, 57, 1888–1892.
Sun, F. Z.; Wang, G.; Ding, Y. Q.; Wang, C.; Yuan, B. B.; Lin, Y. Q. NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1800584.
Sreekanth, T. V. M.; Dillip, G. R.; Nagajyothi, P. C.; Yoo, K.; Kim, J. Integration of Marigold 3D flower-like Ni-MOF self-assembled on MWCNTs via microwave irradiation for high-performance electrocatalytic alcohol oxidation and oxygen evolution reactions. Appl. Catal. B 2021, 285, 119793.
Li, C.; Lou, X. B.; Shen, M.; Hu, X. S.; Guo, Z.; Wang, Y.; Hu, B. W.; Chen, Q. High anodic performance of Co 1,3,5-benzenetricarboxylate coordination polymers for Li-ion battery. ACS Appl. Mater. Interfaces 2016, 8, 15352–15360.
Qin, L.; Xu, Z. H.; Zheng, Y. L.; Li, C.; Mao, J. W.; Zhang, G. L. Confined transformation of organometal-encapsulated MOFs into spinel CoFe2O4/C nanocubes for low-temperature catalytic oxidation. Adv. Funct. Mater. 2020, 30, 1910257.
Hammer, B.; Norskov, J. K. Why gold is the noblest of all the metals. Nature 1995, 376, 238–240.
Peng, Y. M.; Hajiyani, H.; Pentcheva, R. Influence of Fe and Ni doping on the OER performance at the Co3O4 (001) surface: Insights from DFT + U calculations. ACS Catal. 2021, 11, 5601–5613.
Anantharaj, S.; Kundu, S.; Noda, S. “The Fe effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 2021, 80, 105514.
Bai, L. C.; Lee, S.; Hu, X. L. Spectroscopic and electrokinetic evidence for a bifunctional mechanism of the oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 3095–3103.
Wen, Q. L.; Yang, K.; Huang, D. J.; Cheng, G.; Ai, X. M.; Liu, Y. W.; Fang, J. K.; Li, H. Q.; Yu, L.; Zhai, T. Y. Schottky heterojunction nanosheet array achieving high-current-density oxygen evolution for industrial water splitting electrolyzers. Adv. Energy Mater. 2021, 11, 2102353.
Wei, C.; Rao, R. R.; Peng, J. Y.; Huang, B. T.; Stephens, I. E. L.; Risch, M.; Xu, Z. J.; Shao-Horn, Y. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 2019, 31, 1806296.
Qu, D. Y.; Wang, G. W.; Kafle, J.; Harris, J.; Crain, L.; Jin, Z. H.; Zheng, D. Electrochemical impedance and its applications in energy-storage systems. Small Methods 2018, 2, 1700342.
Chen, Z. L.; Ha, Y.; Jia, H. X.; Yan, X. X.; Chen, M.; Liu, M.; Wu, R. B. Oriented transformation of Co-LDH into 2D/3D ZIF-67 to achieve Co-N-C hybrids for efficient overall water splitting. Adv. Energy Mater. 2019, 9, 1803918.
Wei, C.; Sun, S. N.; Mandler, D.; Wang, X.; Qiao, S. Z.; Xu, Z. J. Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chem. Soc. Rev. 2019, 48, 2518–2534.
Cai, Z. Y.; Bu, X. M.; Wang, P.; Ho, J. C.; Yang, J. H.; Wang, X. Y. Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 5069–5089.
Xu, H. J.; Shan, C. F.; Wu, X. X.; Sun, M. Z.; Huang, B. L.; Tang, Y.; Yan, C. H. Fabrication of layered double hydroxide microcapsules mediated by cerium doping in metal-organic frameworks for boosting water splitting. Energy Environ. Sci. 2020, 13, 2949–2956.
Kang, J. X.; Qiu, X. Y.; Hu, Q.; Zhong, J.; Gao, X.; Huang, R.; Wan, C. Z.; Liu, L. M.; Duan, X. F.; Guo, L. Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation. Nat. Catal. 2021, 4, 1050–1058.
Huang, Z. F.; Xi, S. B.; Song, J. J.; Dou, S.; Li, X. G.; Du, Y. H.; Diao, C. Z.; Xu, Z. J.; Wang, X. Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst. Nat. Commun. 2021, 12, 3992.